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Abstract

This thesis consolidates advancements in the application of Bayesian statistical methods
to address uncertainties and variability in material behavior and structural responses
across diverse civil engineering problems. A theoretical introduction to principles of
Bayesian inference and Markov Chain Monte Carlo (MCMC) sampling methods precedes
the individual studies, providing a robust foundation for their application.

Five distinct studies form the core of the research:

Soil Mechanics A hierarchical probabilistic model was developed to quantify the un-
certainty of hypoplastic material parameters for clay, demonstrating the in�uence
of laboratory data selection on parameter variability. This framework encourages
stochastic simulations even with limited data available for a particular soil.

Tunnel Excavation Bayesian updating methods improved the predictions of ground
settlements during tunnel excavation. By integrating numerical modeling and in
situ measurements, the study demonstrated iterative model re�nement for better
alignment with real-world data.

Fire-Exposed Timber Beams The behavior of glued laminated timber beams ex-
posed to �re was examined through experimental and numerical analyses. Bayesian
inference identi�ed temperature-dependent material parameters, enabling enhanced
charring rate predictions and facilitating fully stochastic structural �re analysis.

Elastic Properties of Laminated Timber A stochastic hierarchical model was for-
mulated to capture the variability and uncertainty of the elastic properties of lam-
inated timber beams. Bayesian inference combined experimental data with �nite
element simulations, yielding improved material property estimations and a re�ned
formula for longitudinal elastic modulus.

Micromechanics of Wood A Bayesian framework was designed to link micromechan-
ics, computational homogenization, and experimental measurements to estimate
uncertainties in the macroscopic elastic properties of wood, accounting for mi-
crostructural randomness and experimental error.

Collectively, these studies highlight the power of Bayesian statistics in quantifying un-
certainties, improving parameter estimation, and enhancing predictive capabilities across
engineering problems. They underscore the value of integrating computational models

vi
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with experimental data and general prior knowledge to achieve more reliable designs and
analyses.



Chapter 1

Introduction

Virtually all physical processes that are of interest in the �eld of civil engineering are
controlled by deterministic laws of nature. When starting from the same state, the
deterministic systems will always evolve in the same way and end up in the same state.
No random e�ects in�uence their output. The omnipresence and undisputed validity of
deterministic physical laws motivate engineers and researchers to formulate mathematical
models that describe the observed phenomena to great detail. With the help of numerical
methods for solving system of di�erential equations at hand, a vast range of processes with
di�erent geometries and material properties can be simulated. The types of simulations
range from static or dynamic mechanical analysis, �uid dynamics, and transport processes
to coupled multiphysics simulations.

When engineers apply complex simulations to real-word systems, they face a problem
of specifying an initial state and parameters of the system. In mechanics of solids, for
example, the input includes parameters of material models, an initial stress state, loading,
or even geometry. Many of these inputs cannot be measured directly. They are either
measured indirectly or estimated from previous observations. In any case, the inputs
are often uncertain. Unfortunately, there is no generally accepted way for engineering
problems to quantify uncertainties of model parameters or to propagate them through
the deterministic model. Instead, there is a number of di�erent ways.

The approaches to the problem of uncertain inputs entering a deterministic engineer-
ing model range from very simple and straightforward ones to rather convoluted and
academical ones. The simplest approach typically chooses some adverse but possible val-
ues of the input parameters and ensures that the solution obtained for these parameters
is still satisfactory. A more advanced family of approaches is the Monte Carlo method,
which relies on multiple deterministic simulations performed with a representative en-
semble of input values. Another approach is the stochastic �nite element method, which
relies on a numerical solution of stochastic di�erential equations. However, this approach
typically requires reformulation or reimplementation of the deterministic model.

All of the above approaches share one feature: they require the input parameters to
be speci�ed in a probabilistic manner. The parameters are often not directly observable,
and their values need to be estimated from the observed data. The approaches to pa-

1



CHAPTER 1. INTRODUCTION 2

rameter estimation also vary. Two dominant approaches are referred to as frequentist
and Bayesian. The frequentist approach proposes a single value of the desired parameter
and relies on hypothesis testing to justify it. The Bayesian approach, on the other hand,
primarily searches for the joint probability distribution of the parameters.

The goal of this thesis is to outline the principles of Bayesian inference and to provide
examples of its application to several di�erent problems in the �eld of civil engineering.

Bayesian inference is a statistical method that allows us to combine a prior general
knowledge about the model with observed data to arrive at the joint posterior distribution
of the model parameters. From the perspective of a typical user of Bayesian inference, i.e.,
a researcher or engineer with a limited training in statistics, the method may be perceived
as two fold. On one hand, the main creative part when using Bayesian inference � the
formulation of the data generating statistical model and de�nition of its parameters � is
relatively intuitive and typically requires only basic knowledge of probability theory. On
the other hand, there are a number of concepts and technicalities that the user should
understand to be able to reason about how and why the method works and identify and
resolve potential problems in the inference.

The text of this theses consists of two parts. The �rst part brie�y summarizes the
principles of Bayesian inference, related concepts, and the technicalities associated to
sampling. The second part is a collection of previously published journal papers pre-
senting the applications of Bayesian inference and predictions to selected engineering
problems.

The �rst part is by no means a complete and rigorous introduction to Bayesian
statistics. Instead, it is meant to be a brief overview of the principles, terminology, and
topics that aspiring user of Bayesian inference might want to study. It also provides
some reference to technical details and intuition behind the Markov chain Monte Carlo,
the method that makes Bayesian inference possible for complex models. Note, however,
that a detailed and rigorous introduction of probability theory and various Markov Chain
Monte Carlo samplers is completely outside the scope and extent of this text.

The second, more extensive part of the thesis is a collection of already published
journal articles that focuses on the application of Bayesian inference to civil engineering
problems. The articles are:

� Janda, T.; Pavelcová, V.; Zemanová, A.; �ejnoha, M., Uncertainty in calibration
of hypoplastic model for clay attributed to limited number of laboratory tests,
Computers and Structures. 2024, 295 ISSN 1879-2243.

� Janda, T.; �ejnoha, M.; �ejnoha, J., Applying Bayesian approach to predict de-
formations during tunnel construction, International Journal for Numerical and
Analytical Methods in Geomechanics. 2018, 42(15), 1765-1784. ISSN 0363-9061.

� Kucíková, L.; Janda, T.; Sýkora, J.; �ejnoha, M.; Marseglia, G., Experimental and
numerical investigation of the response of GLT beams exposed to �re, Construction
and Building Materials. 2021, 299 1-18. ISSN 1879-0526.

� �ejnoha, M.; Janda, T.; Melzerová, L.; Neºerka, V.; �ejnoha, J., Modeling glulams
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in linear range with parameters updated using Bayesian inference, Engineering
Structures. 2017, 138 293-307. ISSN 0141-0296.

� �ejnoha, M.; Janda, T.; Vorel, J.; Kucíková, L.; Padev¥t, P.; Hrbek, V., Bayesian
inference as a tool for improving estimates of e�ective elastic parameters of wood,
Computers and Structures. 2019, 218 94-107. ISSN 0045-7949.

The papers share one characteristic: they focus on structures or processes involving
natural materials such as soil or wood. The inferred properties of these materials are
inherently uncertain for two reasons. The �rst source of uncertainty is their natural spa-
tial and structural variability. This source of inherent aleatoric uncertainty is irreducible
and should always be considered. The second, principally di�erent source of uncertainty
of the material properties is attributed to the inaccuracy of the measuring process and
the limited amount of available data. In contrast, this epistemic uncertainty depends on
the data acquisition process and might be controlled. Bayesian inference naturally takes
both sources of uncertainty into account and in most cases quanti�es them separately.



Chapter 2

Principles of Bayesian inference

Bayesian inference is a statistical method that allows us to reason about data and prob-
abilistic models in a natural, coherent way. Its appeal comes from its broad applicability
and consistent methodology in a wide range of problems. The principles and work�ow
of the inference remain the same regardless of the speci�c application.

For example, Bayesian inference can be used to determine credible intervals for basic
statistics, such as the mean and standard deviation of a dataset. It can also be applied to
estimate parameters in various regression models. In hierarchical probabilistic models,
Bayesian inference helps to estimate credible intervals of not directly observable latent
variables. Furthermore, it can calculate credible ranges for the expected value of a
variable, even when the number of observations is limited. In addition, Bayesian methods
can be used to compare the predictive performance of di�erent probabilistic models.
Although the range of problems to which Bayesian inference can be applied is vast, the
core of the Bayesian work�ow remains the same across all these problems.

First, a probabilistic model is formulated and its likelihood function is de�ned. Next,
the prior distribution of the model parameters is speci�ed. By combining the prior
distribution with the likelihood, the posterior distribution is obtained. This posterior
distribution is then explored using Markov chain Monte Carlo (MCMC) sampling tech-
niques.

While the practical steps of Bayesian inference are relatively straightforward, and
some of them can even be automated, a deeper understanding of the method is desirable.
Understanding the principles and numerical techniques related to Bayesian inference is
crucial especially when one needs to identify and �x a problem in the model that is
typically manifested by non-converging MCMC chains of samples.

This chapter provides a basic understanding of how and why Bayesian inference
works. The text does not aim to be comprehensive or particularly rigorous. Instead, it
should serve as a brief overview of the topics with examples and references to several
comprehensive but accessible classic works on the topic.

4
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2.1 Probability

Probability theory plays a central role in Bayesian inference. The inference of parameters
is carried out for a probabilistic model of the observed data and the inferred parameters
are treated as random variables. Understanding the basics of probability theory to at least
the level outlined in this theoretical section is therefore the stepping stone to Bayesian
modeling.

2.1.1 What is probability

Consider an action that randomly results in one of several possible outcomes. This action
is referred to as a trial of a random experiment. By convention, each possible outcome
is categorized as a success or a failure.

The most intuitive way to de�ne the probability of success is by considering propor-
tions. Speci�cally, probability is de�ned as the ratio of the number of successes to the
total number of trials, assuming that the number of trials is su�ciently large.

However, despite its simplicity, this de�nition has two notable limitations. First, it
assumes the feasibility of conducting a large number of trials, which may not always
be practical or possible. Second, it provides little insight into how the probability might
change if we alter our classi�cation of outcomes, rede�ning which are considered successes
and which failures. Therefore, a more rigorous de�nition of probability and its relation
to possible outcomes of the random experiment is needed.

2.1.2 Notion and axioms of probability

Consider a random experiment such as rolling a dice or measuring atmospheric pressure
at a certain place and time. The experiment results in outcome ω. In case of the dice-
rolling experiment, the outcome can be dice landing with one of its sides up. In case
of atmospheric pressure measurement, the outcome is the value of the pressure value
represented by a real number. The set of all possible outcomes is the experiment's
sample space Ω. The results are denoted as elementary events. The sample space of six-
sided dice is the set Ω = {1, 2, 3, 4, 5, 6}. The sample space of the atmospheric pressure
contains positive real numbers Ω = R+. Note that the elements of the sample space, i.e.,
the outcomes, do not have to be numbers. They are merely something that we observe
when the random experiment is executed.

Now, it would be tempting to assign some value (probability) to each of the possible
outcomes to indicate how often we observe this particular outcome. While this approach
would work with the dice experiment, it would be problematic for the in�nity of possible
outcomes of a continuous quantity such as the atmospheric pressure.

Therefore, the probability is assigned not to the elements of the sample space but
rather to the elements of event space F . The event space is a set of events. An event
is a subset of the sample space. The event space F must satisfy the following three
properties:
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� It is closed under complements. This means that if an event A, that is, some set of
outcomes, is present in F the complement of A to Ω denoted as A is also present
in F .

� It is closed under unions. This means that if two events A and B are present in F ,
then their union is also present in F .

� The event space F always contains the entire sample space Ω.

A set F constructed from another set Ω and satisfying the above properties is called a
σ-algebra on the set Ω.

For example, for a coin that lands either heads (H) or tails (T), the sample space
is Ω = {H,T} and the event space is F = {{}, {H}, {T}, {H,T}}. The sample space
of a six-sided dice is Ω = {1, 2, 3, 4, 5, 6}. One possible event space is the set of all
subsets of the event space denoted as F = 2Ω. Another possible even space could be
F = {{}, {3, 6}, {1, 2, 4, 5},Ω}. With such event space we consider only two nontrivial
events: dice landing up with a number evenly divisible by three and dice landing up with
the other numbers.

Two events are trivially present in the event space F : an empty set denoted as
impossible event and the entire sample space Ω denoted in this context as the sure event.

A probability P (A) of an event A is mapping from event space F onto real numbers.
The mapping must satisfy the following axioms:

� For any event, the probability is nonnegative.

� Probability of certain event is one, P (Ω) = 1

� Probability of the union of any two mutually exclusive events is the sum of their
probabilities, P (A ∪B) = P (A) + P (B) for any A and B satisfying A ∩B = ∅.

A surprisingly large number of properties can be derived for probability from these
axioms. For example, the probability of a complementary event is calculated as

P (A) = 1− P (A) (2.1)

Additional relationships, particularly those relevant in the context of Bayesian inference,
are discussed in the following sections.

One particular property of probability should be highlighted: Depending on the for-
mulation of the event space, the probability may, but does not have to, be assigned to
the elements of the sample space, that is, to the elementary events that are observed.
This is particularly important in the case of a continuous random quantity where the
individual observed values are not part of the event space and therefore do not have a
probability, as pointed out in Section 2.2.2.

Also note that this axiomatic de�nition of probability, unlike the naive approach, does
not rely on the number of observed failures or the total number of performed trials. All
properties of probability derived from these axioms remain valid, whether the probability
re�ects the relative frequency of an observable event or whether it represents our belief
about the state of an unobservable system.
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2.1.3 Conditional probability

Probability of the event A given that event B happened is termed conditional probability
and is denoted as P (A | B). It is de�ned as

P (A|B) =
P (A ∩B)

P (B)
(2.2)

Conditional probability ranges from zero to one. When P (A|B) = P (A) then the events
A and B are independent. Note that the probability of an intersection of two independent
events follows

P (A ∩B) = P (A)P (B) (2.3)

while the probability of the intersection of two dependent events features the conditional
probability

P (A ∩B) = P (A | B)P (B) = P (A)P (B | A) (2.4)

2.1.4 Chain rule of probability

The probability of an intersection of more than two events (either mutually dependent
or not) is expressed according to the chain rule of probability

P (A1 ∩A2 ∩ · · · ∩An) = P (A1 | A2 ∩ · · · ∩An)P (A2 ∩ · · · ∩An) = (2.5)

= P (A1 | A2 ∩ · · · ∩An)P (A2 | A3 ∩ · · · ∩An) · . . . · P (An−1 | An)P (An) (2.6)

2.1.5 Law of total probability

The law of total probability states that the probability of an event A can be expressed
as a sum of probabilities of intersections of A with elements of mutually exclusive and
complete system of events Bi, i = 1 . . . n. The partitioning of the sample space into
events Bi together with the event A is conceptually shown in Figure 2.1. The probability
of A can be written as

P (A) =
n∑

i=1

P (A ∩Bi) =
n∑

i=1

P (A|Bi)P (Bi) (2.7)

where B1 ∪B2 ∪ . . .∪Bn = Ω and Bi ∩Bj = ∅ for any i = 1 . . . n, j = 1 . . . n with i ̸= j.
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Figure 2.1: Events appearing in the law of total probability, Equation (2.7). Events Bi

(the columns) represent the complete and mutually exclusive partitioning of the entire
sample space Ω (the rectangle). The circle represents the event A.

2.1.6 Bayes' theorem for probabilities

The Bayes' theorem in its most succinct form

P (B | A) = P (A | B)P (B)

P (A)
(2.8)

follows directly from Eq. (2.4). Expanding the denominator according to Eq. (2.7) gives
a slightly more intuitive form

P (Bi | A) =
P (A | Bi)P (Bi)∑n
j=1 P (A | Bj)P (Bj)

(2.9)

that expresses the probability of Bi, i.e., that a randomly chosen point is contained in
the i-th column in Figure (2.1), given that A happened, i.e., given an information that
the point was found in the circle.

A special mutually exclusive and complete system of events is the event B and its
complement to Ω denoted as B. For such partitioning of Ω the Bayes theorem reduces
to

P (B | A) = P (A | B)P (B)

P (A | B)P (B) + P (A | B)P (B)
(2.10)

Note that the Bayes' theorem can be informally seen as a rule to swap the arguments in
the conditional probabilities. Its consequence is illustrated in the following example.

2.1.7 Example: Recognizing defective products

A factory produces batteries. An expert in quality control inspects each battery and
labels it as good or defective. He recognizes a good battery with probability 0.98 and a
defective battery with probability 0.99. On average, 95% of the batteries produced are
good. Our goal is to calculate the probability that a battery labeled by the expert as
defective really is defective.
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The real condition of the battery is denoted in lowercase letters: g and d denote a
good and defective battery, respectively. The battery condition reported by the quality-
control expert is denoted in upper case letters: G resp. D. The three problem statements
are written in terms of (conditional) probabilities as

P (G | g) = 0.98 (2.11)

P (D | d) = 0.99 (2.12)

P (g) = 0.95 (2.13)

and the goal is to calculate conditional probability P (d | D). Note that events g and d
are complementary. Therefore, P (d) = 1 − P (g) = 0.05. The events G and D are also
complementary and P (D | g) = 1−P (G | g) = 0.02 and P (G | d) = 1−P (D | d) = 0.01
therefore holds. The Bayes rule used to express the desired conditional probability P (d |
D) is written as

P (d | D) =
P (D | d)P (d)

P (D | d)P (d) + P (D | g)P (g) =
0.99× 0.05

0.99× 0.05 + 0.02× 0.95
≈ 0.723 (2.14)

A battery labeled as defective really is defective only with probability around 0.723. The
probability of a complementary event, that is, the probability that the battery labeled
as defective is actually good, is again calculated as P (g | D) = 1 − P (d | D) ≈ 0.277.
The following intuition helps to justify the relative high rate of good batteries labeled as
defective: If defective batteries were extremely scarce, the expert would inspect mostly
good batteries and, of course, label some of them incorrectly. Several good batteries
could therefore be labeled as defective before a really defective battery is even inspected.

2.2 Random variable

A special case of a random experiment � but very common in engineering problems �
is one that results in random values of some quantity. The experiment is then viewed
as a random variable. Depending on the sample space, i.e., the possible values that the
random experiment generates, the random variable is either discrete or continuous. The
mathematical description of how the probabilities are assigned to particular values of a
random variable is called probability distribution.

2.2.1 Discrete random variable

The sample space of a discrete random variable is a subset of integers Ω ∈ N. If the
sample space of a random experiment is a �nite or a countable set, it can be treated as a
discrete random variable simply by mapping its outcomes to a subset of Z. For example,
the two elements of the sample space of a coin-�ipping experiment, i.e., Heads and Tails,
can be mapped to 0 and 1, respectively.

The probability of particular values of the continuous variable X is given by the
probability mass function (PMF) p. It is de�ned as

p(x) = P (X = x) (2.15)
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where p(x) denotes the probability mass function evaluated at a given value x and P (X =
x) is the probability of an eventX = x. PMF is therefore a function mapping the possible
values of X to their probabilities. The probability mass function sums to one∑

ΩX

p(x) = 1 (2.16)

Since any value of the probability mass function is a probability, the relations presented
in Section 2.1.2 apply analogically to it. This is shown in the following subsections.

2.2.1.1 Multivariate discrete distribution

Consider a random experiment that produces n discrete values on a single trial. The ex-
periment de�nes n potentially dependent discrete random variables. Putting the random
variables in a vector X = [X1, . . . , Xn] gives random vector. The multivariate discrete
distribution of a random vector is completely determined by the joint probability mass
function de�ned as

pX(x) = pX1,...,Xn(x1, . . . , xn) = P (X1 = x1 ∩ · · · ∩Xn = xn) (2.17)

The subscript of the function p speci�es the random variable or the random vector
in question while the argument speci�es concrete values for which the probability is
evaluated.

2.2.1.2 Marginal and conditional probability mass function

Consider a multivariate discrete distribution of a random vector Z with elements con-
ceptually separated into two parts

Z = [X,Y ] = [X1, . . . , Xm, Y1, . . . , Yn] (2.18)

Its joint probability mass function is denoted by

pX,Y (x,y) = pX1,...,Xm,Y1,...,Yn(x1, . . . , xm, y1, . . . , yn) (2.19)

Now we can de�ne two useful probability distributions for X: the marginal distribution
and the conditional distribution. The marginal distribution is su�ciently de�ned by the
marginal probability mass function

pX(x1, . . . , xm) =
∑
i1

· · ·
∑
in

pX,Y (x1, . . . , xm, y1,i1 , . . . , yn,in) (2.20)

where the index ik in
∑

ik
indexes all possible values of a random variable Yk each denoted

yk,ik .
The conditional probability mass function is written as

pX|Y =y(x1, . . . xm) =
pX,Y (x1, . . . , xm, y1, . . . , yn)

pY (y1, . . . , yn)
(2.21)
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where pY (y1, . . . , yn) is the marginal distribution of Y . It is calculated according to
Eq. (2.20) but the sums are calculated over all possible values of the random vector X.

Note that the marginal and conditional distributions are both distributions of the
X-part of the Z random vector but they are conceptually di�erent. The marginal dis-
tribution of X merely ignores the Y part, while the conditional distribution assigns
probabilities to all possible values of X in the case when the values of Y are known to
be y.

2.2.1.3 Simpli�ed notation

When the random vectorZ is evident from context, a simpli�ed notation p(z) = p(x,y) =
pX,Y (x,y) = pZ(z) is used for the joint probability mass function, p(x) = p(x1, . . . , xm) =
pX(x) is used for the marginal distribution, and p(x | y) = p(x1, . . . , xm | y1, . . . , yn) =
pX,Y =y(x) is used for the conditional probability mass function. The simpli�ed notation
also highlights an important detail about the conditional probability mass function. Al-
though p(x | y) is typically seen as a function of x while y is kept �xed, from a technical
point of view, it is still function of both arguments. It is completely legal to �x x and
treat it as a function of y. In this case, however, the function looses the properties of
probability mass function. For example

∑
Ωy
p(x | y) is generally not equal to 1.

2.2.1.4 Chain rule for probability mass function

In analogy to Eq. (2.6), the joint probability mass function is composed of conditional
probability mass functions. Using the simpli�ed notation, the joint probability mass
function is written as

p(x1, . . . , xn) = p(x1 | x2, . . . xn)p(x2 | x3, . . . xn) . . . p(xn−1 | xn)p(xn) (2.22)

2.2.1.5 Bayes' theorem in terms of probability mass functions

Bayes' theorem is written in terms of probability mass functions as

p(x | y) = p(y | x)p(x)
p(y)

=
p(y | x)p(x)∑
Ωx
p(y | x)p(x) (2.23)

Note that the denominator is a marginal probability mass function of Y , i.e., the joint
probability mass function marginalized over all possible values of X. Therefore, the
denominator is independent of x.

2.2.1.6 Example: Dice and dots in corners

Consider the following random experiment that results in two discrete values x and
y. The experiment involves rolling standard western-style six-sided dice and randomly
selecting one of the four corners of the top face. The �rst result x ∈ {1, 2, . . . 6} is the
number of dots on the top face. The second result y ∈ {0, 1} is the number of dots
in the randomly selected corner of the top face. For this setup, we want to express
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the probability mass function for x conditioned on y = 1. In other words, we want to
calculate the probabilities that the dice landed with 1, 2, . . . , 6 at the top face when we
know that there was a dot in the randomly selected corner of that face.

Solution: Due to its symmetries, a fair six-sided dice has a constant marginal prob-
ability mass function p(x) = 1

6 for x ∈ {1, 2, . . . , 6}. By examining the patterns of
the dots on western-style six-sided dice, we learn that a) at the face with one dot no
corners are occupied by a dot, b) the faces with two and three dots have two out
of four corners occupied by a dot, and c) faces with four, �ve, and six dots have all
corners occupied by a dot. Since the corner is selected randomly, this can be writ-
ten as p(y = 1 | x = 1) = 0, p(y = 1 | x = 2) = p(y = 1 | x = 3) = 1

2 , and
p(y = 1 | x = 4) = p(y = 1 | x = 5) = p(y = 1 | x = 6) = 1. Because there are only
two possible values of y, the conditional probability mass function evaluated for y = 0 is
p(y = 0 | x) = 1− p(y = 1 | x) for all possible values of x ∈ 1, 2, . . . , 6. The probability
mass function for y conditioned by x is expressed using the Bayes' rule as

p(x | y) = p(y | x)p(x)
p(y)

(2.24)

The denominator is the marginal probability mass function for Y which, contrary to the
marginal probability mass function for X, is not directly known. It is therefore calculated
by marginalizing the joint probability mass function , i.e., summing it over all possible
values of X

p(y) =
∑
Ωx

p(y, x) (2.25)

Using the chain rule we rewrite the joint probability mass function in terms of conditional
probability mass function and arrive at

p(y) =
∑
Ωx

p(y | x)p(x) (2.26)

To evaluate p(y) at y = 1 we expand the sum to individual summands as

pY (1) = pY |X=1(1)pX(1) + pY |X=2(1)pX(2) + · · ·+ pY |X=6(1)pX(6) (2.27)

= 0 · 1
6
+

1

2
· 1
6
+

1

2
· 1
6
+ 1 · 1

6
+ 1 · 1

6
+ 1 · 1

6
=

2

3
(2.28)

The marginal probability mass function evaluated at y = 1 is the probability that we
observe a dot on a randomly selected corner of a random face of the dice. Note that for
a fair dice the probability can be calculated as a ratio of the number of face corners with
dots to the number of all face corners. However, this approach would not be applicable
to an unfair dice.

The probability of not observing a dot in the randomly selected corner on a randomly
selected face is p(y = 0) = 1− p(y = 1) = 1

3 .
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The conditional probability mass function p(x | y) follows from Eq. (2.24). For
example, the probability that the dice lands with one dot on the top face when we
observe, resp. do not observe a dot in a random face corner is

p(x = 1 | y = 1) =
p(y = 1 | x = 1)p(x = 1)

p(y = 1)
=

0 · 16
2
3

= 0 (2.29)

p(x = 1 | y = 0) =
p(y = 0 | x = 1)p(x = 1)

p(y = 0)
=

1 · 16
1
3

=
1

2
(2.30)

respectively. The probability that the dice lands with two dots on the top face when we
observe, resp. do not observe a dot in a random face corner is

p(x = 2 | y = 1) =
p(y = 1 | x = 2)p(x = 2)

p(y = 1)
=

1
2 · 16
2
3

=
1

8
(2.31)

p(x = 2 | y = 0) =
p(y = 0 | x = 2)p(x = 2)

p(y = 0)
=

1
2 · 16
1
3

=
1

16
(2.32)

respectively. Finally, we express the probability that the dice lands with four dots on
the top face when we observe, resp. do not observe a dot in a random face corner is

p(x = 4 | y = 1) =
p(y = 1 | x = 4)p(x = 4)

p(y = 1)
=

1 · 16
2
3

=
1

4
(2.33)

p(x = 4 | y = 0) =
p(y = 0 | x = 4)p(x = 4)

p(y = 0)
=

0 · 16
1
3

= 0 (2.34)

respectively. Obviously, due to the same number of corner dots on faces 2 and 3 and
faces 4, 5, and 6 we have p(x = 2 | y) = p(x = 3 | y) and p(x = 4 | y) = p(x = 5 | y) =
p(x = 6 | y).

2.2.2 Continuous random variable

The sample space of a continuous random variable is a subset of real numbers, Ω ∈ R,
and is used to represent a random experiment with outcomes that can be assigned to
this subset. For example, the value of atmospheric pressure or temperature measured at
a chosen time results in a real number representing the value of the measured quantity.
The quantity can be treated as a continuous random variable.

2.2.2.1 Probability density function

In the case of a continuous random variable, the probability is assigned to in�nitesimal
intervals around particular values. In particular, the probability that the random variable
is in interval (x, x+ dx) with dx being small is

P (x < X < x+ dx) = fX(x)dx (2.35)
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where the positive function fX(x) is the probability density function. Note that this is
in contrast to a discrete random variable for which the probability mass function assigns
probabilities directly to particular values. The continuous random variable is also an
example of probability triplet (Ω,F , P ) in which the event space F does not contain
individual elements of the sample space Ω.

The probability density function is nonnegative and integrates to one∫ ∞

−∞
fX(x)dx = 1 (2.36)

2.2.2.2 Multivariate continuous distribution

A random process that generates n results in a single trial, each assigned to a subset
of real numbers, is denoted a random vector. The random vector consists of individual
random continuous variablesX = [X1, . . . , Xn]. Themultivariate continuous distribution
of the random vector is completely determined by joint probability density function which
de�nes a probability that each random variable is in small interval around some point x

fX(x) =
P (x1 < X1 < x1 + dx1 ∩ · · · ∩ xn < Xn < xn + dxn)

dx1 · . . . · dxn
(2.37)

Again, the subscript X of the function f speci�es the random vector in question while
the argument x = {x1, x2, . . . , xn} speci�es a concrete point at which the probability
density is evaluated.

In analogy to the univariate case, the joint probability density function is nonnegative
and integrates to one over its domain. When the domain of fX is only some subset Ω of
Rn, the function fx can be formally extended to x ∈ Rn by de�ning fX(x) = 0 for all
x ∈ Rn \ Ω. Then we can write∫ ∞

−∞
· · ·
∫ ∞

−∞
fX(x1, · · · , xn)dx1 · · · dxn = 1 (2.38)

2.2.2.3 Marginal and conditional probability density function

Again, in analogy to the discrete case we consider a random vector Z whose elements
are conceptually separated into two parts

Z = [X,Y ] = [X1, . . . , Xm, Y1, . . . , Yn] (2.39)

This random vector has some continuous probability distribution de�ned by the joint
probability density function

fX,Y (x,y) = fX1,...,Xm,Y1,...,Yn(x1, . . . , xm, y1, . . . , yn) (2.40)

The marginal distribution of X de�ned by the marginal probability density function

fX(x1, . . . , xm) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
fX,Y (x1, . . . , xm, y1,i1 , . . . , yn,in)dy1 · · · dyn (2.41)
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A useful intuition behind the marginal distribution is that it is the distribution of X
when the outcomes of Y are ignored.

The conditional distribution of X is de�ned by the conditional probability density
function de�ned as

fX|Y =y(x1, . . . xm) =
fX,Y (x1, . . . , xm, y1, . . . , yn)

fY (y1, . . . , yn)
(2.42)

where fY (y1, . . . , yn) is the marginal probability density function of Y . The conditional
distribution is the distribution of X when the values of Y are known and �xed.

Recall that when fX,Y =y(x) = fX(x) for all x and y the random vectors X and Y
are independent.

2.2.2.4 Simpli�ed notation

The simpli�ed notation also applies to the continuous probability density functions. The
subscripts of the function's name is left out and the function is recognized by the names
of its arguments

fX(x) = f(x) (2.43)

fX|Y=y(x) = f(x | y) (2.44)

and for function evaluated or conditioned at certain known point a and b we write

fX(a) = f(x = a) (2.45)

fX|Y=b(a) = f(x = a | y = b) (2.46)

2.2.2.5 Chain rule for probability density function

The chain rule also applies to probability density functions. The joint probability density
is written as a product of conditional and marginal probability density function as

f(x1, . . . , xn) = f(x1 | x2, . . . xn)f(x2 | x3, . . . xn) . . . f(xn−1 | xn)f(xn) (2.47)

Note then when the variables are independent, the marginal and conditional densities
are identical and the joint probability density function becomes a product of individual
density functions. This is written as

f(x1, . . . , xn) =
n∏

i=1

f(xi) (2.48)

2.2.2.6 Bayes' theorem in terms of probability density functions

Bayes' theorem can be written in terms of probability densities as

f(x | y) = f(y | x)f(x)
f(y)

=
f(y | x)f(x)∫

Ωx
f(y | x)f(x)dx (2.49)
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At this point, it is useful to emphasize that both sides of the equation are typically
assumed to be functions of x while y is considered to be �xed and known. This might be
counterintuitive especially at the right-hand side term f(y | x) because the conditional
probability density function is being evaluated at the �xed y while it is conditioned on
the free variable x.

2.2.2.7 Example: Two-stage exam

Consider the following two-stage system of student's examination:

� In the �rst stage, students can score from 0 to 10 points.

� Students who scored less than 5 points in the �rst stage can obtain between 0 and
100 points in the second stage of the exam.

� Students who scored 5 or more points in the �rst stage can obtain between 50 and
100 points in the second stage.

� In both stages, the points scored are uniformly distributed between the possible
limits.

For this setup, we want to �nd the probability density function of x conditioned on y,
that is, to �nd the distribution of the points obtained in the �rst stage of the exam when
we know the points obtained in the second stage.

Solution: The marginal probability density for the points gained in the �rst stage x
is constant on closed interval [0, 10] and zero elsewhere. It is written as

f(x) =

{
1
10 for x ∈ [0, 10]

0 elsewhere
(2.50)

The probability density for the points gained in the second stage y is also constant.
However, it is conditioned on the points obtained in the �rst stage. This is written as

f(y | x) =


1

100 for y ∈ [0, 100] and x < 5
1
50 for y ∈ [50, 100] and x ≥ 5

0 elsewhere

(2.51)

Using the chain rule we write the marginal probability density function for y as follows

f(y) =

∫ ∞

−∞
f(y | x)f(x)dx (2.52)

The integration over x is performed separately for y ∈ [0, 50) and y ∈ [50, 100] resulting
in

f(y) =


1

100 · 1
10 · 5 + 0 · 1

10 · 5 = 1
200 for y ∈ [0, 50)

1
100 · 1

10 · 5 + 1
50 · 1

10 · 5 = 3
200 for y ∈ [50, 100]

0 elsewhere

(2.53)
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The probability density function for x conditioned on y ∈ [0, 50) then reads

f(x | y ∈ [0, 50)) =


1

100
· 1
10

1
200

= 1
5 for x ∈ [0, 5)

0· 1
10
1

200

= 0 for x ∈ [5, 10]

0 elsewhere

(2.54)

This density can be interpreted as follows: When we learn that a student obtained less
than 50 points in the second stage of the exam, we know that in the �rst stage he/she
received between 0 and 5 points and all the values in this range are equally likely.

When the probability density function for x is conditioned on y ∈ [50, 100] it becomes

f(x | y ∈ [50, 100]) =


1

100
· 1
10

3
200

= 1
15 for x ∈ [0, 5)

1
50

· 1
10

3
200

= 2
15 for x ∈ [5, 10]

0 elsewhere

(2.55)

Note that the probability density function is now piecewise constant. It can be interpreted
as follows: When we learn that a student obtained more than 50 points in the second stage
of the exam, we know that in the �rst stage he/she received between 0 and 10 points and
any value greater than 5 is twice as likely than any value less than 5.

Also note that the conditional probability density function f(x | y) integrate to one
regardless of the value of y: ∫ ∞

−∞
f(x | y ∈ [0, 50))dx =

1

5
· 5 = 1 (2.56)∫ ∞

−∞
f(x | y ∈ [50, 100])dx =

1

15
· 5 + 2

15
· 5 = 1 (2.57)

2.2.3 Collection of discrete and continuous variables

In the previous sections the multivariate distribution and the marginal/conditional prob-
ability mass/density functions were de�ned for vectors of either discrete or continuous
variables. However, this is not necessary, and a multivariate distribution can be de�ned
for a collection of random variables of mixed types. As the basic example, consider a
discrete random variable x with the probability mass function p(x) and the sample space
Ωx and a continuous random variable y with the probability density function f(y) and
sample space Ωy. Bayes' theorem for these two variables is written as

p(x | y) = f(y | x)p(x)
f(y)

=
f(y | x)p(x)∑

x∈Ωx
f(y | x)p(x) (2.58)

or

f(y | x) = p(x | y)f(y)
p(x)

=
p(x | y)f(y)∫

y∈Ωy
p(x | y)f(y)dy (2.59)
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2.3 Bayesian inference

A statistical inference is the process of �nding the values of the parameters of a proba-
bilistic model given the observed data generated by the random quantity of interest. The
concepts of probabilistic model, model parameters, and observed data are introduced in
the following sections.

2.3.1 Probabilistic model

When a single trial of a random experiment results in an integer value, a real value, or a
collection of these, it can be described by a probabilistic model. The model describes how
the outcome values are distributed and how they depend on each other. In the simple
case, the model of a random variable is just some probability distribution de�ned by the
probability mass function or the probability density function. Most common probability
distributions use some parameters. These are numbers that appear in the probability
mass/density function. When they are �xed, the probability mass function or probability
density function becomes an expression of the variable x only. As an example, when the
continuous random variable X is uniformly distributed in the interval (1, 2), which is
written as X ∼ U(1, 2), then its model is a uniform distribution and the lower and upper
bounds are its parameters and the values 1 and 2 are their values. Two completely
di�erent random variables may be described by the same model but may have di�erent
values of its parameters. For example, two random variables may both have a uniform
distribution, but each with di�erent ranges.

In a more general case, the probabilistic model is a system of probabilistic and de-
terministic relations that describe how the random values are generated. The system
described in Section 2.2.1.6 that generates a pair of integers and the system described
in Section 2.2.2.7 that generates a pair of real numbers also represent two probabilis-
tic models. The limits of the uniform distributions in the latter model are the model
parameters.

2.3.2 Probability as a measure of credibility

In the classical sense, a probability of a value generated by a random experiment is a rel-
ative frequency of that value. This means that probability is used to describe something
for which we can perform trials. The execution of trials is also known as sampling from
a random experiment or drawing samples.

Bayesian approach to probability extends its application to variables that we cannot
sample. In particular, probability is used to express a credibility of possible events or
values of a certain process or variable. Note that the distinction is subtle and rather
philosophical. For example, if we say "There is 80% probability that Beatrice will arrive
at our wedding." we use probability to describe credibility of an event rather than a
relative frequency of that event. We presumably will not be able to sample Beatrice's
presence more than once.
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Note that from a mathematical point of view it is irrelevant in which of these two
contexts the probability is used.

2.3.3 Bayes' theorem in context of statistical inference

The Bayesian inference assigns probability not only to the observed values that were
sampled from a random system but also to the parameters of its model. When the
data are observed, the Bayes theorem is used to express the credibility of the model
parameters. It is customary to denote the observed data as y and the model parameters
as θ. In context of statistical inference the Bayes theorem, here written in terms of
probability density functions, reads

f(θ | y) = f(y | θ)f(θ)
f(y)

=
f(y | θ)f(θ)∫

Ωθ
f(y | θ)f(θ)dθ (2.60)

The term f(θ | y) is referred to as the probability density function of the posterior
distribution of the model parameters, or simply as the posterior density. It represents
the distribution of credit for the possible values of the model parameters θ after the
random data y were generated from the random system in question.

The term f(y | θ) is referred to as the likelihood of the model parameters. It is
essential to understand that the probability density of the data y and the likelihood of
the parameters θ are technically the same functions. When the parameters are �xed
and the function is evaluated for di�erent values of y, it is referred to as the probability
density function. When the data y are �xed at some observed values and the function is
evaluated for di�erent values or parameters θ, the function is termed likelihood. In this
case, it returns the credibility of these parameter values given the observed data.

The term f(θ) represents the probability density function of prior distribution of
the model parameters, or simply prior distribution. It speci�es the distribution of the
credibility of the possible parameter values before any random data was observed. As
such, it represents general prior knowledge of the system. For example, the information
that some values of the model parameters are physically meaningless can be incorporated
into the inference by choosing a prior distribution with zero probability density for these
values.

The term f(y) =
∫
Ωθ
f(y | θ)f(θ)dθ is referred to as evidence. It does not depend

on θ. The evidence merely scales the numerator so that the resulting posterior density
satis�es ∫

Ωθ

f(θ | y)dθ = 1 (2.61)

The evidence term is not of high importance in practical applications of Bayesian infer-
ence of complex probabilistic models because the posterior density is typically explored
by sampling the model parameters. Section 2.5 describes the commonly used algorithms
that can sample from the posterior distribution using only the product of likelihood and
prior density f(y | θ)f(θ) without requiring that the function is properly scaled by f(y).
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2.3.4 Example: inferring the probability of a coin landing heads or
tails

Variations of the following example appear commonly in various texts on Bayesian in-
ference. The example nicely illustrates the roles of prior distribution, likelihood, and
evidence to obtain the posterior distribution of a single model parameter.

Consider a slightly deformed coin. When �ipped, the coin can land on one of its two
sides, denoted as heads and tails. It cannot land on its edge because these are rounded.
The coin is not symmetric, so it may or may not be fair. We want to determine the
probability of the coin landing heads.

A single �ip of the coin is a random experiment that results in two possible events.
We label Heads = 1 and Tails = 0. By such an assignment, the random experiment
becomes a discrete random variable Y with sample space ΩY = {0, 1}.

We further assume that the coin has some inherent probability that is the same for
all �ips and that the outcomes of a series of �ips are independent of each other, i.e., the
coin has no memory. Such samples are referred to as being independent and identically
distributed (i.i.d). We choose the probability of the coin landing heads being the model's
parameter θ. The model therefore de�nes its parameter θ as

p(y = 1) = θ (2.62)

The prior distribution expresses our belief in di�erent values of θ. Since θ is a prob-
ability, it ranges between 0 and 1. The case θ = 0 represents a coin which never lands
heads, θ = 1 represents a coin which always lands heads, θ = 0.5 represents a fair coin,
theta θ = 0.42 represents a coin slightly biased towards tails, etc. If we have no prior
knowledge about the coin, it is natural to assume all values between 0 and 1 are equally
likely. This is expressed by a uniform distribution for θ. The probability density function
reads

f(θ) =

{
1 for θ ∈ [0, 1]

0 otherwise
(2.63)

The likelihood function is simply the probability of observing heads with some value
of θ which is

p(y = 1 | θ) = θ (2.64)

and the probability of observing tails with θ is

p(y = 0 | θ) = 1− θ (2.65)

Now suppose that we �ipped the coin once and observed it landed heads. The poste-
rior distribution obtained via the Bayes theorem is

f(θ | y = 1) =
p(y = 1 | θ)f(θ)∫ 1

θ=0 p(y = 1 | θ)f(θ)
=

{
θ·1∫ 1

θ=0 θ·1dθ
= 2θ for θ ∈ [0, 1]

0 otherwise
(2.66)
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The function describes how we redistributed our belief in particular values of θ after we
observed y = 1. Several things are to be taken into account in the probability density
f(θ | y = 1). We now tend to favor higher values of θ. The value θ = 0 has zero posterior
density. Although we a priori considered the possibility that the coin could land on tails
only, the posterior density at θ = 0 is zero, which naturally rules out this scenario. Also
note that the posterior probability density function is properly scaled so it integrates to
1.

Now suppose that we �ipped the coin again and observed heads again. Now, the data
are heads twice, simply denoted as y = {1, 1}. Since the coin �ips are independent, the
probability of observing heads twice is a product of the probabilities of the individual
outcomes rendering

p(y = {1, 1} | θ) = p(y = 1 | θ)p(y = 1 | θ) (2.67)

This gives the posterior density in form

f(θ | y = {1, 1}) = p(y = {1, 1} | θ)f(θ)∫ 1
θ=0 p(y = {1, 1} | θ)f(θ)

=

{
θ·θ·1∫ 1

θ=0 θ·θ·1dθ
= 3θ2 for θ ∈ [0, 1]

0 otherwise
(2.68)

Our belief in possible values of θ shifted even more towards 1. Low values of θ are very
unlikely, suggesting that we almost surely do not deal with a coin highly biased towards
tails.

The �nal coin �ip resulted in tails. The probability of observing heads twice and tails
once is again a product of probabilities of individual events

p(y = {1, 1, 0} | θ) = p(y = 1 | θ)p(y = 1 | θ)p(y = 0 | θ) (2.69)

The posterior density then reads

f(θ | y = {1, 1, 0}) =
{ θ·θ·(1−θ)·1∫ 1

θ=0 θ·θ·(1−θ)·1dθ
= 12θ2(1− θ) for θ ∈ [0, 1]

0 otherwise
(2.70)

With this posterior probability density function it holds not only f(θ = 0 | y = [1, 1, 0]) =
0 but also f(θ = 1 | y = [1, 1, 0]) = 0, meaning that the prior possibility that the coin
lands only heads is ruled out given the observed data. As shown in Figure 2.2, the density
begins to form a peak that shows the range of the most credible values of θ.
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Figure 2.2: Prior density and posterior densities of parameter θ obtained for 1, 2 and 3
coin tosses.

The posterior distribution of θ resulting from this example is actually the Beta dis-
tribution. This distribution is typically formulated using two parameters α and β and
its probability density function is

f(x) =
xα−1(1− x)β−1

B(α, β)
(2.71)

where B is the Beta function which for positive integers is provided by

B(m,n) =
(m− 1)!(n− 1)!

(m+ n− 1)!
(2.72)

2.3.5 Prior predictive and posterior predictive distributions

It was demonstrated in the previous example that Bayesian inference does not result in a
single value of the model parameter but rather in a posterior distribution of all possible
values. One might ask how to use this result to predict values of yet-unobserved data.
The unobserved data are traditionally denoted as y and posterior predictive distribution
given the already observed data y is generally written as

f(y | y) =
∫
Ωθ

f(y | θ)f(θ | y)dθ (2.73)

Note that the posterior predictive probability density function can be seen as weighted
average of the density function f(y | θ) with the weights being the posterior distribution
f(θ | y). Analogous to the concept of posterior predictive distribution is the prior
predictive distribution de�ned as average distribution of the data weighted by the prior
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distribution of the model parameters

f(y) =

∫
Ωθ

f(y | θ)f(θ)dθ (2.74)

The prior predictive distribution of data y characterizes what the probabilistic model
together with our choice of the prior distribution of its parameters imply on the data. It
shows our assumption on how the data are distributed before any data were observed.

2.3.6 Example: Predicting the outcome of a coin �ip

Consider the previous example of a potentially unfair coin tossed three times. The prior
distribution for its parameter θ was uniform in θ ∈ [0, 1]. The prior probability of
observing heads is given by the prior probability mass function evaluated at y = 1 which
is

p(y = 1) =

∫
Ωθ

p(y = 1 | θ)f(θ)dθ =
∫ 1

0
θ · 1dθ = 1

2
(2.75)

Obviously the prior probability of observing tails is p(y = 0) = 1 − p(y = 1) = 1
2 . The

result can be interpreted as follows: if we consider all possible properties of the coin,
i.e., a fair one, one biased towards heads, one biased towards tail, etc., the resulting
"averaged" coin would be fair.

When heads were observed for the �rst time, the posterior distribution was f(θ | y =
1) = 2θ. The posterior predictive probability mass function evaluated for heads then
reads

p(y = 1 | y = 1) =

∫ 1

0
θ · 2θdθ = 2

3
(2.76)

This result tells us that if we have an unbiased uniform distribution of our credit over all
possible properties of the coin and observe heads after single coin toss, we should expect
observing heads again with probability 2

3 .
After observing two heads, the posterior probability density function was f(θ | y =

{1, 1}) = 3θ2. The posterior predictive distribution is in this case given by the probability

p(y = 1 | y = {1, 1}) =
∫ 1

0
θ · 3θ2dθ = 3

4
(2.77)

The coin seems to land heads quite often and therefore the probability of observing heads
as the next result increases to 3

4 .
Finally, after observing heads twice and tails once, the posterior probability density

of θ was f(θ | y = {1, 1, 0}) = 12θ2(1 − θ). The posterior predictive distribution is in
this case given by the mass function

p(y = 1 | y = {1, 1, 0}) =
∫ 1

0
θ · 12θ2(1− θ)dθ = 3

5
(2.78)

p(y = 0 | y = {1, 1, 0}) = 1− p(y = 1 | y = {1, 1, 0}) = 2

5
(2.79)
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By observing tails the probability of observing heads in the next toss decreased to 3
5 .

In summary, the parameters of a Bayesian model are always expressed in the form of
their probability distributions. The initial general knowledge about the parameter values
before the data are observed is expressed as a prior distribution. The result of Bayesian
inference is the posterior distribution. When a prediction of new data needs to be made,
the posterior predictive distribution is constructed from the posterior distribution of the
model parameters.

2.4 Hierarchical Bayesian models

The power of Bayesian inference arises from its ability to work with more complex prob-
abilistic models than the coin example shown in the previous section. When the relations
between the data and parameters have several levels and a graph-like structure, the mod-
els are referred to as hierarchical or graphical Bayesian models or Bayesian networks.

2.4.1 Declarative notation for probabilistic model

The growing complexity of hierarchical models calls for some way to separate the model
declaration from the process of deriving the likelihood function. For structuring the prob-
abilistic relationships within the model, the notation X ∼ A(α, β) is used. This means
that a random variable X is distributed according to the distribution A with parameters
α and β. This is a shorter way of writing P (x < X < x + dx) = fX(x;α, β)dx with
fX(x;α, β) being the probability density function of the distribution A. A deterministic
relation between variables or parameters is traditionally denoted as A = f(B,C) where
f is some known deterministic function.

The tradition of denoting random variables in upper case letters is often abandoned
in the Bayesian hierarchical model declaration. The type of symbol, whether it represents
a random quantity of �xed value, usually follows from the context.

2.4.2 Example - tensile test on wood specimens

Consider a series of m displacement-controlled tensile tests on spruce wood specimens.
A series of ni strains is applied to each i-th specimen. Thus, eij denotes the axial strain
prescribed to the i-th specimen in the j-th loading step. The corresponding axial stress
sij is measured for each strain step. Note that the symbols e and s are used for the strain
and stress instead of the common symbols ε and σ to prevent confusion with a standard
deviation and an error term in regression models.

Our goal is to determine Young's modulus for each specimen, the mean, and standard
deviation of Young's moduli among the samples. All these parameters will be determined
by means of Bayesian inference, i.e., in the form of their posterior joint probability
distribution.

We start from formulating the probabilistic model of the data. The model describes
how we believe the data are generated in a situation where the values of the model
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parameters are known. Therefore, the probabilistic model is also referred to as forward
model.

Since the measured stress depends on strain non-deterministically, the probabilistic
model is a regression model with the strain eij , i = 1 . . . N, j = 1 . . .Mi being the
known predictor variable and the stress sij , i = 1 . . . N, j = 1 . . .Mi being the response
variable. The response variable represents the data that we are going to predict. In the
model, we assume that the measured stress is normally distributed around some mean
value s̄ij with standard deviation σs representing a measurement error. This is written
declaratively as

sij ∼ N (µ = s̄ij , σ = σs) (2.80)

The mean value of stress s̄ij depends deterministically on strain according to Hooke's
law

s̄ij = Eieij (2.81)

Two things are of interest in these relations. First, there are N values of Young's mod-
uli, each attributed to an individual wood specimen and indexed by i. Second, the
relations (2.80) and (2.81) can be equivalently written as

sij = Eieij + ε (2.82)

ε ∼ N (µ = 0, σ = σs) (2.83)

which is a more common form in standard regression models. However, in the context
of Bayesian models, the �rst approach seems to be more natural, because it directly
speci�es the probability density function of the observed data sij .

The individual Young moduli are not completely independent values. They originate
from a population of possible Young's moduli on spruce wood specimens, and therefore
they share some probability distribution. Here we assume that they are also normally
distributed

Ei ∼ N (µ = µE , σ = σE) (2.84)

where µE and σE are the mean Young's modulus observed on tensile test specimens and
its standard deviation.

Note the two levels of the model hierarchy. The lower level describes the uncertain
process of measurement that occurs in an individual specimen. The upper level describes
the di�erences in properties within a group of individual wood specimens.

The parameters of the model are Ei, σs, µE and σE , but of these only Ei has the
probability distribution already speci�ed by Eq. (2.84). We further specify the uniform
probability distribution of σs, µE and σE a priori. The prior distribution is therefore
written as

σs ∼ U(a, b) (2.85)

µE ∼ U(c, d) (2.86)

σE ∼ U(e, f) (2.87)
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where x ∼ U(a, b)means that x is uniformly distributed between a and b. The parameters
of the prior distributions are �xed and known a priori. They are called hyper parameters
and their values are based on general knowledge of the domain or expert judgement. This
completes the speci�cation of the model in a declarative way. We proceed by deriving
the posterior density functions from these probabilistic relations.

The posterior distribution is given by the probability density function of all unknown
model parameters, i.e., excluding hyperparameters, conditioned on known values of the
data. Assembling all Young's moduli and all observed values of stress into a vectors
E = {E1 . . . , EN} and s = {s11, . . . , sN,MN

} and using Bayes' theorem we write

f(E, µE , σE , σs | s) =
f(s | E, µE , σE , σs)f(E, µE , σE , σs)

f(s)
(2.88)

As will be shown in later sections, the posterior density will be analyzed by drawing
samples from it. The samplers used in the Bayesian context require the posterior density
function to be de�ned up to multiplication of some positive constant. In other words, it
is not necessary to calculate the evidence term f(s). The posterior density function is
proportional to the product of likelihood and prior density

f(E, µE , σE , σs | s) ∝ f(s|E, µE , σE , σs)f(E, µE , σE , σs) (2.89)

Considering that a) the data s depend on E and σs, b) taking into account that E
depends on µE and σE and c) the parameters σs, µs and σE are mutually independent
a priori, we write

f(E, µE , σE , σs | s) ∝ f(s|E, σs)f(E|µE , σE)f(µE)f(σE)f(σs) (2.90)

Since the individual errors in sij are mutually independent and the same holds for Young's
moduli Ei, their joint probability density function is a product of individual densities.
This brings us to the posterior probability density function in the �nal form

f(E, µE , σE , σs | s) ∝
N∏
i=1

Mi∏
j=1

fN (sij , Ei · eij , σs)

·
N∏
i=1

fN (Ei, µE , σE)fU (µE , c, d)fU (σE , e, f)fU (σs, a, b) (2.91)

where fN (x, µ, σ) is the probability density function of the normal distribution

fN (x, µ, σ) =
1√
2πσ2

exp

(
(x− µ)2

2σ2

)
(2.92)

and fU (x, a, b) is the probability density function of the uniform distribution

fU (x, a, b) =

{
1

b−a if x ∈ [a, b]

0 otherwise
(2.93)

Note that because the strain values eij , the stress values sij and the hyper parameters
a, b, . . . , e are �xed and known, the right-hand side of the equation is a function of the
model parameters E, µE ,σE and σs only.
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2.4.3 Log-likelihood

Calculating the products such as those in Eq. (2.91) is impractical. Instead the posterior
density is expressed as a sum of logarithms of the individual likelihood terms. For
example, Eq. (2.91) is written as

ln(f(E, µE , σE , σs | s)) =
N∑
i=1

Mi∑
j=1

ln(fN (sij , Ei · eij , σs))

+
N∑
i=1

ln(fN (Ei, µE , σE))

+ ln(fU (µE , c, d)) ln(fU (σE , e, f)) ln(fU (σs, a, b))

+ const. (2.94)

where the constant is independent on the function's arguments. Such expression is re-
ferred to as the log-likelihood. In practical applications only the ratio of the posterior
density function expressed at two di�erent points is of importance. This is equivalent
to expressing a di�erence of log-likelihoods at di�erent points. Therefore, the constant
term in Eq (2.94) can be ignored.

2.5 Markov chain Monte Carlo sampling methods

The posterior joint probability density function of the model parameters does not provide
much insight per se. However, it is used to calculate quantities that provide useful infor-
mation such as the probability that some parameter is greater than or less than a chosen
value. Calculating credible intervals or expressing the posterior predictive distribution
of the data yet unobserved are other examples of useful results that are calculated from
the posterior density function. All these calculations involve integration of the density
function. As the example on Young's modulus estimation showed, the probability density
function is often multivariate and the number of its arguments can reach hundreds or
even thousands [1]. Closed forms of the integrals are often unknown or overly complex,
and calculating the integrals by common quadrature rules is ine�cient due to the high
dimensionality. The Bayesian inference therefore resorts to Monte Carlo integration.

The Monte Carlo analysis of the posterior distribution is based on drawing samples of
the model parameters from it. The particularly useful family of samplers in the context
of Bayesian inference are Markov chain Monte Carlo sampling methods. These methods
share the same property. The probability distribution of the value of the next sample
depends only on the previous sample and therefore the sequence of generated values
consists of a Markov chain. The common feature of the sampling algorithms brie�y
described in the following sections is that they keep track of the last returned sample
and use this value when generating the next sample.

Another property of the sampling algorithms is that they do not need the proper
posterior density function which integrates to 1 but they work also with a function
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proportional to the density function. This means that when sampling from the posterior
distribution, only the product of likelihood and prior density is necessary to evaluate, and
the evidence term in the denominator is irrelevant. The discovery of e�ective sampling
algorithms not requiring the proper scaling of the probability density functions is what
made the Bayesian inference applicable to many complex statistical models.

2.5.1 Metropolis-Hastings algorithm

Consider generating values of discrete or continuous multidimensional random variables
X with a probability mass function pX(x) or a probability density function fX(x). In
addition, assume that we only know a function g(x) proportional to pX(x) or fX(x).
The sequence of the samples starts with some initial value x0. A candidate point is drawn
from a multivariate proposal distribution that is symmetric around x0 and typically has
a lower standard deviation than the target distribution. Then the ratio of the target
probability density function at the candidate point to the current point is calculated,
that is, r = g(xcandidate)

g(xcurrent)
. If the ratio is greater than 1, which implies that the proposed

point is more probable than the current point, the candidate point is accepted. When
the ratio is less than 1, the proposed point is accepted only with the probability equal to
the ratio r. If the candidate point is accepted, it is added to the sequence of the samples
and used in the next step as the current point. If the candidate point is not accepted, the
current point is added to the sequence of samples again and used as the current point in
the next step.

2.5.1.1 Analogy with presidential candidate

A nice illustration of the principles of Metropolis-Hastings was presented in [2]. The
illustration provides an easy-to-comprehend intuition and covers most of the essential
components of the algorithm, and it is worth rephrasing here.

Consider a presidential candidate running for the o�ce in a state made of a single row
of many small islands. The strategy for the election campaign is to stay on each island
proportionally to its population. The mayor of each island knows the island's population
and will report it to the candidate when asked. Nevertheless, there are so many islands
that no one wants to take the e�ort to ask all mayors of all islands and calculate the
total population of the island state. The presidential candidate proceeds in the following
way. He starts campaigning on a randomly selected island. He asks the mayor about
the island's population. At the end of the day, he chooses one of the two neighboring
islands based on the toss of a fair coin. Before moving to the chosen island, he asks
the mayor of that proposed island about its population. If the population of the chosen
island is greater than the population of the current island, he moves overnight and starts
campaigning on this new island the next day. If the population of the chosen island
is smaller, he moves there only with the probability given by the ratio of the proposed
island's population to the current island's population. This is achieved by calculating
the ratio and comparing it to the uniformly distributed random number between 0 and
1. If the random number is less than the ration, he moves to the chosen island. If the
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random number is greater than the ration, he stays on the current island and campaigns
there one more day.

If this strategy is exercised for a long period, the days spent on each island will be
proportional to its population.

2.5.1.2 Why Metropolis-Hastings algorithm works

A Markov chain of a continuous random variable is completely de�ned by the transition
probability density, here denoted as f(xi+1 | xi). It is the probability density of the new
value xi+1 in the chain conditioned on the last value in the chain xi. Generally, a Markov
chain may or may not have a stationary distribution. The stationary distribution is the
distribution of the values when su�ciently many values were generated so they are no
longer in�uenced by the initial value of the chain. A su�cient condition for the existence
of the stationary distribution is the condition of detailed balance. This condition states
that the stationary distribution f(x) has to satisfy the equation

f(xj | xi)f(xi) = f(xi | xj)f(xj) (2.95)

for all pairs of xi and xj . This means that a probability density of the stationary dis-
tribution of xi multiplied by the density of the transition from xi to xj equals the same
expression expressed for the other direction, i.e., the probability density of the stationary
distribution expressed at xj and multiplied by the density of the transition from xj to xi.
When sampling, the target distribution is given and should be identical to the stationary
distribution. The natural way to go is to design the transition probability density so that
the detailed balance condition is satis�ed. A common choice of the transition distribu-
tion in Metropolis-Hastings samplers can be viewed as a mixture of two distributions.
In particular, the transition probability density is a weighted average of some proposal
distribution and the Dirac delta function

f(xj | xi) = Pxj ,xi · fprop(xj | xi) + (1− Pxj ,xi)δ(xj − xi) (2.96)

This is the probability density of a variable xj that is drawn from the distribution with
density fprop(xj | xi) and accepted only with the probability Pxj ,xi while being exactly
xi in the remaining cases, i.e., with the probability 1−Pxj ,xi . For further discussion note
that for xi = xj the detailed balance condition is satis�ed trivially due to its symmetry.
For the remaining cases when xi ̸= xj it holds δ(xj − xi) = δ(xi − xj) = 0. Plugging the
above equation into detailed balance equation while omitting the terms with the Dirac
delta function we arrive at

Pxj ,xifprop(xj | xi)f(xi) = Pxi,xjfprop(xi | xj)f(xj) (2.97)

The task now is to determine what is the acceptance probability when xj is proposed
from the current value xi, here denoted as Pxj ,xi , so that the above equation is satis�ed.
It turns out that an convenient choice is

Pxj ,xi = min

(
fprop(xi | xj)f(xj)
fprop(xj | xi)f(xi)

, 1

)
(2.98)
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Consider for example the case when the fraction in the above formulation of Pxj ,xi is
less than one and the probability Pxj ,xi itself will equal this fraction. Obviously, the
fraction in the formulation Pxi,xj will be greater than one and the value of Pxi,xj itself
will equal one. Plugging this back to Equation (2.97) shows us that with such a choice of
the acceptance probability the detailed balance equation is satis�ed independently from
the actual form of target distribution or the choice of the proposal distribution.

2.5.2 Gibbs sampling

Another sampling algorithm widely used in the context of Bayesian inference is the
Gibbs sampler [3]. The algorithm is built around the fact that even a complex posterior
probability density function is composed of simpler conditional densities, from which it
is relatively easy to sample. The simplest form of the algorithm is as follows. Consider
a multivariate posterior probability function denoted as f(x1, x2, . . . , xn) and the initial
vector (x(k=0)

1 , x
(k=0)
2 , . . . , x

(k=0)
n ). The creation of the next sample of the random vector

x involves sampling each component of the vector individually from the conditional
distribution. The �rst component of the new vector, denoted as xk+1

1 , is drawn from a
conditional distribution with the probability density function f(x(k+1)

1 | x(k)2 , . . . , x
(k)
n ).

The second component of the new vector is also drawn form a univariate conditional
distribution, but this time it is conditioned on the new value of x1, i.e., on x

(k+1)
1 . The

conditional probability density is therefore f(x(k+1)
2 | x(k+1)

1 , x
(k)
3 , . . . , x

(k)
n ). The i-th

component of the new vector is drawn from f(x
(k+1)
i | x(k+1)

1 , . . . , x
(k+1)
i−1 , x

(k)
i+1, . . . , x

(k)
n ).

The advantage of Gibbs sampling is the absence of sampler parameters and a mini-
mum of other sampler settings. Compare this, for example, with the necessity of setting
up the proposal distribution in the Metropolis-Hastings algorithm.

On the other hand, there are probability density functions for which the Gibbs sam-
pling is ine�cient or even fails completely. Consider, for example, a probability density
function of two variables x1 and x2 whose graph is a long, diagonally oriented ridge
above the x1×x2 plane. Also consider a point on the ridge but far from the ridge's peak.
Sampling along the ridge's axis towards its peak is di�cult because it requires moving
the current value x1 o� the ridge, i.e., to a region with low probability, and only then to
move the point in the x2 direction back to the ridge. When the ridge is narrow, these
steps are small and sampling is ine�cient. Nevertheless, most reasonably parametrized
models with a limited number of parameters de�ne posterior probability density that
works well with Gibbs sampling. In fact, the Gibbs sampling gave the name of early
software projects focused on Bayesian inference such as the BUGS (Bayesian inference
Using the Gibbs Sampling) [4] and its successor projects WinBUGS and OpenBUGS.
JAGS (Just Another Gibbs Sampler) also acknowledges the Gibbs sampling algorithm
in its name even when it o�ers a variety of di�erent sampling algorithms [5].
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2.5.3 Hamiltonian Monte Carlo

Both sampling algorithms mentioned in the previous section, i.e., the Metropolis-Hastings
algorithm and the Gibbs sampling, show ine�cient mixing for posterior densities with
large number of parameters. This is caused by the fact that a point in high-dimensional
space has a neighborhood with signi�cantly larger volume compared to low-dimensional
spaces. Therefore, the high-dimensional space is more di�cult to explore. To illustrate
the problem, consider a k-dimensional hypercube domain. When k is large, it is impos-
sible to generate chains containing values from all its 2k hyperoctants. When samples
from this volume are generated with a wide proposal distribution, the proposed samples
are likely to have low density and, therefore, to be rejected. Due to the high rejection
rate, the chain would contain long sequences of the same values. On the other hand with
narrow proposal distribution the acceptance rate would be high; nevertheless, the new
values would not di�er much from the previous ones. Both scenarios represent ine�cient
mixing.

The goal here is to propose distant points with a similar probability density. When
the points have similar density, the acceptance rate will be high, and when the proposed
points are distant, the mixing will be e�cient.

One class of methods that sample e�ciently from high-dimensional posterior distri-
butions is the Hamiltonian Monte Carlo.

Similarly to the other Markov chain Monte Carlo methods, the algorithm requires
the probability density function f(x) to be speci�ed up to a multiplicative constant only.
The k-dimensional space of the random variables x is enhanced by the same number of
momentum variables denoted as m. This 2k-dimensional space is sometimes termed a
phase space. A joint probability density function over the phase space is de�ned in the
form

f(x,m) = f(x)f(m) (2.99)

where f(m) is typically the probability density function of normal distribution with zero
mean vector and the covariance matrix Σ being a parameter of the algorithm. Note that
the above form of the joint probability density function f(x,m) guarantees that the
marginal distribution of x has the probability density function f(x). Therefore, when
the pairs of x and m are sampled from f(x,m) and the values of m are discarded, we
have samples of x that are distributed according to f(x). Recall that the initial goal is
to propose a sample x∗ distant from the current value x but at the same time the value
of the density function at the proposed point is similar to that at the current point. The
trick is to do just this, but in the phase space of x and m with the joint probability
density f(x,m).

An auxiliary function H(x,m) is de�ned in the form

H(x,m) = − ln(f(x,m)) (2.100)

= − ln(f(x))− ln(f(m)) (2.101)

= U(x) + V (m) (2.102)
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The structure of H(x,m) is identical to the Hamiltonian known from classical mechan-
ics. Here the function U(x) is the potential energy and depends only on the moving
particle position x and the function V (m) is the kinetic energy and depends on the
moving particle momentum. The evolution of the system in time is driven by Hamilton's
equations

dx

dt
=
dH

dm
(2.103)

dm

dt
= −dH

dx
(2.104)

which can be solved numerically using symplectic integrators, typically the leapfrog in-
tegration scheme. Note that the value of the Hamiltonian is conserved as the system
evolves.

A typical Hamiltonian Monte Carlo sampling starts from some initial point x(0). The
vector of momentum m(0) is sampled from the multivariate normal distribution. The
Hamilton equations are then solved using the leapfrog integrator essentially simulating a
frictionless motion of a point mass from the initial state (x(0),m(0)) to a new state (x,m)
to which the point gets at time t. The time t for which the point travels is a parameter
of the algorithm and must be reasonably tuned. The detailed balance equation written
for the Markov chain of (x,m) pairs becomes

f(x,m | x(0),m(0))f(x(0),m(0)) = f(x(0),m(0) | x,m)f(x,m) (2.105)

Following the approach outlined in Section 2.5.1.2 we arrive at the probability of accepting
proposal (x,m) from state (x(0),m(0)) to be in the form

Px(0),x = min

(
f(x,m | x(0),m(0))

f(x(0),m(0) | x,m)

f(x,m)

f(x(0),m(0))
, 1

)
(2.106)

Since the Hamiltonian proposal step with �xed time t and step size is deterministic, the
probability of obtaining (x,m) from (x(0),m(0)) is equal to one. On the other hand, the
probability of obtaining (x(0),m(0)) from (x,m) practically zero. To make the proposal
symmetric, the momentum is reversed at the end of integration. This modi�ed proposal
can be described as: Integrate the Hamilton equation by the symplectic integrator to
time t and reverse the momentum vector obtained.

Since the value of the HamiltonianH is conserved along the trajectory, the probability
density of point f(x, m) at time t denoted as f(x,m) equals the probability density
function at the initial point f(x(0), m(0)).

An accessible introduction to principles of the Hamiltonian Monte Carlo are described
in greater detail in [6, 7].

2.5.3.1 Parameters of Hamiltonian Monte Carlo

Drawing samples from a multivariate distribution using the Hamiltonian Monte Carlo
method comes with the challenge of tuning the sampler parameters. The two key pa-
rameters of the deterministic transition step based on Hamiltonian mechanics are the
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number of steps and the step size of the symplectic integrator. The parameters together
in�uence the length and precision of the point's trajectory in the phase space.

If the trajectory is short, the point does not move into distant areas of the phase
space and the produced samples are highly correlated. This is colloquially known as slow
mixing. On the other hand, a long trajectory typically results in some sort of loop in
the area where the probability density is high. Naturally, having the point traveling in
a loop makes it return from distant areas back to the area close to its initial position.
This wastes computational resources and worsens the inter-sample autocorrelation.

The size of the integration step in�uences the calculated trajectory in di�erent ways.
The numerical integration through the leap-frog integrator involves errors. Being sym-
plectic, the leap-frog integrator does not accumulate errors when integrating the Hamil-
tonian equations. Nevertheless, some errors are still present and the calculated points
are o� the theoretical trajectory. This is manifested in the slight �uctuation of the
Hamiltonian expressed at the calculated points. Recall that the Hamiltonian is related
to the probability density in question and should be constant along the trajectory. If
the leapfrog integration was accurate, the Hamiltonian would not change from the initial
point to the proposed point, and the probability of accepting the proposed point would be
equal to 1. Nevertheless, in real case integration error typically increases with a growing
step size, �uctuations of the Hamiltonian become more pronounced, and the acceptance
rate decreases. With a low acceptance rate, the produced samples are highly correlated,
and their mixing is again ine�cient. Consequently, the choice of integration step size
results in a trade-o� between a high acceptance rate requiring small steps and a com-
putationally e�ective evaluation of the proposed point requiring larger steps. Empirical
studies suggest keeping the acceptance rate between 0.65 and 0.95 [8, 9].

2.5.4 No U-Turn Sampler

There are di�erent strategies to tune the parameters of the Hamiltonian Monte Carlo
Sampler. The No U-Turn Sampler (NUTS) is a state-of-the-art sampling strategy based
on the principles of the Hamiltonian Monte Carlo method. It uses a tuning period at the
beginning of sampling during which it optimizes the parameters of the sampling method.
In particular,it determines the covariance matrix M of the momentum variables and the
step size of the leap-frog integrator. The samples from the tuning period are discarded.

Instead of optimizing the trajectory length, NUTS creates a series of candidate points
by integrating the trajectory forward and backward. The choice among the candidate
points is then done in a way that maintains the detailed balanced condition for the
Markov process transition. Details on NUTS sampler are described in [10] and in the
documentation of Stan statistical framework, in which it is a default sampler.

2.5.5 Convergence checks

All sampling methods introduced in the previous sections, i.e., the Metropolis-Hastings
algorithm, the Gibbs sampling, the Hamiltonian Monte Carlo and the NUTS sampler, are
special cases of the Markov chain Monte Carlo. In theory, the stationary distribution of
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a sampler based on the Markov chain converges to the target distribution. Nevertheless,
the rate of this convergence is not generally de�ned and the number of samples necessary
for reaching convergence has to be estimated from the chain itself.

The process of examining the chain and determining whether the samples can be used
as an approximation to the posterior density is known as chain diagnostics.

When the number of inferred parameters allows it, the simple convergence check
includes visual inspection of the generated chains. A chain corresponding to variable θ
is represented as a sequence of values drawn from its target distribution. In the context
of Bayesian inference, the target distribution is typically the posterior distribution of
the parameter θ or the posterior predictive distribution of an unobserved variable ỹ.
Two types of plot are usually created for each Markov chain: a histogram of the values
that occur in the chain and an evolution of the value during sampling. The former
plot tells us what has been inferred while the latter how it was inferred. Examples of
non-converging and well-converging chains of a variable θ are shown in Figure 2.3 and
Figure 2.4, respectively.
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Figure 2.3: Example of non-converting Markov chains of parameter θ. Four chains each
of 1000 samples were generated after a burn-in period of 4000 samples. Posterior densities
estimated from each chain are plotted on the left. The four chains are plotted on the
right.
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Figure 2.4: Example of well converting Markov chains of parameter θ. Four chains each
of 1000 samples were generated after a burn-in period of 4000 samples. Posterior densities
estimated from each chain are plotted on the left. The four chains are plotted on the
right.

In both cases, four chains of samples of the parameter θ starting from di�erent initial
points were drawn using the NUTS sampler. In the non-converging case, we can observe
that the values from each of the four chains center around di�erent means. In addition,
each mean evolves as the sampling progresses. The estimated posterior densities, here
plotted from the chains as smoothed histograms by the mean of kernel density functions,
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are completely di�erent for each chain. Their multimodality is only accidental and does
not represent the true nature of the parameter. On the other hand, the four chains in
Figure 2.4 seem to share the mean value and also the dispersion. This is supported
by the kernel density graph on the left. The slight discrepancies in the plotted kernel
densities are a consequence of a relatively small number of samples. The results of the
same inference with 10 times more samples are shown in Figure 2.5.
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Figure 2.5: Example of well converting Markov chains of parameter θ. Four chains each
of 10000 samples.

More rigorous approaches to chain diagnostics include z-scores proposed by Geweke [11]
and Gelman-Rubin statistics [12]. The former approach compares the mean values and
the standard deviations calculated from di�erent sections of a single examined chain. The
latter approach compares the variance within the chain with the variance between the
chains. For ine�ciently mixed, highly correlated chains, the generated samples are less
dispersed then they should be and therefore the within-chain variance is underestimated.
The Gelman-Rubin statistics reads

R̂ =

√
V̂ar(θ | y)

W
(2.107)

where V̂ar(θ | y) is the estimated variance of all generated samples whileW is the variance
estimated within the chains. Values R̂ > 1.1 are typically considered to indicate poor
convergence.

Another measure indicating ine�cient mixing and high autocorrelation between sam-
ples within a single chain or among di�erent chains is e�ective sample size. It is calculated
from the generated samples as

n̂e� =
mn

1 +
∑T

t=1 ρ̂t
(2.108)

where m is the number of chains, n is the number of samples in each chain, ρ̂t is the
estimated autocorrelation between samples with lag t and T is the maximum lag possible
in the chain. Note that for zero estimated correlations for all lags, the e�ective sample
size is equal to the number of all samples in all chains. More details on the e�ective
sample size can be found in [13], Section 11.5.
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Chapter 3

Uncertainty in calibration of

hypoplastic model for clay

attributed to limited number of

laboratory tests

This chapter presents the preprint version of the journal paper

Janda, T.; Pavelcová, V.; Zemanová, A.; �ejnoha, M., Uncertainty in calibration
of hypoplastic model for clay attributed to limited number of laboratory tests,
Computers and Structures. 2024, 295 ISSN 1879-2243.

reformatted to align with the style of the thesis.

3.1 Abstract

The paper quanti�es the uncertainty of material parameters of the hypoplastic model
for clay resulting from the experimenter's choice about what laboratory data are utilised
in the calibration process. The results of several 1D compression tests and undrained
triaxial shear tests performed on twenty di�erent �ne-grained soils are considered in
various combinations to yield a scattered set of material parameters for each soil. A
hierarchical probabilistic model separating the variations and correlations of parameters
within one soil from variations and correlations among di�erent soils is formulated. The
posterior distribution of the probabilistic model parameters is obtained by means of the
Bayesian inference. The results allow for stochastic simulations on a structural level even
when only point estimates of material parameters are available.

�ne-grained soil, hypoplasticity, constitutive model, material parameters, calibra-
tion, uncertainty, Bayesian inference, hierarchical stochastic model, posterior distribu-
tion, credible intervals
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3.2 Introduction

One of the key components of a �nite element analysis of most geotechnical structures
is the choice of a suitable constitutive model for the soil and the determination of its
parameters. In contrast to the majority of other, typically man-made, structural mate-
rials the soil di�ers from one construction site to another and the soil properties are not
guaranteed. For each site the mechanical properties of soils are determined by means of
a geotechnical survey including �eld and laboratory testing. The results of laboratory
tests are then used in a calibration process to obtain the material model parameters.

Uncertainties from di�erent sources arise in the process of material model calibra-
tion and subsequent simulation of a geotechnical construction [1]. Common source of
soil properties uncertainty is their spatial variability. It in�uences both the material
model calibration for sands [2] and clays [3] and subsequent simulation at a structural
level [4]. Another source of uncertainty relates to the variety of available experimental
methods, ranging from basic �eld tests to advanced laboratory testing [5, 6]. A variety
of approaches to identify the soil properties uncertainty are being utilised including ma-
chine learning [7] or sensitivity analysis [8, 9]. Another approach is to incorporate the
stochastic nature of the material directly into the constitutive model [10].

Once quanti�ed, the uncertainty of soil parameters can be taken into account in simu-
lations at the structural level. This is commonly achieved by stochastic simulations based
on the Monte-Carlo method [2, 11, 12], Latin hypercube sampling [13] method, random
sets [14], Bayesian surrogate models [15, 16] or polynomial chaos expansion [17, 18]. The
uncertainty of structural behaviour resulting from the possible use of di�erent constitu-
tive models in the context of FEM simulations can be assessed by a direct comparison
of results [19].

Calibrating the soil from the results of di�erently executed laboratory tests, e.g. a 1D
compression test with di�erent maximal loading stress or a triaxial shear test executed
with di�erent cell pressures, gives di�erent material parameters. Although a reasonable
setup of a laboratory test falls within some generally recommended ranges, its exact
choice is somewhat arbitrary and thus making the material parameters uncertain.

The key goal of this study is to quantify the uncertainty of material parameters
arising from the fact that the results of only limited number of laboratory tests, each
with somewhat arbitrary setup, enter the calibration process. To have a practical impact,
the uncertainty is formulated in the form that can be incorporated into a stochastic
�nite element simulation even when only a point estimate of the material parameters
is available for a given soil. In particular, the paper aims at inferring the standard
deviations of all material parameters and their mutual correlation coe�cients, applicable
to the material model �tted to laboratory data of a general �ne grained soil. This means
that a user of the material model can superpose the uncertainty inferred in this study to
any set of optimised material parameters and run Monte-Carlo stochastic simulations at
a structural level.

The paper is organised as follows. The methodology including a brief overview of the
material model and its parameters, the laboratory tests and the calibration process is
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summarised in Section 3.3. The data utilised in the statistical analysis are introduced
in Section 3.3.8 and the hierarchical probabilistic model on top of these data is formu-
lated in Section 3.3.9. Section 3.4 shows the posterior distributions of the probabilistic
model parameters obtained by means of the Bayesian inference. The results are dis-
cussed in Section 3.5. The principal result potentially applicable in follow up studies are
summarised in Section 3.6.

3.3 Methods

3.3.1 Material model

The material model utilised in this study is the hypoplastic material model for clay. The
model builds on principles of hypoplasticity [20] and takes into account the phenom-
ena observed in the stress-strain relationship of �ne grained soils. These are mainly
the stress dependent sti�ness, the hardening or softening depending on the current
soil density and the existence of critical density to which the soil arrives after su�-
ciently long shearing. The original formulation [21] has been revised to explicitly de�ne
the asymptotic response [22, 23]. The material model is available in several commer-
cial �nite element programs [24, 25, 26] and has been utilised in various FEM simula-
tions [19, 27, 28, 29, 30, 31, 32, 33] .

3.3.2 Material parameters

This section provides a brief overview of the �ve material parameters employed in the
hypoplastic model for clay. The stress-strain relation is de�ned for isotropic loading and
assumes di�erent sti�ness for primary loading and unloading/reloading. In both cases
the sti�ness increases with increasing compressive mean stress. For primary isotropic
compression the stress-strain relationship is described in terms of the void ratio e and
the mean e�ective compressive stress p by

ln(1 + e) = N − λ∗ ln
(

p

pref

)
(3.1)

whereN and λ∗ are material parameters. The reference mean stress is assumed pref = 1 kPa.
Thus λ∗ is the slope of the primary compression line plotted in ln(p) × ln(1 + e) space
and the intercept N relates to the value of the void ratio for primary consolidated soil
at p = 1 kPa according to

e0 = exp(N)− 1 (3.2)

For unloading and reloading conditions the soil follows

ln(1 + e) = const.− κ∗ ln
(

p

pref

)
(3.3)
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where κ∗ is the material parameter controlling the sti�ness upon unloading/reloading.
The constant in Eq. (3.3) depends on the loading history and is in fact irrelevant because
the hypoplastic model is formulated in a rate form and only derivatives of the equation
de�ne the stress-strain relationship. The role of the parameters λ∗, κ∗ and N is shown
in the diagram of the primary loading and unloading in Figure 3.1.

κ*

λ*

ln(1 + e)

N
1

1
ln(p/pref)

Figure 3.1: Diagram of isotropic primary loading (solid line) and subsequent unload-
ing/reloading (dashed line) showing the role of parameters λ∗, κ∗ and N .

Note that with exception of being written in ln(p)× ln(1+ e) space, the above stress-
strain relation is identical to that of the Modi�ed Cam clay constitutive model [34] de�ned
in ln(p)× e space.

The shear strength of the model is controlled by the critical angle of internal friction
φc representing the mobilised angle of internal friction in critical state

sin2 φc =
9I3 + I1I2
I3 + I1I2

(3.4)

where I1, I2 and I3 are the �rst, second and third invariants of the stress tensor at the
critical state, respectively.

The parameter ν controls the ratio of the tangent shear modulus to the tangent bulk
modulus derived from Eqs. (3.1) and (3.3). Its role is analogous to that of the Poisson
ratio in a linear elastic material.

The �ve material parameters of the hypoplastic model for clay are φc, λ∗, κ∗, N
and ν, see Figure 3.2. For complete formulation of the hypoplastic model for clay and
the detailed de�nition of its parameters we refer the reader to [22], Sections 6 and 7.
An example of realistic parameters of two di�erent �ne grained soils and the results of
simulated oedometer tests are shown in Figure 3.2.

3.3.3 Laboratory tests

A common practice for observing the deformation behaviour of soil under various loading
conditions is to perform a set of suitably chosen laboratory tests. Two types of common
laboratory tests are prominent in the context of constitutive model calibration: the
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one-dimensional constrained compression test also known as the oedometer test and
the triaxial shear test. This is because these two laboratory tests are relatively easily
performed and still maintain � at least in theory � a homogeneous stress �eld within the
soil sample. This is in contrast to other laboratory tests such as the direct shear test or
virtually any �eld test for which the stress �eld spatially varies.

The oedometer test (denoted as OED) mainly provides the data from which the
sti�ness characteristics are calibrated. In common OED test setup, the soil sample is
subjected to an increasing one-dimensional strain and the corresponding normal stress is
recorded. The soil sample is typically exposed to at least one loading and one unloading
stage.

The undrained shear test with the measured pore pressure (denoted as CIUP) pro-
vides the data from which the shear sti�ness and the soil strength are calibrated. The
soil sample is �rst subjected to a certain e�ective isotropic stress that consolidates the
soil to a given level. In the following stage the laterally unconstrained soil sample is
loaded by increasing the deviatoric stress while keeping the undrained conditions. The
evolution of vertical stress, strain, and excess pore pressure is monitored.

3.3.4 Automatic calibration application ExCalibre

A necessary step for using a material model within a �nite element method (FEM)
simulation is to determine the values of its parameters. This process is referred to as the
calibration of the material model.

In the case of the hypoplastic model for clay, the calibration is quite tedious task
requiring to tune several parameters simultaneously. An online calibration application
ExCalibre [35, 36] was developed to make this task as easy as possible. The calibra-
tion algorithm combines a direct evaluation of the measured data and single element
simulations of the laboratory tests [37, 38].

The user prepares a laboratory protocol in a prede�ned format. For a �ne-grained
soil the protocol must contain the united soil classi�cation system (USCS) soil class,
gradation curve data and Atterberg limits and most importantly the data of at least
one oedometer (OED) and one undrained triaxial test with pore pressure measurements
(CIUP). The user then uploads the laboratory protocols to the ExCalibre website and
selects the material model to calibrate. After the calibration, the user is presented with
the automatically determined parameters and several line charts showing how the labo-
ratory tests simulated with these parameters correspond to the uploaded experimental
data.
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Figure 3.2: Example of an output from the ExCalibre application for two di�erent soils:
the application displays the optimised parameters and a list of plots comparing the
simulated laboratory tests to the measured data. These examples show the dependence
of axial strain εax [�] on prescribed axial stress σax [kPa] upon loading and unloading.

3.3.5 Data sources

Being available to the geotechnical community since 2018, more than two thousand lab-
oratory protocols of various soils have been uploaded to ExCalibre. In compliance with
the ExCalibre's user agreement, the data from the laboratory protocols uploaded to the
ExCalibre database can be used anonymously for research purposes. The laboratory pro-
tocols of di�erent �ne grained soils from several locations including the United States,
China, Thailand, United Kingdom, Germany, Finland, and the Czech Republic were
utilised in this study. The protocols contained standard index parameters, soil gradation
curves and the results of the oedometer and the undrained triaxial shear tests. Both the
oedometer and triaxial tests were performed on either undisturbed or reconstituted soil
samples.
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3.3.6 Data preparation

The laboratory protocol contains all data available for a given soil and serves as the
sole input for the calibration procedure. Recall that the laboratory protocol can contain
more than one OED test and more than one CIUP test. In such a case, all the available
data are used in the calibration process simultaneously and the calibration procedure
optimises the material parameters to �t all provided laboratory tests as close as possible.

The following statistical analysis focuses on the uncertainty in the calibrated pa-
rameters attributed to the fact that arbitrary number of laboratory tests can enter the
calibration. The laboratory protocols used in the present study were selected based on
the following criteria:

� The protocol contains the data of at least two oedometer tests and at least two
undrained triaxial shear tests.

� The soil is classi�ed within USCS as a clay with low (CL) or high (CH) liquid limit.

� The protocol data are neither duplicate nor similar to the laboratory data in another
protocol.

Twenty unique laboratory protocols of di�erent �ne-grained soils were selected for fur-
ther processing according to these criteria. These protocols are referred to as the base
protocols.

Several additional protocols were then created out of each base protocol by leaving
out some of the available laboratory tests. The newly created protocols thus contained
only a subset of the available laboratory tests. These protocols therefore simulate the
situation when the experimenter provides the results of fewer laboratory tests. These
arti�cially created protocols are referred to as trimmed protocols. The base laboratory
protocols together with the trimmed protocols yield together 652 laboratory protocols
grouped by the soils. Each group contained 1 base protocol and between 8 and 48
trimmed protocols. Table 3.1 shows the number of OED and CIUP laboratory tests
available in the base protocol for each soil and the numbers of the laboratory protocols
(base and trimmed) available for the soils.

3.3.7 Calibration

The deterministic calibration algorithm implemented in ExCalibre application was utilised
in this study. The algorithm evaluates the parameters λ∗ and N directly as the slope
and the intercept of the primary loading branch of an oedometer test and optimises the
remaining parameters κ∗, φc and ν so that the simulated laboratory tests �t the sup-
plied data. The details of the calibration algorithm for the hypoplastic model for clay
are described in [36].

The calibration algorithm was run for each of the 652 laboratory protocols described
in the previous section. For di�erent laboratory protocols the execution times of the
calibration procedure varied. Most calibrations lasted about several seconds but in rare
cases the execution time exceeded several minutes. For this reason the execution time



CHAPTER 3. UNCERTAINTY IN CALIBRATION 44

Soil number i 1 2 3 4 5 6 7 8 9 10

Num. of OED tests 2 2 2 2 3 2 2 2 2 2
Num. of CIUP tests 4 4 4 4 3 4 2 4 4 4
Num. of protocols 45 45 45 45 49 45 9 45 45 45
Num. of par. sets nset,i 45 45 42 41 46 42 9 41 45 42
Soil number i 11 12 13 14 15 16 17 18 19 20

Num. of OED tests 2 2 2 2 2 2 2 2 2 2
Num. of CIUP tests 4 3 2 4 4 3 3 2 2 2
Num. of protocols 45 21 9 45 45 21 21 9 9 9
Num. of par. sets nset,i 45 21 9 45 45 21 20 9 9 9

Table 3.1: Overview of the data available for each of the 20 soils. First row of the is
the soil's index i. The second and the third row provide the number of OED and CIUP
test available in the base protocol. The fourth row provide the number of all protocols
available, i.e. the original base protocol and the additionally created trimmed protocols.
The last row shows the number of successful calibration runs, i.e. number of material
parameter sets.

was limited to 120 s and the calibrations running longer were cancelled. The successful
calibrations resulted in 631 sets of �ve material parameters grouped by the 20 soils. The
last row of in Table 3.1 shows the number of parameters sets belonging to each soil. The
distribution of the material parameters for each soil is displayed in Figure 3.3. Figure 3.4
provides another view to the same data. It shows the histograms of all parameters and
scatter plots that visually indicate the correlations between the material parameters.

Recall that the calibration algorithm is deterministic and for the same input data
always returns the same optimal parameters. However, it does not provide any informa-
tion on the credibility of these parameters. This study neither questions the accuracy
of the calibration algorithm nor the �tness of the hypoplastic model for clay itself. It
focuses solely on the uncertainty arising from the fact that the calibration of one soil
can be preformed on data sets of various sizes leading to potentially di�erent values of
material parameters.

3.3.8 Transformed data

A brief overview of the scattered material parameters in Figure 3.4 suggests that some
of the parameters might be correlated. In particular, there is a clear positive correlation
between parameters λ∗ and N .

A statistical description of the correlated quantities assumes that they follow some
joint probability distribution. Owing to its simplicity, the multivariate normal distri-
bution would be a useful choice to describe the variability of the material parameters.
The multivariate normal distribution of n variables has a support of Rn. This means
that even negative values would have nonzero probability. This clearly con�icts with the
fact that all the material parameters are positive and the parameter ν also has an upper
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Figure 3.3: Distribution of material parameters grouped by soil samples 1 � 20
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bound of 0.5.
For this reason, it is not the vector of the parameters z = {φc, κ

∗, λ∗, N, ν} but
rather its transformation y = {yφc , yκ∗ , yλ∗ , yN , yν} ∈ Rnpar , npar = 5, what is assumed
to follow a multivariate normal distribution. The transformation is

yφc = softplus−1
2 (φc, β = 1) (3.5)

yκ∗ = softplus−1
2 (κ∗, β = 0.001) (3.6)

yλ∗ = softplus−1
2 (λ∗, β = 0.01) (3.7)

yN = softplus−1
2 (N, β = 0.1) (3.8)

yν = softclip−1
2 (ν, β = 0.1) (3.9)

where functions softplus−1
2 and softclip−1

2 are inverse to functions softplus2 and softclip2
de�ned in 3.7.1 and plotted in Figures 3.12 and 3.13, respectively. The values of the
parameter β were chosen such that the transformation functions are close to identity for
most of the observed values.

Note that the variable φc is treated as not bounded from above despite the existence of
a theoretical upper limit of 90◦. This choice, however, does not cause problems because
the observed values of φc are far below the upper limit. On the other hand, some
observations of the parameter ν are close to its bounds and therefore the inverse CDF
of standard normal distribution was applied to transform its range from (0, 0.5) to R so
that it can be described by a multivariate normal distribution.

3.3.9 Hierarchical model

An intuitive way to de�ne a hierarchical model is to describe how the observed data are
distributed. In this analysis, the observed data are the transformed material parameters
stored in vectors yobs,ij = {yφc , yκ∗ , yλ∗ , yN , yν}ij , i = 1, . . . , nsoil, j = 1, . . . , nset,i. The
vector yobs,ij thus collects the transformed material parameters φc, κ∗, λ∗, N and ν of
the i-th soil obtained from the calibration algorithm for the j-th protocol. The number
nsoil = 20 denotes the number of soils and the number nset,i denotes the number of
protocols available for the i-th soil sample, i.e. the number of trimmed protocols plus
one base protocol.

The following stochastic and deterministic relations form the hierarchical stochastic
model. Each observed vector of the �ve standardised material parameters yobs,ij is dis-
tributed according to the multivariate normal distribution with the vector of mean values
µL,i and the covariance matrix ΣL. This is written as

yobs,ij ∼ N(µ = µL,i,Σ = ΣL) i = 1, . . . , nsoil, j = 1, . . . , nset,i (3.10)

The index i in µL,i indicates that di�erent mean values are assumed for di�erent soils.
On the contrary, the covariance matrix, which characterises the variations and mutual
correlations between the material parameters of a certain soil, is assumed identical for
all soils. This is an intentional modelling choice that allows us to quantify the typical
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dispersion of the observed material parameters of an arbitrary soil due to the di�erent
sets of laboratory data entering the calibration. The subscript L stands for "local" to
individual soils.

The vector of the mean values for the i-th soil is itself also distributed according to
the multivariate normal distribution with the mean vector µG and the covariance matrix
ΣG

µL,i ∼ N(µ = µG,Σ = ΣG) i = 1, . . . , nsoil (3.11)

The subscript G stands for "global" or "general" to all soils. The global mean vector µG

thus describes the mean value of the transformed material parameters over all nsoil soils
in question. The global covariance matrix ΣG characterises the variance and correlations
of material parameters amongst the soils.

The hierarchical stochastic model is now completed with the de�nitions of prior dis-
tributions for all top-level parameters, i.e. µG, ΣG and ΣL.

A �at prior distribution over R was assumed for each component of µG. Symbolically,
this is written as

µG,k ∼ Flat(), k = 1, . . . , npar (3.12)

This distribution has a constant probability density and is often denoted as improper
distribution because it does not integrate to 1 over its support. The �at prior distribution
is uninformative as it assigns the same prior credibility to all possible values of µG,k.

Although the inverse Wishart distribution is the conjugate prior for the covariance
matrix of multivariate normal distribution, it often fails to be e�cient within an inference
based on the Markov chain Monte-Carlo (MCMC) method. This is attributed to both the
requirement of the symmetry and positive de�niteness of the covariance matrix and the
heavy tails of the Wishart distribution. Therefore, the covariance matrixΣG is assembled
from the correlation matrix ρG and the vector of standard deviations σG element-wise
according to

ΣG,kl = ρG,klσG,kσG,l k = 1, . . . , npar, l = 1, . . . , npar (3.13)

The Lewandowski-Kurowicka-Joe (LKJ) method [39] was utilised do de�ne the prior
distribution of the global correlation matrix

ρG ∼ LKJ(η = 1) (3.14)

with the parameter η = 1 implying a uniform prior distribution over the space of all corre-
lation matrices. This in fact corresponds to the non-diagonal elements of the correlation
matrix being beta-distributed, see Eq. (3.34) in 3.7.2, according to

ρG,kl ∼ Beta
(
α =

npar
2
, β =

npar
2

)
k = 1, . . . , npar, l = 1, . . . , npar (3.15)

The prior distribution of the standard deviations is assumed exponential with the rate
parameter λ = 1

σG,k ∼ Exp(λ = 1) k = 1, . . . , npar (3.16)
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This can also be seen as weakly informative prior distribution that prescribes similar
credibility to all possible values of the standard deviations.

The prior distribution of the local covariance matrix ΣL is constructed analogously
as

ΣL,kl = ρL,klσL,kσL,l k = 1, . . . , npar, l = 1, . . . , npar (3.17)

ρL ∼ LKJ(η = 1) (3.18)

σL,k ∼ Exp(λ = 1) k = 1, . . . , npar (3.19)

The independent parameters of the stochastic model stored symbolically in vector θ
are θ = (µL,1, . . . ,µL,nsoil

,σL,ρL,µG,σG,ρG). Out of these, only the parameters σL,
ρL, µG, σG and ρG are the top-level parameters (also called sources in the directed
graph terminology) and have the prior distribution directly prescribed. The remaining
parameters µL,1, . . . ,µL,nsoil

are internal parameters and their prior distribution is in-
ferred from the prior distributions of their direct predecessors. Nevertheless, the joint
posterior density is formulated for all of these parameters and all these parameters are
sampled together. An alternative way is inferring the local parameters µL,1, . . . ,µL,nsoil

,
σL and ρL in the �rst step and then inferring the global parameters µG, σG and ρG in
the second step while using the the previously obtained mean values µL,1, . . . ,µL,nsoil

as
the data. This staggered approach, however, would require specifying the prior distribu-
tion for µL,1, . . . ,µL,nsoil

which is not necessary with the hierarchical model utilised in
this study.

3.3.10 Bayesian inference

The joint posterior probability density of parameters θ of a hierarchical model obtained
through the Bayes rule is written as

f(θ | yobs) ∝ f(yobs | θ)f(θ) (3.20)

where f(θ | yobs) denotes the posterior density, f(yobs | θ) is the likelihood of θ ex-
pressed for �xed data yobs and f(θ) is the prior distribution. The likelihood is con-
structed from the relationship (3.10) while the prior distribution of θ is derived from
relationships (3.11)�(3.19). The symbol ∝ indicates that f(θ | yobs) seen as a function of
θ is proportional to the right hand side expression up to the multiplication by a certain
unknown constant. The formulation of the posterior probability density function (PDF)
together with a directed graph representing the model hierarchy is given in 3.7.2.

The inference was done by means of the MCMC sampling. In particular, the No-U-
Turn sampler (NUTS) [40] based on principles of Hamiltonian Monte Carlo methods [41]
combined with variational Bayesian inference [42] was utilised within the PyMC [43]
framework to generate the samples from the joint posterior distribution of the proba-
bilistic model parameters.
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3.4 Results

This section presents the results of the Bayesian inference of the hierarchical stochastic
model described in Section 3.3.9. Since the posterior distribution is explored by means
of the MCMC sampling, the immediate results are the chains of samples drawn from
the posterior distribution. In particular, two independent chains each of 2000 samples
were generated. To generate more than one chain is a common practice allowing for
a quick check that the generated samples converge to the same distribution. Through
this section, the posterior distributions obtained from the �rst and the second chain are
plotted by solid and dotted line.

Conceptually, the distributions of two types of quantities are explored: posterior
distribution of the hierarchical model parameters θ and posterior predictive distribution
of the unobserved data.

3.4.1 Posterior distribution of statistical model parameters

The posterior distribution of individual local means µL,i, i = 1 . . . npar, and standard
deviations σL, recall Eq. (3.10), extracted from the chains are plotted in Figure 3.5 in
the form of their kernel densities. Note that the mean values plotted on the left di�er
for each examined soil while the standard deviation within each soil is just one, shared
between all soils.

Figure 3.6 shows the posterior distribution of all local correlation coe�cients of in-
terest in the form of 95 % highest density intervals with the central points representing
the posterior mean value estimates. The intervals are plotted in pairs, each line for each
independent chain.

Similarly, the posterior distribution of the global means and standard deviations are
displayed in Figure 3.7.

The correlation coe�cients corresponding to the global covariance matrix ΣG are
plotted in Figure 3.8.

3.4.2 Posterior predictive distribution of material model parameters

Posterior predictive distribution describes how the observed data are distributed under
the assumption that the stochastic model parameters follow their posterior distribution.
Recall Eq. (3.10) that indicates how the transformed material parameters yobs are dis-
tributed. Clearly, these values are not guaranteed to be within the theoretical limits
of the material parameters, i.e. positive and in case of ν also less than 0.5. There-
fore, the values in the chains are transformed back to the appropriate ranges, i.e. to
interval (0, 0.5) in case of ν and to interval (0,∞) in case of the other variables, by the
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Figure 3.5: Posterior distribution of the local (i.e. within each soil) means (µL,i) and
local standard deviations (σL) of the material parameters for each soil. The distributions
of the means of di�erent soils are plotted in di�erent colours.
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Figure 3.6: Posterior distribution of local (i.e. within each soil) correlation coe�cients
(ρL) between material parameters

transformations

φc = softplus2(yobs,1, β) (3.21)

κ∗ = softplus2(yobs,2, β) (3.22)

λ∗ = softplus2(yobs,3, β) (3.23)

N = softplus2(yobs,4, β) (3.24)

ν = 0.5softclip2(2yobs,5, β) (3.25)

Note however, that this transformation is rather formal because for typical values the
transformation function is close to identity. The posterior kernel density plots of the
material parameters are in Figure 3.9.

One additional variable de�ned as yex = {φc,ex, κ
∗
ex, λ

∗
ex, Nex, νex} and being normally

distributed according to

yex ∼ N(µ = µex,Σ = ΣL) (3.26)

was added into the stochastic model for illustration. It represents a normally distributed
set of material parameters with a �xed mean of µex = {30, 0.01, 0.1, 1, 0.3}. The sole
purpose of this variable is to show how the observation are dispersed around this arbitrary
mean due to the covariance matrix ΣL calculated from σL and ρL, which are itself
inferred with limited certainty. The resulting posterior distribution of φc,ex, κ∗ex, λ

∗
ex, Nex

and νex is plotted in Figure 3.10 in the form of kernel densities and also in Figure 3.11
in the form of pairwise scatter plots. Due to the properties of normal distribution the
result can be seen in two ways. First, it shows how the material parameters that the



CHAPTER 3. UNCERTAINTY IN CALIBRATION 53

27 28 29 30 31 32

µG,ϕc [◦]
2.5 3.0 3.5 4.0 4.5 5.0 5.5

σG,ϕc [◦]

0.007 0.008 0.009 0.010 0.011

µG,κ∗ [–]
0.002 0.003 0.004 0.005 0.006

σG,κ∗ [–]

0.04 0.06 0.08 0.10 0.12

µG,λ∗ [–]
0.04 0.06 0.08 0.10

σG,λ∗ [–]

0.6 0.8 1.0 1.2 1.4

µG,N [–]
0.3 0.4 0.5 0.6 0.7 0.8 0.9

σG,N [–]

0.150 0.175 0.200 0.225 0.250 0.275 0.300

µG,ν [–]
0.06 0.08 0.10 0.12 0.14 0.16

σG,ν [–]

Figure 3.7: Posterior distribution of global (i.e. among the analysed soils) means (µG)
and standard deviations (σG) of the material parameters
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Figure 3.8: Posterior distribution of global (i.e. among the analysed soils) correlation
coe�cients (ρG,ij) between material parameters
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Figure 3.9: Posterior predictive distribution of the unobserved values of the material
parameters for each of the soils
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Figure 3.10: Posterior predictive distribution of material parameters of hypothetical soil
with �xed mean values µφc = 30◦, µκ∗ = 0.01, µλ∗ = 0.1, µN = 1.0, µν = 0.3

calibration returns for di�erent combinations of input data are dispersed around the �xed
known mean. Or it can be viewed as the uncertainty of the sought mean values given
the material parameters obtained from a single calibration run.

3.4.3 Test for chain convergence

The representatives of the sample chains generated from the posterior distribution was
checked by visual inspections and quanti�ed by both the calculation of R̂ diagnostics [44]
and calculation of e�ective sample size. The rank-based convergence diagnostics R̂ [45]
did not exceed 1.01 for any of the variables. The e�ective sample size was greater than
1000 for all variables.

3.5 Discussion

The distribution of individual means provided in Figure 3.5 shows that not only their lo-
cations but also their uncertainty (dispersion) di�er for individual soils. This observation
is attributed to the di�erent number of material parameter sets, i.e. di�erent number of
trimmed laboratory protocols, available for each soil, recall last row in Table 3.1. Those
soils with more available laboratory tests and therefore with more material parameter
sets tend to have narrower posterior distributions of the mean values µL,i.

One of the two key results of the statistical analysis is the local standard deviation
displayed in Figure 3.5 on the right. The standard deviations quantify the dispersion of
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Figure 3.11: Pair plot of posterior predictive distribution of material parameters of hypo-
thetical soil with �xed mean values µφc = 30◦, µκ∗ = 0.01, µλ∗ = 0.1, µN = 1.0, µν = 0.3
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the data, i.e. the material parameters of the hypoplastic model for clay, obtained for a
general soil by the same process of calibration performed on di�erent sets of laboratory
tests. The second key result is the local correlation coe�cients provided in Figure 3.6
which suggest that some of the material parameters are correlated. In particular, there
is a positive correlation close to 1 between the slope of the primary compression line λ∗

and the intercept N . Quite expectantly, there is also a positive correlation between the
slope of the primary loading line λ∗ and the slope of the unloading/reloading line κ∗.
This suggests that soils sti�er in primary loading tend to be sti�er upon unloading too.
Finally, there is a notable negative correlation between κ∗ and the Poisson ratio ν. These
correlations should be taken into account when one wants to incorporate the material
parameter uncertainty into FEM simulations at the structural level. 3.7.3 provides brief
summary of how the results are applicable within the Monte-Carlo method.

Although the posterior distribution of the global means µG and global standard devi-
ations σG displayed in Figure 3.7 are not the motivation for the above statistical analysis,
they are a convenient byproduct. It shows that the material parameters of a randomly
chosen �ne-grained soil are expected around µG with the standard deviation of σG. Such
information is always helpful in preliminary geotechnical simulations and also for a quick
check that a newly obtained parameter set �ts into the common ranges. The arguably
wide credible intervals of these global parameters are the consequence of the limited
number of soils being considered in the study.

A notable result is the distribution of the global correlation coe�cients and its dif-
ference from the distribution of the local correlation coe�cients. With exception of the
correlation between λ∗ and N the medians of the correlation coe�cients are relatively
low. This suggests a good parametrisation of the hypoplastic model for clay, i.e. that
di�erent parameters control di�erent properties of the model.

The posterior predictive distribution of the material parameters provided in Figure 3.9
is presented mainly for the illustration purposes. It shows the actual uncertainty in the
material parameters that one would obtain when the calibration is performed with yet
another combination of the laboratory tests.

Finally, the joint posterior distribution of the material parameters with the �xed
mean displayed in Figures 3.10 and 3.11 shows the actual e�ect of σL and ρL on the
uncertainty of the parameters that can be obtained for one typical soil. In particular,
the pair plot in Figure 3.11 illustrates how the correlations a�ect the predicted material
parameters. The �gure also illustrates what parameters could be used for the traditional
Monte-Carlo stochastic simulations at structural level if there was only a point estimate
of the material parameters and the uncertainty was adopted from the soils considered in
this study.

3.6 Conclusions

The statistical analysis of the material parameters of the hypoplastic model for clay was
performed in this study. Several parameter sets were created for each of 20 di�erent
�ne-grained soils. These di�erent parameter sets were obtained by the same calibration
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algorithm run with di�erent combinations of the laboratory test performed for a given
soil. This allowed us to analyse the uncertainty attributed to the fact that di�erent
oedometer tests and di�erent triaxial shear tests performed on the same soil and used in
the same automatic calibration algorithm lead to di�erent material parameters.

The following �ndings are drawn from the results of the Bayesian inference of the
hierarchical stochastic model:

� The standard deviations and mutual correlation coe�cient of all �ve material pa-
rameters obtained from di�erent combinations of laboratory tests on one soil are
listed in Table 3.2. These values characterise the uncertainty of the material pa-
rameters of general �ne-grained soil. They can be used to generate random samples
around the point estimate of mean, e.g. values obtained from a single calibration
run for a di�erent �ne-grained soil.

� There is a clear correlation between the material parameters that has to be taken
into account when the material parameter uncertainty is used in a subsequent
simulation at the structural level.

� The narrow credible intervals of the standard deviations σL and correlation coef-
�cients ρL indicate that they were inferred with a relatively high accuracy. Using
their point estimates, i.e. means in Table 3.2, is therefore su�cient for practical
applications.

� While not being the primary topic of this study, the hierarchical model also pro-
vided the mean values, standard deviations and correlation matrices of the material
parameters of the hypoplastic model for clay among di�erent soils. The correlation
coe�cients between the means are relatively low and with relatively wide con�dence
intervals. The only exception is the correlation coe�cient between the means of
slope λ∗ and the means of intercept N of the primary compression line.

� Posterior predictive distribution of material parameters of a hypothetical soil with
�xed mean parameter values was calculated. It outlines how the random material
parameters could be generated for a stochastic analysis on a structural level, e.g.
Monte Carlo �nite element analysis, when only the point estimate of material pa-
rameters are available for the given soil while the uncertainty is inferred from all
soil used in this study.

� The hierarchical nature of the statistical model allowed us to separate the cali-
bration uncertainty, quanti�ed by covariance matrix ΣL, from the variability of
properties of di�erent soils, quanti�ed by the covariance matrix ΣG. The model
proved well parameterised and the inference was numerically stable. Convergence
of the chains was checked with rank-based convergence diagnostic R̂ and the e�ec-
tive sample size which was greater than 1000 for all parameters of the statistical
model.
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3.7 Appendix

3.7.1 Functions softplus() and softclip()

A commonly used smooth analytical approximation of a function returning positive part
of a real number, i.e. x+ = max(x, 0), is a softplus() function [46]. It is written as

softplus(x) = ln (ex + 1) (3.27)

This study uses its parameterised version termed softplus2. It is written as

softplus2(x, β) = β log2

(
2

x
β + 1

)
(3.28)

and the parameter β de�nes its value at x = 0. The graph of this function is plotted in
Figure 3.12.

The clip function maps real numbers to interval [0, 1]. It is de�ned as

clip(x) = min(max(x, 0), 1) (3.29)
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Its smooth approximation can be constructed as a di�erence of two shifted softplus2
functions as

softclip2(x, β) = softplus2(x, β)− softplus2(x− 1, β)

= β log2

(
2

x
β + 1

2
x−1
β + 1

)
(3.30)

Again, the parameter β controls the function's value such that softclip2(0, β) ≈ β and
softclip2(1, β) ≈ 1− β. The function is plotted in Figure 3.13.

3.7.2 Construction of posterior probability density function

Probability density function (PDF) of k-variate normal distribution is

fN (x,µ,Σ) = (2π)−
k
2 det(Σ)−

1
2 exp

(
(x− µ)TΣ−1(x− µ)

)
(3.31)

The PDF of the �at improper distribution is assumed constant

fFlat(x) = c (3.32)

The exponential PDF follows

fExp(x, λ) = λ exp(−λx) (3.33)
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and �nally the PDF of the Beta distribution is

fBeta(x, α, β) =
1

B(α, β)
xα−1(1− x)β−1 (3.34)

where B(α, β) =
∫ 1
0 t

α−1(1− t)β−1 dt is the beta function.
Conceptually, the PDF of the multivariate posterior distribution of the probabilistic

model parameters fpost is then written to be proportional to the expression

fpost(µL,1, . . . ,µL,nsoil
,σL,ρL,µG,σG,ρG) ∝

∝
nsoil∏
i=1

nset,i∏
j=1

fN (yobs,ij ,µL,i,ΣL)×
nsoil∏
i=1

fN (µL,i,µG,ΣG)×

×
npar∏
k=1

fFlat(µG,k)×
npar∏
k=1

fExp(σL,k, λ)

npar∏
k,l=1
k ̸=l

fBeta(ρL,kl, α, β)×

×
npar∏
k=1

fExp(σG,k, λ)

npar∏
k,l=1
k ̸=l

fBeta(ρG,kl, α, β) (3.35)

where the data yobs,ij , and the hyper parameters λ, α and β are �xed. The covariance
matrices ΣL and ΣG depend in deterministic way on the arguments σL, ρL, σG and
ρG according to Eqs. (3.17) and (3.13). De�ning the posterior PDF up to multiplication
by unknown constant is su�cient in the context of MCMC-based inference because the
sampler takes into account only the ratio of the fpost of two di�erent points. The constant
c in Eq.(3.32) is therefore irrelevant. For numerical reasons, the natural logarithm or the
above expression termed the log-likelihood is used in the sampler.

The hierarchy of the probabilistic relationships is shown in Figure 3.14. The top level
parameters are µg denoted as mu_g and the independent components of the Cholesky
decomposition of the global and the local covariance matrices denoted as chol_g and
chol_l, respectively. The numbers in the diagram denote the dimensions of the variables,
i.e. there are �ve material parameters and therefore �ve corresponding global mean values
and 15 independent values of each covariance matrix. The prior distribution of µg is �at.
The prior distribution of the covariance matrices follows from the LKJ prior construction.
The local mean values µl denoted as mu_l are not the top-level parameters and therefore
are not assigned a prior distribution. Instead, they follow from the multivariate normal
distribution. Since there were 20 soils considered in this study, there are 20× 5 of these
mean values. Finally, the 631 × 5 observed (grey graph node) parameters follow the
multivariate normal distribution. Note that the MCMC chains of the standard deviations
σl resp. σg and the correlation coe�cients ρl resp. ρg are calculated directly from the
chains of the components of the covariance matrices chol_g resp. chol_l. These nodes
are omitted from the graph for clarity.
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Figure 3.14: Graphical representation of the hierarchical stochastic relations.

Parameter Mean SD HDI 3% HDI 97%
σL,φc 1.773 0.052 1.684 1.877
σL,κ∗ 0.0031 0.0001 0.003 0.003
σL,λ∗ 0.0078 0.0002 0.007 0.008
σL,N 0.065 0.002 0.062 0.069
σL,ν 0.068 0.002 0.065 0.072
ρL,φcκ∗ -0.049 0.041 -0.121 0.034
ρL,φcλ∗ -0.002 0.040 -0.069 0.082
ρL,φcN -0.012 0.041 -0.081 0.070
ρL,φcν 0.043 0.040 -0.034 0.116
ρL,κ∗λ∗ 0.451 0.032 0.389 0.511
ρL,κ∗N 0.433 0.033 0.369 0.493
ρL,κ∗ν -0.641 0.024 -0.687 -0.596
ρL,λ∗N 0.951 0.004 0.943 0.958
ρL,λ∗ν -0.214 0.038 -0.288 -0.148
ρL,Nν -0.200 0.038 -0.266 -0.123

Table 3.2: Mean values, standard deviations (SD) and bounds of the high density in-
tervals (HDI) of the local standard deviations σL and correlation coe�cients ρL. These
parameters characterise the uncertainty of material parameters obtained for one soil.
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3.7.3 Summary of the model parameters

The parameters of the hierarchical stochastic model formulated in Section 3.3.9 are in-
ferred in form of the posterior distribution. The results are summarised graphically in
Section 3.4. This appendix presents the same results in form of the statistics of the pos-
terior distribution. Table 3.2 shows the mean values, standard deviations (SD) and the
boundaries of the highest density intervals (HDI) of the parameters σL and ρL. There-
fore, it shows the same results as Figures 3.5 and 3.6. These parameters characterise the
variability of the material parameters obtained for one �ne-grained soil. Since their cred-
ible intervals are relatively narrow, the mean values of σL and ρL could be considered
without a signi�cant loss of accuracy in subsequent stochastic FEM simulations. For
example, having a point estimate µpe for the mean value of the material parameters, e.g.
from a single run of the calibration procedure, the samples for the Monte-Carlo would
be drawn from normal distribution

y ∼ N(µ,Σ) (3.36)

where the covariance matrix is calculated from Eq. (3.17) with the mean values in Ta-
ble 3.2.

For completeness, Table 3.3 provides analogous statistics for the parameters µG, σG

and ρG which characterise the variability of material parameters among di�erent �ne-
grained soils.
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Chapter 4

Applying Bayesian approach to

predict deformations during tunnel

construction

This chapter presents the preprint version of the journal paper

Janda, T.; �ejnoha, M.; �ejnoha, J., Applying Bayesian approach to predict de-
formations during tunnel construction, International Journal for Numerical and
Analytical Methods in Geomechanics. 2018, 42(15), 1765-1784. ISSN 0363-9061.

reformatted to align with the style of the thesis.

4.1 Abstract

In this paper a fully probabilistic approach based on the Bayesian statistical method is
presented to predict ground settlements in both transverse and longitudinal directions
during gradual excavation of a tunnel. To that end, the convergence con�nement method
is adopted to give estimates of ground deformation numerically. Together with in-situ
measurements of the evolution of vertical de�ections at selected points along the tun-
nel line it allows for the construction of a likelihood function and consequently in the
framework of Bayesian inference to provide posterior improved knowledge of model pa-
rameters entering the numerical analysis. In this regard, the Bayesian updating is �rst
exploited in the material identi�cation step and next used to yield predictions of ground
settlement in sections along the tunnel line ahead of the tunnel face. This methodology
thus makes it possible to improve original designs by utilizing an increasing number of
data (measurements) collected in the course of tunnel construction.

4.2 Introduction

Mathematical modeling of structural systems plays a signi�cant role in the design and
assessment of engineering structures. In most �elds uncertainty of information entering
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a mathematical model is quite low: the structure geometry, material properties and the
maximum loading are well known or easy to measure. In such a case the structure
reliability is ensured by using reliability approaches provided in the design codes.

However, when uncertainty of input parameters of the underlying mathematical
model is high, as in many geotechnical problems, it has to be incorporated into the
model. Such stochastic models provide not only the typical output for typical input but
also answer the question on how the variability of a particular input parameter in�uences
the variability of the desired output quantity. There are many contributions addressing
the variability of soils. These are mostly limited to a random nature of model parameters
such as material properties of the selected constitutive model, e.g. cohesion and angle
of internal friction in models of the Mohr-Coulomb type [1, 2, 3], hydraulic conductivity
when dealing with coupled problems [4], or loading [5]. Application to advanced consti-
tutive models including hypoplasticity can be found in [6]. Not only locally uncertain
but also spatially random soils have been investigated [7, 8, 9, 10, 11]. Stochastic �-
nite elements [12], classical stochastic simulations based on the Monte Carlo [13] and
Latin Hypercube Sampling methods [14] or simulations exploiting the concept of Neural
Networks [15] are often the choice of computational approach.

In the reliability-based design these contributions would be mostly concerned with
an aleatory (driven by chance) type of uncertainty [16, 17]. Nevertheless, calibrating
constitutive models calls for experiments, which are often sparse and yield another type
of uncertainty called epistemic (related to intellectual knowledge). And it is the exper-
imental uncertainty which plays a crucial role in the prediction of structural response
grounded on probability analysis [6]. Therein, the Bayesian inference [18, 19] appears a
suitable method of attack to reduce the epistemic uncertainties as it accounts for and
quanti�es uncertainty of the experimentally derived data. The Bayesian interpretation
of probability thus allows us to attribute the probability not only to model parameters
(unobserved quantities), but also to measured data (observed quantities) including the
measurement error. Exploiting their mutual stochastic relationship opens the way, in
the framework of Bayesian updating, to reappraise our prior knowledge about the unob-
served quantities, i.e. their prior probability densities, and obtain a rationally updated
knowledge � their posterior probability density. In geomechanics, this strategy has al-
ready been examined in [20, 21] and remained at the forefront of engineering interest up
to date [22, 23, 24]. The presented paper falls into this category of cited contributions.

The main advantage of Bayesian updating is its mathematical soundness: if the
stochastic relations are properly de�ned then the posterior belief is the most rational one
given the prior belief and the observed data. On the other hand, one must be prepared
that the integral statistics of posterior distribution such as the mean value, standard de-
viation or quantiles can be computed analytically only for a limited category of models.
Posterior distribution obtained with models of an arbitrary structure has to be analyzed
numerically via Markov chain Monte Carlo methods such as the Metropolis�Hastings
algorithm, Gibbs sampling or the Hamiltonian Monte Carlo algorithm. Since these algo-
rithms are implemented in several statistical programs we can concentrate only on the
de�nition of the stochastic model and the prior distribution of its parameters. This strat-



CHAPTER 4. DEFORMATIONS DURING TUNNEL CONSTRUCTION 71

egy has successfully been applied to the analysis of glued laminated timber beams [25]
and later in the prediction of settlements during tunnel excavation [26] using a simple
excavation model originating from a rather complex quasi three-dimensional soil struc-
ture interaction analysis [27]. The knowledge gained through the solution of these two
projects is elaborated here to address the design of gradually excavated tunnels supported
by ongoing monitoring in the light of stochastic modeling [28]. In this spirit, the proposed
approach is consistent with that of the observational (design) method by Terzaghi and
Peck, see [29]. The original process of initial design and its progressive modi�cation was
further elaborated by other authors, see e.g. [30, 31]. Since Peck's approach is based on
the most probable initial ground conditions it is deemed (i) best suited for designs gov-
erned by serviceability states and (ii) less suited, but still applicable, to the failure limit
states with ductile, rather than brittle, failure. All thinks considered, it well covers the
cases, similar to the present approach, with epistemic uncertainties tending to decrease
as more observational data become available [32]. Hence, the proposed probabilistic ap-
proach may be considered as a supporting tool to at least some of the eight ingredients
identi�ed by Peck as attributes of the observational method based design.

The paper is organized as follows. The basic principles and computational steps
linked to Bayesian updating are brie�y reviewed in Section 4.3. The search for im-
proved posterior knowledge on input parameters of a theoretical model is described in
Section 4.4. The procedure utilizes measurements of vertical displacements and predicts
gradual evolution of ground deformation as a function of the working face advancement.
To that end, the Convergence Con�nement method, popular among design engineers, is
adopted in the formulation of the deterministic model. Given the posterior knowledge of
the selected model parameters, Section 4.5 attempts to provide improved predictions of
ground deformation in sections not a�ected by excavation to its full extent. While Sec-
tion 4.4 is more or less concerned with parameters identi�cation, in Section 4.5 we may
fully appreciate the principal idea of Bayesian updating in reducing the epistemic uncer-
tainties as the pool of measured data is continuously being �lled with new information.
The most important conclusions are �nally summarized in Section 4.6.

4.3 Bayesian model in context of engineering applications

This section brie�y describes the theoretical background and the approaches later applied
to the problem of parameter inference and prediction of settlements induced during tunnel
excavation.

The notion of probability in the Bayesian context di�ers from the frequentist one.
While frequentists derive the probability from the relative frequency of observed data,
the Bayesians use probability to express the degree of believe in particular values of a
random quantity. Technically, the probabilities are represented equally in both frame-
works - a continuous quantity is described by the probability density function and a
discrete quantity is de�ned by the probability mass function. The di�erence is that the
Bayesian probability can be assigned to unobservable variables for which the frequency of
occurrence makes no sense. Parameters of stochastic model, e.g. the standard deviation
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of measurement error, are a typical example of this type of unobservable variables.
Bayesian parameters inference is a method for deducing the probability distribution

of model parameters driven by the observed data. It is expressed by the Bayes theorem
written as

p(θ|y) =
p(y|θ)p(θ)

p(y)
, (4.1)

where p(y) and p(θ) represent the probability density functions of θ and y, respectively.
The bold letters denote vector quantities. Notation, e.g. p(y|θ) means conditional
probability, i.e. the probability of y given �xed values of θ. The vector y represents the
observed data. The vector θ represents the model parameters. The Bayesian theorem
thus de�nes the posterior distribution1 of the model parameters θ given the observed data
y. Since the observed data y are �xed, the right hand side is treated as a function of θ
only. The denominator p(y) is therefore just a constant and the posterior distribution is
proportional to the product of the likelihood function, p(y|θ), and the prior distribution
of parameters, p(θ). Note that the likelihood function is in fact the probability of the
data given the parameters. The term likelihood is used to emphasize the fact that the
expression is viewed as a function of θ.

4.3.1 Forward stochastic model

The �rst of the two ingredients of the Bayes theorem is the likelihood function. It
is constructed as the stochastic model of the observed data given �xed values of the
parameters. This model is sometimes called the forward model and its formulation draws
on our understanding of the underlying physical process. Such a process is described by a
suitable deterministic model suggesting how the measured data would be generated when
no uncertainty in the input parameters and no modeling or measurement errors were
present. In practical applications the deterministic model involves numerical simulations
using for example the Finite Element Method (FEM) or its approximation as discussed
in the next section. In a typical scenario of an engineering application the measured
data are randomly distributed around some theoretical value. This theoretical value is a
result of a deterministic simulation with the (�xed) model parameters. All parameters
entering the simulation and controlling the randomness of the measured values are either
known/�xed or uncertain and stored in vector θ.

4.3.2 Surrogate model

Computing the moments of the posterior distribution such as the mean value or vari-
ance requires evaluating the integrals of the related probability density function. This
can be done in closed form only for very simple forward models with conjugate prior

1The posterior distribution manifests, how our original prior knowledge of model parameters, ex-
pressed in terms of their prior probability distributions, is enriched as both the number and credibility
of observed data increases. It is also worth mentioning that no improvement of a given model parameter
might be achieved if there is no or a weak link between this parameter and the observed data.
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distributions. For more complex models the closed form may not exist and the integrals
are approximated by statistics of samples generated from the posterior distribution. In
this scenario the samples are drawn from the posterior distribution using one of the
Markov chain Monte Carlo techniques. Utilizing this technique requires expressing the
likelihood function and thus running the simulation many times often exceeding several
thousands. To maintain the sampling computationally feasible the deterministic model
(the simulation) is often substituted with a computationally cheaper approximation.2

This approximation is termed the surrogate model. Other terms as the response surface
model [16, 17, 33] or metamodel [34] are also used.

The problem of construction and veri�cation of the e�cient surrogate model is a wide
and separate topic. With reference to Bayesian inference and parameter identi�cation
we refer the interested reader, e.g. to [35, 36, 37]. Here we limit our attention to very
simple approximation of the original model using linear regression. Let's abstract the
deterministic simulation with given input parameters x = ⟨x1, . . . , xi, . . . , xm⟩ as an
evaluation of function f producing the simulation results z = f(x). We can construct
the surrogate model f̃ in the form

f̃(x) =
n∑

j=1

βjgj(x) (4.2)

where βj are scalar coe�cients and gj(x) is a collection of arbitrary functions. The choice
of functions gj might be inspired by the role of the particular parameter xi in the true
model.

Linear regression is used to �nd the optimal values of the coe�cients βj for a limited
set of the original model simulations. Suppose that the model has been evaluated nk-
times and denote the result of the model evaluated at k-th point zk = f(xk). The optimal
values of β are expressed as β = (XTX)−1XTz, where z = ⟨z1, . . . , zk, . . . , znk

⟩ are the
results of simulations and the elements of matrix Xkj = gj(xk) are the functions gj
evaluated for each point xk. The coe�cients obtained using linear regression minimize
the sum of squares of the error in the surrogate model at the points xk.

4.4 Predicting settlements during tunnel excavation via Bayesian

model

As already stated in the introductory part the present contribution deals with the appli-
cation of Bayesian updating in the �eld of geotechnical engineering. As an example we
consider the prediction of ground settlement as well as underground deformation caused
by tunnel excavation. This choice is driven by a high variability of material properties
and limitations of the most common computational approach highly dependent on the
designer experience on the one hand and ongoing monitoring providing instantaneous

2This will prove useful in our particular case where the FEM simulation may take several minutes
thus making the Bayesian updating unfeasible.



CHAPTER 4. DEFORMATIONS DURING TUNNEL CONSTRUCTION 74

information about global response of the structure on the other hand. Both issues pro-
mote exploitation of Bayesian updating to provide improved knowledge about uncertain
parameters and consequently improved prediction of the deformation �eld to yet occur.

Terain

Anchor 1, h = 9 m

Anchor 2, h = 12 m

Anchor 3, h = 15 m
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Figure 4.1: Typical cross-section of the Blanka tunnel with horizontal sequencing and
position of the points at which the vertical displacement was monitored

Fig. 4.1 shows a typical cross-section of the road tunnel Blanka in Prague. An initial
site investigation revealed reasonable geological conditions which in turn allowed for a
horizontal sequencing of the tunnel face. The New Austrian Tunneling Method (NATM)
was applied to perform excavation. When applied to horizontal sequencing the excavation
proceeds such that the top segment is excavated �rst to a certain distance ahead of the
original tunnel face and then stabilized with sprayed concrete creating the initial lining. A
similar procedure is applied subsequently to the bench and eventually to the invert. The
present study concentrates on the �rst two excavation steps for which the monitoring
data, the evolution of vertical displacements at selected points seen in Fig. 4.1, were
available.

As evident, each monitored cross-section was equipped with three extensometers lo-
cated above the tunnel crown. This instrumentation together with the geodetic measure-
ments of the settlement yield the time evolution of vertical displacements of the terrain
and at a depth of 9 m, 12 m and 15 m, respectively. For illustration, we present such
measurements, pertinent to one particular cross-section, in Fig. 4.2(a). Henceforth, this
section is labeled as J022. The common excavation process of NATM is obvious from
Fig. 4.2(a) showing advancement of excavation steps starting with top segment and fol-
lowed subsequently by excavation of bench. This is manifested by a sudden increase in
the rate of displacement evident in Fig. 4.2(a). For the sake of Bayesian updating it
appears useful to re-plot the results from Fig. 4.2(a) as a function of the position of the
tunnel face with respect to the location of the monitored section. Such results appear
separately for the excavation of top segment in Fig. 4.2(c) and for the excavation of bench
in Fig. 4.2(d).



CHAPTER 4. DEFORMATIONS DURING TUNNEL CONSTRUCTION 75

−35

−30

−25

−20

−15

−10

−5

 0

 5

 0  20  40  60  80  100  120  140

Top segment Bench
w

 [
m

m
]

time [day]

0 m
9 m

12 m
15 m

−150

−100

−50

 0

 50

 100

 150

 0  20  40  60  80  100  120  140

Top segment Bench

d
 [
m

]

time [day]

Top heading
Bench

(a) (b)

−20
−18
−16
−14
−12
−10
−8
−6
−4
−2
 0
 2

−100 −50  0  50  100

w
 [
m

m
]

dt [m]

0 m
9 m
12 m
15 m
0 m theor.

−34

−32

−30

−28

−26

−24

−22

−20

−18

−16

−14

−60 −40 −20  0  20  40  60  80

w
 [
m

m
]

db [m]

0 m
9 m
12 m
15 m
0 m theor.

(c) (d)

Figure 4.2: Monitored section J022: a) time evolution of vertical displacement at selected
points, b) time evolution of tunnel face position with respect to monitored section, c)-d)
evolution of vertical displacement at selected points as a function of tunnel face location
- c) excavation of top segment, d) excavation of bench

Based on our prior research e�ort in describing the soil-structure interaction during
tunnel excavation e�ciently [27], we promote the following set of exponential functions
b(d) to represent the shape of the curves in Figs. 4.2(c,d) as

b(d) =

{
1
2 exp(αd), if d < 0,

1− 1
2 exp(−αd), otherwise,

(4.3)

where d stands for either dt or db and denote the distance of the tunnel face from the
monitored cross-section. The symbols dt and db in Figs. 4.2(c,d) are introduced to make
distinction between the tunnel faces associated with the excavation of top segment and
bench, respectively, recall Fig. 4.2(b).

Clearly, the negative values of d represent the situation when the tunnel face has not
reached the monitored cross-section yet. In a limiting case d→ −∞ we get b(−∞) = 0.
In parallel, the positive value of d identi�es the case when the tunnel face has already
passed the monitored section. Large values of d → ∞ then render the value of function
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b equal to 1. Eq. (4.3) therefore serves as a longitudinal shape function of vertical
displacement whose shape is controlled by a single �tting parameter α to be identi�ed.

Given this function the gradual evolution of the vertical displacement w(d) at any
point of the domain can be written in terms of the ultimate displacement wfin as

w(d) = b(d)wfin. (4.4)

Because in numerical simulations described in the next section we consider the top seg-
ment and bench be excavated separately3, we rewrite the general Eq. (4.4) for the two
tunnel sections separately as

wh(dt) = b(dt)w
fin
t,h , (4.5)

2wh(db) = (1− b(db))wfin
t,h + b(db)w

fin
b,h , (4.6)

where subscript h = 0, 9, 12, 15 m identi�es a particular curve in Fig. 4.2. Similarly,
wfin
t,h , w

fin
b,h represent the �nal settlement after completing the excavation of top segment

and bench, respectively.

4.4.1 Numerical prediction of ultimate displacement wfin

While tunnel excavation is clearly a three-dimensional process, a vast majority of de-
sign engineers usually rely on two-dimensional modeling. When simulating this process
within the framework of NATM the Convergence Con�nement Method (CCM) [38, 39]
is often employed. This method is brie�y discussed in Section 4.4.1.1. In most practical
applications, this method is introduced in the framework of Finite element [40, 41, 42]
or Finite di�erence [17] method. This in turn may prove computationally unfeasible
in conjunction with Bayesian updating. Formulation of a surrogate model is therefore
needed. A speci�c format adopted in the present study is described in Section 4.4.1.2.

4.4.1.1 Finite element analysis using Convergence Con�nement Method

The Convergence Con�nement Method attempts to predict the actual volume loss as the
excavation proceeds by prescribing a certain proportion of unloading before the lining
construction is installed. The procedure is outlined in Fig. 4.3.

In particular, Fig. 4.3(a) shows an evolution of di�erential displacements of the crown
and invert of a tunnel as the excavation process proceeds. A longitudinal view of a tunnel
segment near the tunnel face is plotted in Fig. 4.3(b) identifying the lack of support in
the proximity of the face. It is the goal of CCM to reproduce such three-dimensional
e�ects through a simpli�ed solution of a two-dimensional plane strain analysis of a typical
section. A gradual evolution of the di�erential displacements at this section as a result

3This assumption is supported by Figs. 4.2(a,b) showing that the settlement linked to the excavation
of top segment arrived at its �nal value well before the excavation of bench had any substantial e�ect
on the change of settlement in the monitored cross-section, see the white area in between the two gray
regions.
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Figure 4.3: Principles of of Convergence Con�nement Method: a) evolution of di�erential
settlement along the tunnel axis, b) evolution of parameter λ as a function of support
pressure p, c) representation of excavation forces

of the tunneling process can be simulated by a continuous reduction in the radial stress
σr acting on the tunnel perimeter from its initial value σ0 to zero. The remainder of
the initial stress σ0 then represents a support pressure p to simulate the sti�ening e�ect
of the actual three-dimensional system of rock mass and lining near the working face as
schematically shown in Fig. 4.3(c). In �nite element simulations, the vector of equivalent
nodal forces F 0 corresponding to the excavation being proportional to the initial stress
vector σ0 is split into two parts. The fraction of this vector, λF 0, is applied �rst to
the unsupported tunnel boundary to simulate the sti�ness reduction at a given section
due to continuous excavation, see Fig. 4.3(c). The corresponding support pressure then
equals to p = (1− λ)σ0. At this instant the lining is installed and the remainder of the
equivalent nodal forces (1− λ)F 0 is applied to create the lining stress.

Table 4.1: Selected results for four di�erent mesh re�nements
Model Edge length Number of Number of N [kN] | λ [%] Epl

d [%] | λ [%]
number Min/Max [m] Nodes Elements 20 40 60 20 40 60
1 2/8 934 366 1057 887 710 1.46 1.64 1.94
2 1/6 1927 819 1072 907 738 2.13 2.12 2.95
3 0.5/4 4849 2187 1063 910 748 3.47 3.46 3.57
4 0.25/2 17934 8507 1035 890 744 6.12 5.37 5.30

To show the in�uence of parameter λ on the evolution of displacement �eld we per-
formed a convergence study for three di�erent values of λ = 20, 40, 60% and four mesh
re�nements. The model dimensions appear in Fig. 4.4(a), whereas the tunnel dimensions
are evident from Fig. 4.1. The assumed mesh re�nement is available in Table 4.1 showing
in the 2nd column the assigned maximum and minimum element edge length resulting
in the corresponding number of nodes and elements stored in the 3rd and 4th column,
respectively. Figure 4.4(d) plots the evolution of vertical displacements measured on
terrain, tunnel crown and bottom of the bench as a function of number of elements.
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(a) (b)

(c) (d)

Figure 4.4: Finite element simulation using CCM. Model No. 3, λ = 40%: a) soil layers
and FEM mesh, b) �nal vertical displacement wfin, c) �nal equivalent deviatoric plastic
strain, d) convergence study - evolution of �nal vertical displacements for various mesh
re�nement and 3 di�erent values of λ, see Table 4.1

Inspecting this �gure promotes the model No. 3 as su�cient to tune the previously men-
tioned surrogate model, both in terms of accuracy and computational e�ciency. This
is supported by the distribution of ultimate vertical displacement wfin

b and equivalent
deviatoric plastic strain Epl

d found at the end of the excavation sequence and plotted in
Figs. 4.4(b) and (c) for illustration.

Table 4.2: Material parameters of subsoil layers
Soil layer E [MPa] ν [-] c [kPa] φ [◦] ψ [◦] γ [kN/m3]
Eluvium (F3) 12 0.4 15 23 0 19
Slate (R3) 120 0.2 55 25 0 25

These results were derived with the help of the Mohr-Coulomb constitutive model.
The model parameters are provided in Table 4.2, where E, ν, c, φ, γ are the Young modu-
lus, Poisson ratio, cohesion, angle of internal friction and bulk weight of individual soils.
The two soil layers were classi�ed as Eluvium (F3) and Slate (R3) based on the geological
survey carried out by the SG Geotechnika a.s., the results of which are available from
the BARAB information system (www.barab.eu), see e.g. [43], together with the conver-
gence measurements presented already in Fig. 4.2. Since no laboratory measurements
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were available for the actual soils the required values were taken from a private database
of Pudis a.s. listing ranges of sti�ness and strength parameters of soils and rocks located
in the Prague region. These ranges were then adopted in the formulation of prior distri-
butions of the selected parameters, see Table 4.3. In the present convergence study the
lower bound of these data summarized in Table 4.2 was used. A non-associated �ow rule
with the dilation angle ψ = 0 was assumed for both soils.

In accordance with Fig. 4.2 and the concept of CCM the simulation was split into
�ve calculation stages. The �rst stage served to calculate the initial geostatic stress.
This was followed by excavation of the top segment performed within calculation stages
two and three. It is therefore assumed that at the end of calculation stage three the
settlement associated with the excavation of top segment reached its �nal value. The
analysis was then completed by excavating bench in calculation stages four and �ve.
Remember the results of actual excavation sequence in the form of settlement curves
in Fig. 4.2 to support this numerical splitting. For both sections, the parameter λ was
assumed the same.

While standard six-node triangular plane strain elements were used to discretize the
soil displacements, three-node Mindlin beam elements served to represent the concrete
lining. The GEO5 Tunnel software [44]4 was exploited to run the numerical analysis.
Point out that excavation of invert has not been simulated as no measured data were
available with this construction step. To prevent a non-realistic settlement of the lining
opened along the invert a special type of beam element, representing the so called elephant
foot, was adopted, see [44] for further details.

Apart from the results displayed in Fig. 4.4, some additional data derived from the
application of all computational models can be found in Table 4.1. As expected, the
smaller the value of parameter λ the larger percentage of load must be accommodated
by the soil-lining system. This is evident from both the values of the generated normal
force and the values of vertical displacements in Fig. 4.4(d). Undoubtedly, the choice
of λ may quite signi�cantly a�ect the results of numerical simulations for a given soil
sti�ness.

4.4.1.2 Surrogate model formulation

As suggested in Section 4.3.2, the �nite element computations were approximated by a
surrogate model in the form of Eq. (4.2). In the light of FEM analysis we need to specify
the vector of input parameters x, the vector of output values y and the sequence of
functions gj(x). The vector of input parameters x = {E,φ, c, λ} represents all variables
entering the �nite element analysis, i.e. the material parameters and the parameter λ
related to the convergence con�nement method. Other parameters entering the FEM
analysis, such as geometry or material properties of the surface layer (Eluvium) together
with the speci�c weight of soil γ and the dilation angle ψ, were assumed constant. This
is because γ serves to generate the initial stress state in the calculation stage one only
and ψ = 0 is a typical choice to simulate critical state conditions with the Mohr-Coulomb

4The authors of this paper are also the authors of the source code of the GEO5 Tunnel software.
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model.
To build the surrogate model, three rational functions were considered for each param-

eter. To allow more precise �t two the model two cross terms, Eλ and φc in particular,
were added as these pairs of variables are expect to show some degree of correlation.
This resulted into the following speci�c form of Eq. (4.2)

f̃h(x) = β1h + β2h
1

E
+ β3h

1

φ
+ β4h

1

c
+ β5h

1

λ
+ β6hE + β7hφ+ β8hc+ β9hλ+ (4.7)

+ β10h E
2 + β11h φ

2 + β12c
2
h + β13h λ

2 + β14h Eλ+ β15h φc,

where the subscript h identi�es, similar to Eq. (4.5), a particular measurement point.
Clearly, a unique surrogate model was constructed for each of the measurement points at
depths h = 0, 9, 12, 15 m and each pro�le segment, i.e. top segment and bench, making
in total 120 unknown β parameters to be calculated. To that end, a series of 40 FEM
simulations was carried out for various combinations of model parameters sampled from
the entire parameter space considered to build the uniform prior distributions, see ahead
Section 4.4.2 and Table 4.3 in particular. The results from the FEM simulations were
then used to calculate the coe�cients βih in Eq. (4.2).

The approximation was validated by running additional FEM simulations at points
randomly chosen from the prior distribution and comparing the results to the output
of the surrogate model. The relative error in the computed vertical displacement was
found below 5% for all points, which is within a reasonable accuracy for an engineering
application. To support this we compare in Fig. 4.5 the results provided by FEM and
the assumed surrogate model. These were generated, for the sake of illustration, for �xed
values of parameters λ = 40% and strength parameters of the Slate layer c = 70 kPa and
φ = 33◦ while changing the values of Young's modulus E only. The material parameters
of the Eluvium layer were taken from Table 4.2.
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lation stage �ve provided by both FEM and the surrogate model
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If desired, the accuracy of the surrogate model can be improved by extending the
series of functions gj . Other more general surrogate models of the FEM analysis, which
is seen as a black box, can be found in [45]. These include for example the thin plate
spline technique or kriging. The �rst approach is multidimensional analogy of physical
two-dimensional thin plate with de�ection f(xi, yi) prescribed at points [xi, yi]. The
optimal shape of surface connecting these points is governed by minimization of the
stored elastic energy of the deformed plate. In kriging, the approximated values are seen
as a stochastic process which parameters are estimated based on the known output values
for given input parameters. An example construction of kriging-based surrogate model
for FEM analysis is published in [46].

4.4.2 Forward stochastic model and posterior distribution

The previous paragraphs identi�ed both the observed (measured) data and unobservable
variables a�ecting their theoretical prediction from simulations. Accepting a random
nature of both sets of quantities allows us to construct a forward stochastic model o�ering
the notion about the probability distribution of the measured data being represented by
the likelihood function.

The measured values of vertical displacements wij(ds,i)
5. were already introduced

at the beginning of this section. In what follows the subscript i is linked to the po-
sition of the tunnel face ds,i relative to the position of the monitored section and the
subscript j is associated with the measured depth h6, recall Figs. 4.1 and 4.2. The pa-
rameters of the stochastic model appear in Eqs. (4.3) and (4.4), and naturally in the
FEM model to give the ultimate settlement wfin

ij . In this regard we take no notice
to the in�uence of the model geometry, boundary conditions and �nite element mesh
and concentrate on the sti�ness and strength parameters of the constitutive model of
the soil being excavated through the λ-method. These parameters are collected in the
vector θ = ⟨α, λ,E, c, φ, σw⟩ where E, c, φ and σw are the Young modulus, cohesion,
angle of internal friction of the excavated soil (Slate) only, and the displacement error,
respectively.

The stochastic model then assumes the following form
5Subscript s in subsequent expressions should be replaced either by t or b depending on the excavated

section being considered, recall Eqs. (4.5) - (4.6)
6Subscript h in Eqs. (4.5), (4.6) and (4.7) is replaced by subscript j in Eqs. (4.9) and (4.11) to be

more consistent with a typical notation used for summation indexes.
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wij ∼ N (wij , σw), (4.8)

wij = biw
fin
j , (4.9)

bi =

{
1
2 exp(αds,i), if ds,i < 0,

1− 1
2 exp(−αds,i), otherwise,

(4.10)

wfin
j = f̃j(E,φ, c, λ) (4.11)

E ∼ U(Emin, Emax), (4.12)

φ ∼ U(φmin, φmax), (4.13)

c ∼ U(cmin, cmax), (4.14)

λ ∼ U(λmin, λmax), (4.15)

α ∼ U(αmin, αmax), (4.16)

σw ∼ U(σw,min, σw,max). (4.17)

Relation (4.8) implies that the measured displacements wij are normally distributed
around the theoretical mean value wij with a standard deviation σw. This way the mea-
surement error and the modeling uncertainty are jointly covered by a simple stochastic
relation. The theoretical mean values wij follow from (4.4) and the theoretical ultimate
displacement wfin

j is provided by the surrogate model, Eq. (4.7).
Stochastic relations (4.12)�(4.17) represent the uniform prior distributions of the

parameters of the theoretical model between certain �xed ranges.
Having the model formulated we may now move one step further and rephrase the

Bayesian statistical method to get the posterior (improved) joint probability distribu-
tion function of model parameters. We �rst denote the normal and uniform probability
distribution functions with mean µ and standard deviation σ

fN (x;µ, σ) =
1

σ
√
2π

e
−
(x− µ)2

2σ2 , (4.18)

fU (x; lb, ub) =


1

ub − lb
for x ∈ [lb, ub]

0 otherwise
. (4.19)

In the light of Bayesian theorem (4.1) the posterior probability distribution function of
model parameters then becomes

π(α, λ,E, c, φ, σw|⟨wij⟩) ∝
Ns,face∏
i=1

Ndepth∏
j=1

fN (⟨wij⟩; ⟨wij⟩, σw)×

fU (α;αmin, αmax)× fU (λ;λmin, λmax)× fU (E;Emin, Emax)×
fU (c; cmin, cmax)× fU (φ;φmin, φmax)× fU (σw;σw,min, σw,max), (4.20)
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where ⟨wij⟩ is a vector collecting all measured points, i.e. in total the number of face
locations with respect to the monitored section Ns,face× the number of monitored points
along the cross-section depth Ndepth.

The �rst term on the right hand side of Eq. (4.20) is the likelihood function (the
probability distribution of the measured data). Clearly, the model parameters are initially
assumed to be statistically independent. However, their statistical dependency naturally
arises through the de�nition of the posterior joint probability distribution function on
the left hand side of Eq. (4.20). This will be demonstrated later in Section 4.4.3.2.
The operator �∝� means proportional to (that is, the two sides are equal except for the
normalizing constant C, the denominator in Eq. (4.1)).

4.4.3 Bayesian inference based on data measured in section J022

Suppose that data (convergence measurements) collected at one particular cross-section
are already available. This allows us, with the help of the stochastic model outlined in the
previous section, to obtain improved (posterior) knowledge about the model parameters,
which in turn can be used to get an improved prediction of the impact of tunneling
process in sections at which the tunnel face has not arrived yet. The �rst step, striving
for improved knowledge of model parameters, is described next. The second step, aiming
at improved predictions, is discussed in Section 4.5.

Table 4.3: Assumed ranges of prior distribu-
tion of model parameters in section J022
Parameter Units Minimum (lb) Maximum (ub)

E MPa 120 1000
φ deg. 25 40
c kPa 55 100
λ % 20 60
α � 0.01 0.5
σw mm 0.1 5.0

As mentioned already in Section 4.4.1.1 the ranges of the uniform prior distributions of
material parameters listed in Table 4.3 were adopted from the private material database
supplied by Pudis a.s. Ranges for the remaining parameters follow from the authors'
experience. For parameters λ and α, in particular, we refer the interested reader to [27].
In any case, these ranges are wide enough to support the robustness of the updating
procedure based on the Bayesian inference. The observed data were collected at one
particular cross section for several positions of tunnel faces identi�ed by symbols on
individual curves in Fig. 4.2. In this particular case, Nt,face = 16, Nb,face = 8 and
Ndepth = 4 were adopted in Eq. (4.20).
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4.4.3.1 Sampling method

For the sake of e�ciency, the surrogate model presented in Section 4.4.1.2 was imple-
mented, together with the hierarchical model formulated in Section 4.4.2, into the JAGS
program [47] adopting the dialect of the BUGS language [48]. Note that this program
allows for the implementation of relatively simple functions to evaluate the observed vari-
ables numerically. The use of FEM, regardless of the computational time, is therefore
precluded so making the application of the surrogate model necessary.

The program uses Gibbs sampling to generate the samples of the model parameters
according to the joint posterior distribution. The burn-in period of 2000 samples, which
were discarded, was followed by generating two chains of 10000 samples. For illustration,
the Markov chains for all searched parameters are displayed in Fig. 4.6. The computa-
tional time to generate these chains was in the order of minutes on a standard personal
computer.

All chains show a su�cient mixing of the generated samples indicating proper settings
of the Gibbs sampling algorithm. Therefore, the generated histograms should converge
to the theoretical continuous distributions. It can be also noted that the samples in
the �rst four chains in Figs. 4.6(a-d) concentrate within a narrow band with respect to
their assumed prior ranges, recall Table 4.3. This may suggest more preferred values in
posterior distributions of these parameters. On the other hand, the samples in chains
in Figs. 4.6(e,f) are drawn nearly from the entire prior range, so higher variability in
the posterior distributions of these parameters can be expected. All this is con�rmed by
examining the histograms of marginal posterior distributions discussed next.

4.4.3.2 Marginal posterior distributions of model parameters

The posterior marginal distributions of model parameters extracted from Markov chains
generated according to the posterior joint probability function in Eq. (4.20) are presented
in Fig. 4.7 in the form of histograms and compared to the originally assumed prior
distributions. Their di�erence suggests, how the prior, relatively vague, knowledge about
the parameter value changed after the measured data have been observed.

The following partial conclusions can be drawn. Clearly, the standard deviation of
displacement error σw was identi�ed relatively well suggesting a su�cient number of
measured data used in the updating procedure. This may also support the resulting
distribution of parameter α promoting this variable to be considered as almost determin-
istic. We should remind that this parameter, controlling the shape of the settlement line,
is primarily linked to shear sti�ness of the soil [26, 27] much similar to the well known
Winkler-Pasternak subsoil model. The fact that it is well approximated by exponential
functions b(d) in Eq. (4.3) is illustrated in Figs. 4.2(c,d) showing approximations of the
terrain settlement associated in turn with the excavation of top segment (the theoreti-
cally derived solid line in Fig. 4.2(c)) and bench (the solid line in Fig. 4.2(d)). These
plots were obtained with the help of Eqs. (4.5) and (4.6) by adopting for α the value of
the maximum a posteriori probability (MAP) estimate from Fig. 4.7(a) and for wfin

s,0 the
measured values of terrain settlement found at the right edge of the two gray areas cor-
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Figure 4.6: Markov chains of generated samples of: a) parameter α, b) parameter λ, c)
Young's modulus E, d) standard deviation of displacement error σw, e) angle of internal
friction φ, f) cohesion c,

responding to 58 (top segment) and 118 (bench) days from the onset of measurements.7

However, in the updating procedure they are predicted by the surrogate model, recall
Eq. (4.11).

Although not as unambiguous as the previous two parameters, the the Young modu-
lus E and the parameter λ are still predicted relatively well. This is not surprising as the
�rst parameter controls the material sti�ness and thus the value of settlement. However,
unlike parameter α, these two model parameters compete for the same type of data being
the in situ measured �nal settlement. Improvements in parameter identi�cation could
be expected if in situ measurements were accompanied by laboratory data obtained for

7These values substitute the theoretical values of wfin
s,0 at time → ∞.
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Figure 4.7: Prior and posterior marginal distributions of: a) parameter α, b) parameter
λ, c) Young's modulus E, d) standard deviation of displacement error σw, e) angle of
internal friction φ, f) cohesion c

example from oedometer or triaxial tests. This is perfectly in accord with the Bayesian
inference, which allows for combing variety of data to give more freedom to the iden-
ti�cation of seemingly unrelated model parameters. Such an approach was successfully
employed, e.g. in [49, 50].

It is also evident from Figs. 4.7(e,f) that the initial guess of the soil shear strength
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parameters has not been re�ned as su�ciently. However, realizing the localization of
plastic strains seen in Fig. 4.4(c) it can be suggested that other data such as relative
horizontal convergence of tunnel lining, not adopted in the present study, would possibly
improve the prediction of these two parameters.
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Figure 4.8: Scatter diagrams: a) E − λ, b) φ− c

Nevertheless, the Bayesian updating can still prove useful if the statistical dependence
of the model parameters is of interest8. While the prior distributions on the right hand
side of Eq. (4.20) are assumed statistically independent, the posterior joint probability
distribution function (PDF) on the left hand side of Eq. (4.20) allows us to address
the mutual correlation of individual model parameters.9 For illustration we provide in
Figs. 4.8 the scatter diagrams of E−λ and φ−c pairs. Individual points were taken from
the posterior Markov chains. Mathematically, the degree of correlation can be judged
based on, e.g., the Pearson coe�cient of correlation equal to 0.54 and -0.13 for E − λ
and φ− c pairs, respectively.

4.5 Exploiting improved posterior distributions in predict-

ing settlements in other sections to be yet excavated

The general property of the Bayesian updating is to improve the current knowledge
of model parameters as the set of measured data is gradually increasing. This idea
is examined hereinafter while taking the results generated in the previous section into
account.

In particular, the previous analysis resulted in posterior distributions of material
parameters E, φ and c found in the cross-section J022 together with the model parameters
α, λ and σw. Our objective now is to predict the evolution of settlement in a di�erent

8Spacial correlation of individual model parameters is not considered as no correlation length enters
the stochastic model.

9Recall that the joint PDF is represented here in discrete format by Markov chains generated through
the updating procedure.
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cross-section denoted here as J024. Based on initial geological survey, the principal
di�erence between the two sections is expected in the change of material properties of
rock to be excavated.

Table 4.4: Ranges of prior uniform distri-
bution of material parameters used in cross-
section J024
Parameter Units Minimum Maximum
E MPa 40 2000
φ deg. 22 36
c kPa 10 50

In this case, the rock is classi�ed as R4 according to the BARAB system, thus less
sti�. Since lacking more speci�c information about this material we start again from a
relatively wide range of potential values of the sti�ness and strength properties E, c, φ
listed in Table 4.4. It would perhaps be reasonable to assume a less severe variability
in rock properties between the two sections J022 and J024 than suggested by the design
codes and adopt also the posterior distributions of material parameters in Fig. 4.7 as
the source of prior knowledge for the settlement prediction. Nevertheless, choosing a
simple uniform distribution of these parameters allows us to illustrate more clearly how
the Bayesian inference reduces the epistemic uncertainties with increasing amount of
observed data.

The other three model parameters α, λ, σw a�ect the prediction of the soil settlement
during tunnel excavation more globally. In this sense it appears reasonable to accept
their posterior distributions derived from the original identi�cation step in cross section
J022 as the prior distributions in the subsequent analysis10. This for example suggests
that although larger settlements can be anticipated, based solely on the adopted soil
classi�cation, the shape of the settlement curve controlled by the parameter α can be
assumed una�ected. We shall comment on this assumption later in this section.

Thus accepting that the shape parameter α, the model parameter λ and the standard
deviation of displacement error σw have identical distributions in both cross-sections we
formulate the following stochastic model for identi�cation/prediction procedure in cross-

10Remind that not only the material parameters E, c, φ, but also the remaining model parameters
α, λ, σw will still be updated.
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section J02411

wij ∼ N (wij , σw) for i = 1 . . . Nt,face, j = 1 . . . Ndepth, (4.21)

wij = biw
fin
j , (4.22)

bi =

{
1
2 exp(αds,i), if dt,i < 0,

1− 1
2 exp(−αdt,i), otherwise,

(4.23)

wfin
j = f̃FEM,j(E,φ, c, λ) (4.24)

E ∼ U(Emin, Emax), (4.25)

φ ∼ U(φmin, φmax), (4.26)

c ∼ U(cmin, cmax), (4.27)

where the data wij represent again the i-th measurement of a vertical displacement at the
j-th monitoring point now in the cross-section J024. Thus all measured data are exploited
albeit only the ultimate settlement needs to be predicted since the shape parameter α is
assumed to be well represented by the posterior distribution in Fig. 4.7(a). In this case,
the analysis takes into account the data associated with the excavation of top segment
only, so that s = t and Nt,face = 1, 2 . . . , 14 in Eq. (4.21).
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Figure 4.9: Posterior marginal distributions of: a) parameter α, b) parameter λ employ-
ing all measurements collected in section J024

Note �rst on the state when all data (Nt,face = 14) collected in section J024 were
employed to see in Fig. 4.9 that the distribution of parameter λ remained essentially
the same and the parameter α was modi�ed only slightly thus supporting our original
assumption. This is because the actual settlement reached, more or less, one-half of its
�nal value when the excavation face arrived at the monitoring section, dt = 0 in Fig. 4.10.
This is exactly what is predicted by the present simple format of Eq. (4.3). Clearly, in
many real situations this assumption might not be met and more complex representation
of the shape of the settlement curve would be required.

11Although keeping the same notation as used in the previous sections, all the variables now refer to
cross-section J024.
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Figure 4.10: a) Evolution of vertical displacement at selected points as a function of
tunnel face location, b) standard deviation of displacement error σw for Nt,face = 1, c)
standard deviation of displacement error σw for Nt,face = 14

Concentrating next on Fig. 4.10(a) brings us back to our original goal attempting
to predict the settlement based on the identi�cation step carried out in section J022.
The dashed lines show 5% quantiles of the terrain settlement when no data in section
J024 have been collected yet. Similar plots for dt = −7 m and dt = 94 m give the idea,
how the knowledge about the model behavior can be improved as more data become
available. While for dt = −7 m (Nt,face = 5) we may still talk about prediction, exploit-
ing all measured data with Nt,face = 14 for dt = 94 m corresponds essentially to the
identi�cation step. It is perhaps worth noting that these plots were obtained such that
the theoretically generated values of the settlement given by Eq. (4.22) were adjusted by
adding a settlement error randomly generated from normal distribution with zero mean
and standard deviation σw corresponding to the same sample in the chain. For illustra-
tion the distribution of the settlement error σw for Nt,face = 1 (prior distribution) and
Nt,face = 14 (posterior distribution) extracted from 10000 samples in the chain is shown
in Figs. 4.10(b,c) to see, how the standard deviation of displacement error changed.

We should still keep in mind the original prior range of material parameters to be
narrowed down with the help of the stochastic model, relations (4.22)-(4.27). Apart from
identi�cation of the distribution of Young's modulus E our interest is now directed also
to the distribution of the theoretical ultimate displacements wfin

t,h . These marginal distri-
butions can be again approximated by the histograms plotted for the samples generated
from the joint posterior distribution function π(E, c, φ|⟨wij⟩), recall (4.1). This process
can be repeated as the measured data series wij unfolds and Nt,face increases with the
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tunnel face advancement. The results are plotted in Figs. 4.11 and 4.12.12

dt = −51m, Nt,face = 1 dt = −42m, Nt,face = 2 dt = −21m, Nt,face = 3
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Figure 4.11: Posterior distribution of Young's modulus E in cross-section J024. The
sequence of the plots show how the distribution of E evolves as the tunnel face progresses
and more data is collected. Individual �gures refer to number of sections (Nt,face) taken
into account in the updating process with the location of excavated face (dt) with respect
to the monitored section

Fig. 4.11 shows how our belief in possible values of E evolves from the prior, quite
broad, uniform distribution to a relatively narrow posterior distribution, as more mea-

12The results for last two sections (Nt,face = 13, 14) are not shown.
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Figure 4.12: Posterior predictive distribution of ultimate terrain settlement wfin
t,0 in cross-

section J024. The sequence of plots show how the distribution evolves as the tunnel face
progresses and more data is collected. Individual �gures refer to number of sections
(Nt,face) taken into account in the updating process with the location of excavated face
(dt) with respect to the monitored section
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surements become available with the tunnel face advancement. In particular, skipping
the �rst two steps (Nt,face = 1, 2) the MAP estimate of E was reduced quite quickly
from 366 MPa for Nt,face = 3 to 210 MPa for Nt,face = 5 being already close to its �nal
value of 169 MPa. Similarly, it can be seen from Fig. 4.12 that even a small number of
measurements (Nt,face = 3, 4, 5) can already provide some notion about the predictive
�nal settlement wfin

t,0 , particularly its upper bound found close to 40 mm in the present

case. Again, these predictive distributions of ultimate terrain settlement wfin
t,0 for various

locations of the excavation face were constructed from the sampled theoretical values
wfin

t,0 adjusted by the standard deviation of displacement error.
Although it is not generally the case, we may take advantage of the available measure-

ments to validate our numerical predictions. It is seen in Fig. 4.10(a) that the measured
ultimate settlement taken for dt = 94 m falls within the 5% quantiles even for predic-
tions based on a limited number of measurements collected for Nt,face = 5. This band is
further narrowed down with more data available. Interestingly, when all measurements
are re�ected in the updating process (Nt,face = 14), we arrive at the MAP estimate of
the predictive ultimate terrain settlement wfin

t,0 = 36 mm that is basically identical to its
measured counterpart. Thus if the standard deviation of displacement error, re�ecting
also the predictive model inaccuracies, is properly accounted for, the present model shows
a reasonable predictive capability at least from the engineering point of view.

4.6 Conclusion

In this paper a practical application of the Bayesian statistics to the prediction of settle-
ments evolving during the tunnel excavation was presented.

In particular, two aspects of Bayesian inference were explored. First, this methodol-
ogy was adopted to re�ne a prior, rather blurred, knowledge of parameters of the selected
computational model. This was achieved by utilizing the already known measurements
from the early stages of tunnel excavation, recall Section 4.4. This improved knowledge
itself should allow us to improve our predictions of the structure response in sections,
which are to be yet excavated. This second stage of analysis fully exploits the principal
strength of Bayesian inference, which is the reduction of epistemic uncertainties as more
data are collected. The results presented in Section 4.5 strongly support this statement.
Remember Figs. 4.11 and 4.12 to point out that not only the knowledge of model pa-
rameters, which may change along the tunnel line, but also the numerical prediction
of, e.g. the settlements, is improved when the set of measured data in the investigated
cross-section grows with each advancement of the tunnel face. In our particular case the
amount of data increased from 4 (Nt,face = 1) measured vertical displacements above
the expected tunnel crown up to 56 (Nt,face = 14) corresponding to situation, when the
tunnel face passed the investigated cross-section su�ciently far so no further di�erential
settlements are observed. What, however, is more important is the fact that already a
few measurements were su�cient to provide an impression about the structure response,
with the tunnel face not reaching the investigated cross-section yet, e.g. Nt,face = 3, 4, 5.
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This in turn may provide su�cient time to propose changes to the original design, and
thus reduce the risk and prevent potential failures, providing a sign of this occurs be-
cause of the lack of initial knowledge of material data due to, e.g. an insu�cient site
investigation.

Obviously, similar to all probabilistic analyses, the method has limitations. It has
been seen through the results presented in Fig. 4.7 that while due to the model structure
some of the parameters are re�ned substantially (Young's modulus E , shape parameter
α, standard deviation of displacement error σw), other parameters may be identi�ed less
accurately or their prior distribution may remain practically unchanged as was observed
for the angle of internal friction φ and cohesion c when analyzing section J024. This is
natural because some of the parameters do not in�uence the type of the observed data
and thus the knowledge of the data does not re�ne their prior distribution. Nevertheless,
recall the discussion in Section 4.4.3.2, the predictions obtained by the stochastic model
outlined in this paper could have been further improved, if additional data such as the
measurements of displacements sideways to the tunnel tube or even data from standard
laboratory tests were available. Although several rather strong assumptions were made in
the deterministic description of the excavation process, e.g. the longitudinal shape of the
settlement trough controlled by a single parameter α only, or the limited number of ad-hoc
chosen functions in the surrogate model, the stochastic model still preserve its predictive
capability. The impact of the adopted simpli�cations on the accuracy of predictions is
quanti�ed by the model parameter σw, which covers not only the measurement error but
also the modeling errors. In case of oversimpli�ed deterministic model, the theoretical
predicted values of settlement would be substantially di�erent from the observed values
rendering the high value of parameter σw. The quanti�cation of how the theoretical
model comply with observations and taking that into account when making predictions
is yet another favorable property of Bayesian inference.
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Chapter 5

Experimental and numerical

investigation of the response of GLT

beams exposed to �re

This chapter presents the preprint version of the journal paper

Kucíková, L.; Janda, T.; Sýkora, J.; �ejnoha, M.; Marseglia, G., Experimental and
numerical investigation of the response of GLT beams exposed to �re, Construction
and Building Materials. 2021, 299 1-18. ISSN 1879-0526.

reformatted to align with the style of the thesis.

5.1 Abstract

This paper presents a combined experimental and numerical investigation of the behav-
ior of glued laminated timber beams when exposed to �re. The in�uence on the time
variation of charring rates based on the evolution of temperature pro�les is examined
for di�erent �re scenarios and durations as well as di�erent beam's cross-section sizes.
Predictions of charring depths provided by numerical simulations of heat transfer and
simpli�ed charring rate models are compared. In the absence of a mass transport rep-
resentation, a Bayesian inference is introduced to identify the temperature-dependent
material parameters for the conventional heat transfer model. A similar approach is
adopted when adjusting the selected parameters of the charring rate models to account
for variations in actual �re scenarios, which potentially depart from standard �re expo-
sure. When compared to experimental results, both approaches con�rmed their predictive
capabilities, particularly in the stage of initial design. Since presented in the framework
of Bayesian statistics, they open the door to fully stochastic analysis with an emphasis
on the load bearing capacity of the studied beams.
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5.2 Introduction

Timber in general and glued laminated timber (GLT) beams, in particular, enjoy ever-
growing popularity among the designers of building structures. However, since these
materials are combustible, it is of engineering interest to examine not only the behavior
of timber during �re but also the load-bearing capacity of residual structural elements.
While load-bearing capacity is typically addressed with the help of simpli�ed charring
rate models, the simulation of the various physical processes taking place in wood during
�re is a complex analysis task.

In solid wood, modeling the development of �re under external heat �ux is a multi-
disciplinary problem which must account for heat transfer by conduction, mass transport
through evaporation, phase changes and associated volume and porosity changes, pro-
duction of volatiles, the in�uence of internal gas pressure, and the variation of basic
material parameters evolving with temperature. Several constitutive models attempting
to describe the most relevant pyrolysis processes have been proposed, see e.g. [1, 2, 3,
to cite a few]. For an extensive review of the available material models, the interested
reader is also referred to [4].

Such complex models are typically adopted when addressing biomass pyrolysis. The
major drawback preventing their broader applicability in structural engineering for de-
scribing the degradation of solid wood during �re is the relatively large number of input
parameters. The second issue, perhaps more relevant, is the fact that structural engineers
are mostly concerned with the dimensions of the residual cross-section together with the
evolution of temperature therein to predict or estimate the residual strength and sti�-
ness of the remaining solid wood. This is also the main objective of this study, with an
emphasis placed on the prediction of the evolution of charring depth. We examine two
routes most often for the design of timber structures and to assess their stability and
reliability if exposed to a �re on a construction site.

Limiting our attention to GLT beams, we set up the extensive experimental program
described in Section 5.3 to provide data for the determination of charring depth:

1. Indirectly from the temperature isotherm representing the char front. Focusing on
engineering practice, conventional heat transport models have proven promising for
predicting the evolution of temperature in wood exposed to �re. König showed that
calibration of temperature-dependent material parameters depends strongly on the
loading temperature curve which may prevent the material parameters derived for
standard �re exposure [5] from a direct application to natural �res [6]. This was also
the case of our study, although we attempted to deliver a unique set of parameters
for several loading curves all resembling standard rather than parametric �res.
Tuning the model parameters of their non-smooth functional dependence usually
calls for computational approaches based on soft computing, often employing a
combination of genetic algorithms, simulated annealing, and di�erential schemes [7,
8, 9, to cite a few]. Bayesian inference is another promising approach gaining
popularity in real engineering applications [10, 11, 12]. In the present context, it
was employed to calibrate the heat transport model in [13] to model the behavior of
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�re insulation panels exposed to �re. The application of both methods is outlined
in Section 5.4.

2. From simpli�ed linear charring rate models. This is the most common approach
adopted by designers and probably because of this, it has received considerable
attention even in the scienti�c literature. A comprehensive review of these models
addressing their predictive capability when applied to both solid wood and GLT
structural elements is available in [14, see also the literature cited therein]. The
two basic linear models proposed in [15] and [16] for standard �re exposure are
revisited here. Apart from testing their performance in light of the presented ex-
perimental program, we also o�er, with the help of Bayesian inference, a stochastic
version in order to illustrate the potential range of some of the parameters of the
model for including natural wood variability in structural designs. The theoretical
background and a comprehensive statistical evaluation of the selected models are
presented in Section 5.5.

The above two approaches are �nally compared, and the most essential results are
summarized in Section 5.6.

5.3 Experimental program

An extensive experimental program was designed to address the performance of GLT
beams exposed to �re. Unlike other experimental investigations, see [17, 18], we limited
our attention to �re loading (standard �re exposure) with no mechanical loads beyond
for the self-weight of a beam.

Tests were designed to examine the in�uence of the intensity and duration of a �re
together with the size of the structural element on the evolution of temperature pro�les
and charring depths within beam cross-sections. These measurements allowed us to
calibrate the adopted conventional heat transfer model, test the validity of simple charring
rate models, and propose potential improvements to the models. While beyond the scope
of this paper, the in�uence of elevated temperature on mechanical properties such as
strength and sti�ness while exploiting the �re test measurements was also investigated.

All �re tests were conducted at the AdMaS Experimental Centre, Faculty of Civil En-
gineering, Brno University of Technology, Brno, Czech Republic. A medium-sized furnace
with 1.8×1×1m, inner dimensions, primarily designed to test structural elements made
of concrete, was used. Because control over various input parameters, including air ven-
tilation and oxygen content, was not possible using this furnace, we could not guarantee
the same temperature curves measured in the furnace as dictated by various standards.
The actual evolution of furnace temperature was also in�uenced by the sequence of indi-
vidual tests which not always started from a cold furnace state. Note, however, that for
the purpose of this study, aimed at formulating and calibrating a simpli�ed heat trans-
port model and modifying common charring rate models, these conditions did not cause
any obstacle. All results presented here, whether measured or computationally derived,
refer to actually measured temperatures.
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Given the dimensions of the furnace, sixteen spruce wood GLT beams with dimensions
(Group 1: Samples 1-8) 0.1×0.32×2.38m and (Group 2: Samples 9-16) 0.16×0.32×2.40m
were tested. Each beam contained eight rows of lamellae connected vertically with
melamine-urea-formaldehyde glue and horizontally by �nger joints. Each lamella was
cut from the part of the stem near the center of a tree and, in some cases, contained pith.
Careful inspection of all beams revealed a certain number of knots, cracks (mainly radial),
and other discontinuities (e.g. resin pockets). This proved important when preparing the
samples for mechanical testing. In light of the residual load-bearing capacity assessment,
the positions of individual lamellae within the whole beam were also recorded.

5.3.1 Moisture content and density

All beams were stored in the testing hall su�ciently long enough to reach the ambient
relative humidity (i.e. air-dry state).

The moisture content (MC) was examined in-situ before and after the �re test using
an Ahlborn Almemo FHA 696 MF capacitive hygrometer with an accuracy of 0.1%, see
Table 5.1. This type of hygrometer measures the average moisture content of a surface
only up to a depth of 3 cm. The values before the �re test were measured on selected
beams (Samples 5-8) in a grid with a total of 26 points. Measurement after the �re
test was performed on extinguished beams, cleaned from charcoal, and left to dry at
the ambient temperature. The number of points after the test varied from 54 to 75.
The relevant results (averages over all measurements within a given sample) appear in
Table 5.1.

Table 5.1: Mean MC of beams from surface measurements before and after �re test.
Sample MC (before) MC (after)

[%] [%]
3-4 - 5.44
5 10.54 -
6 11.05 9.22
7 11.17 9.61
8 10.70 8.81

Samples not subjected to �re exposure were considered to check the measurements.
Three groups of spruce prisms (66 in total) with dimensions of 30×30×40 mm were
weighed using a Kern ABS analytical balance with an accuracy of ±0.3 mg, their precise
dimensions were measured with a caliper, and they were observed as �air-dry�. All sam-
ples were then dried in a Memmert UFE 400 universal oven at 103◦C for 27 hours. The
samples were weighed periodically in groups of 5 until the di�erence between two subse-
quent measurements became less than 0.02 g in a 2 hour interval, i.e., dry state [19, 20],
and the dimensions of each sample were measured again.
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Table 5.2: Gravimetric moisture content and density of control samples.

Sample ρair−dry [kgm−3] ρdry [kgm−3] MC [%]
Mean StdDev N Mean StdDev N Mean StdDev N

CT1 416.42 54.67 42 384.39 48.19 20 9.42 0.17 20
CT2 421.67 48.87 20 401.41 36.13 10 9.30 0.09 10
CT3 406.05 28.78 56 389.66 29.02 36 9.34 0.15 36

The gravimetric moisture content was computed as [19]

MC =
mwet −mdry

mdry
× 100[%], (5.1)

where mwet [g] and mdry [g] are weights before and after the desiccation, respectively.
The results are summarized in Table 5.2 together with the computed air-dry and oven-dry
densities.

Comparing the moisture content measurements in Tables 5.1 and 5.2 supports the
capacitive hygrometer for estimating the initial moisture content of the tested beams.

5.3.2 Fire test setup

The experiment was arranged to simulate ceiling joists. In each test, two beams were
inserted into a box with one open side made of oriented strand boards (OSBs). The
boards were protected by an 80 mm thick layer of Isover UNI stone wool insulation.
Two layers were used along short edges to protect beam heads at the support section,
see Figs. 5.1 and 5.2.

(a) (b)

Figure 5.1: a) Experimental set-up for �re test, b) thermocouples with drilled holes
covered by aluminum foil.

In each setup, one beam (even-numbered) was equipped with eleven thermocouples
placed in drilled holes located in the mid-span of each beam. Thermocouple locations
varied both in depth and position within each beam's cross-section, see Fig. 5.1(b) and
Fig. 5.6(b). The openings located on the top of the beams were initially covered with
loosely laid stone wool that enabled the beams to burn on all four sides. Unfortunately,
the hot air �owing into the holes equipped with thermocouples quite signi�cantly a�ected
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a) Scheme for samples 1-8

b) Scheme for samples 9-16

Figure 5.2: Experimental set-up for �re test (Th. = thermocouple).

the reliability of the measurements observed as �uctuations in the temperature curves.
Therefore, an extra layer of Sibral ceramic blanket was placed directly on top of the
openings and secured with nails and aluminum tape to prevent thermocouples from
malfunctioning. The whole setup was then centered on the top of the horizontal furnace
with the open side down and closed at the top with another layer of insulation wool and
an OSB board to prevent the heat from escaping.

5.3.3 Testing procedure

Heat was supplied by two gas burners located at the bottom of the furnace according to
the Set temperature curves. While the �rst loading curve was set to follow the tempera-
ture curve speci�ed by �SN EN 1363-1 (Samples 1-4 and 9-16), the second temperature
curve assumed the same initial stage but was set constant when reaching 600◦C (Samples
5-8). The set temperature curves are plotted as black solid lines in Fig. 5.3. The gas
burners were controlled via a thermocouple placed near the bottom of the furnace, at
approximately the same level as burners. Henceforth, the corresponding temperatures
are referred to as Furnace temperature curves.

It is evident from Fig. 5.3 that none of the measured furnace temperature curves
copy the set temperature curves entirely. In all cases, the furnace temperature curves
exceed the set temperature curves already at an early stage. Considering a constant
600◦C curve, Fig. 5.3(b), both furnace temperature curves were ever increasing functions
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(a) (b)

Figure 5.3: Set and furnace temperature curves: a) �SN EN 1363-1 temperature curve,
b) temperature curve set constant at 600◦C.

running signi�cantly above the set temperature curve. These curves even exceeded the
furnace temperature curves associated with the �SN EN 1363-1 setting. As already
suggested, this can be attributed to the heat already accumulated in the furnace since
the second test was carried out a short time after terminating the �rst test, and not from
a cold furnace state.

Considering the �SN EN 1363-1 curve, all furnace temperature curves experienced a
steeper initial stage when compared to the set temperature curve. While those starting
from the cold state (curves 2, 4, 10, and 14) approached the set temperature curve
after some time, the two curves corresponding to the hot initial state (curves 12 and 16)
continued to run above the set temperature curve although not as signi�cantly as observed
for the 600◦C curve. Also, the furnace temperature curves from Group 2 (Samples 10-16)
showed slightly di�erent shapes than those in Group 1 (Samples 2 and 4) with pronounced
peaks occurring at about 5 min.

Only temperature and time were measured during the experiments. Air from outdoors
was supplied through vents at the bottom of the furnace, resulting in changing over-
pressure and under-pressure in the chamber. Quantities such as oxygen content, air
supply, the pressure inside the furnace chamber, heat, and so on, which can a�ect the
charring rate [21, 22, 23], could neither be measured nor controlled with this experimental
set-up.

To address the evolution of charring depth in the early stage of a �re, a standard
60 min �re duration was accompanied by three other tests for both groups terminating
at 40 min, 30 min, and 20 min, respectively. When the test ended, the entire box with
the samples was removed from the furnace and the beams were extinguished with water,
see Fig. 5.4. This process took about 5 to 10 minutes. Next, fully extinguished beams
were taken out of the OSB box, the charcoal layer was cleaned away mechanically, and
each beam was left to dry at the ambient temperature.

Most of the beams, as seen in Table 5.4, were cut lengthwise into ten (Group 1) and
eleven (Group 2) pieces, respectively. The letter R in Fig. 5.5 (red for Group 1 and blue
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(a) (b)

Figure 5.4: Fire test termination: a) removing samples, b) extinguishing samples.

for Group 2) marks each cut considered for image analysis used to estimate the evolution
of charring rate. Each section was documented using a Canon EOS 600D DSLR camera
held by hand. E�ort was made to eliminate image distortion as much as possible. These
images were then edited and scaled, see Fig. 5.9.

Figure 5.5: Scheme of cuts (R) for image analysis (red = Group 1, blue = Group 2).

Results are presented in the next two subsections starting with the measured temper-
ature curves, which allowed us to indirectly track the evolution of charring depth. Direct
measurements of charring depths at the end of the test are presented next. Both types
of measurements were further employed when examining the selected charring depth
numerically.

5.3.4 Measured temperature curves

The main output of the �re tests were temperature curves describing the evolution of
temperature over time in all measured points. Temperature �uctuations, indicating dam-
age to the thermocouples or other inaccuracies, were excluded. Therefore, some curves
are shorter than others, as seen in the temperature curves for Samples 2 and 4 (Group 1)
not protected by the ceramic blanket, and Samples 12 and 14 (Group 2), where the
ceramic blanket failed to protect the thermocouples.

Plateaus at about 100◦C indicating water evaporation [21] were observed in all cases,
see Fig. 5.6 for illustration. This re�ects the amount of energy required for evaporation,



CHAPTER 5. GLT BEAMS EXPOSED TO FIRE 107

(a) (b)

Figure 5.6: a) Temperature curves recorded for Sample 16 (duration 60 min, cross section
0.16×0.32 m), b) positions of thermocouples within both cross sections (Groups 1 and
2).

with less energy available for heating of the material and pyrolysis, and also implying
that as moisture content increases, the charring rate decreases [21, 22]. The plateaus
correlated well with the distance from the surface with shorter plateaus corresponding to
thermocouples near the surface. This was also observed by Scha�er [24], who described
the proportionality of plateaus ('dwell time'), occurring at 93-138◦C, with equilibrium
moisture content and exposure temperature. At positions near the center of the beam, the
evaporation temperature was not even reached, especially for shorter tests. Temperature
exceeding 100◦C in the whole cross-section was observed only in samples subjected to
the test lasting one hour.

As evident from Fig. 5.7(a), plotting all temperature curves for the same point
within a cross-section provides a very similar course with no pronounced deviations.
Figure 5.7(b) compares curves for the two groups (Group 1: cross-section of 0.1×0.32 m;
Group 2: cross-section of 0.16×0.32 m) measured at a point located horizontally in the
middle but at the same height z=30mm. Point out that the slopes for Group 1 are
notably steeper when compared to Group 2, which indicates two-dimensional heat �ow.

5.3.5 Measured charring depth

Charring depth dchar is a parameter entering most of simple charring rate models. It can
be determined either indirectly from the evolving temperature pro�le or directly from
images of residual cross-sections. These two approaches are discussed and compared
below.

The base of char layer (i.e. char-line) is mostly assumed to be at 300◦C [15] or
288◦C (550◦F) [16, 25] isotherm, respectively. In some studies, this is de�ned di�erently.
Mikkola [26], for example, de�ned the char front at 360◦C or Lange et al. [18] at 270◦C.
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(a) (b)

Figure 5.7: Comparison of temperature curves for one point in cross-section: a) position
y=30 mm, z=160 mm, b) position y=middle (Group 1: y=50mm, Samples 2, 4, 6, 8;
Group 2: y=80mm, Samples 10, 12, 14, 16), z=30mm.

In [27] the authors identi�ed the charring depth with the mass loss of samples as

dchar = 1.36× (mass loss) + 3.242. (5.2)

In this study, we considered two char-line temperatures for the sake of comparison,
namely 280◦C and 300◦C isotherms. The time needed for the selected two temperature
isotherms to arrive at a given location with the smaller coordinate representing the
charring depth is presented in Table 5.3 for every temperature curve having a known
distance from the initial surface.

According to Eurocode 5 [15] these two parameters are su�cient for de�ning the most
simple charring rate model in the form

dchar = βt, (5.3)

where β is the charring rate (the basic characteristic of wood burning) and t is the time
of exposure to �re. We bring this formula to the reader's attention just for the sake of
illustration.

Variability of β, both in terms of thermocouple location (coordinates [y, z]) and
time, provided by Eq. (5.3) is evident from the values listed in Table 5.3 and graphical
representation in Fig. 5.8. Therein, the values lower than 0.4 mm/min, mainly at a depth
of 10 mm from the surface, correspond to a vertical charring rate. An initial low charring
rate can be attributed to a slowing down of the heat �ow due to evaporation. Values
larger than 0.8 mm/min were obtained for thermocouples located in the corner, which is
reasonable, because in these locations heat �owed from both sides.

Direct measurement of the charring depth typically involves images of the residual
cross-section shown in Fig. 5.9 for selected samples from Group 1. These images were
edited, scaled and inserted into a rectangle representing the original cross-section. The
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Table 5.3: Charring rate determined indirectly for 280◦C and 300◦C isotherms.

Sample [y, z] t280◦C t300◦C dchar β280◦C β300◦C
[mm] [min] [min] [mm] [mm/min] [mm/min]

2 [20, 90] 34.08 35.84 20 0.59 0.56
2 [20, 30] 30.24 31.04 20 0.66 0.64
2 [20, 10] 22.81 24.87 10 0.44 0.40
2 [50, 10] 32.08 34.08 10 0.31 0.29
4 [20, 10] 34.01 35.93 10 0.29 0.28
4 [50, 10] 34.08 35.12 10 0.29 0.28
4 [20, 30] 25.53 26.47 20 0.78 0.76
6 [20, 30] 29.04 29.99 20 0.69 0.67
8 [20, 10] 21.32 - 10 0.47 -
12 [20, 20] 20.35 20.93 20 0.98 0.96
16 [20, 20] 27.37 29.02 20 0.73 0.69
16 [20, 160] 35.25 36.13 20 0.57 0.55
16 [30, 30] 36.22 37.10 30 0.83 0.81
16 [30, 160] 48.27 49.13 30 0.62 0.61
16 [80, 20] 52.77 54.07 20 0.38 0.37

(a) (b)

Figure 5.8: Charring rates determined indirectly for 280◦C and 300◦C isotherms at var-
ious depths (all samples together): a) char-line at T = 280◦C , b) char-line at T =
300◦C.

lines corresponding to the edges of individual lamellae, also evident in Fig. 5.9, helped
in centering the images more accurately.

Images in Fig. 5.9 show rounding of corners, a generally accepted phenomenon, also
implemented in Eurocode 5 [15]. To avoid these rounded parts, only the four innermost
lamellae were considered when measuring charring depth as the distance from the edge
of the original cross-section (black rectangle) to the �rst black pixel. For each image,
recall Fig. 5.5, we collected 66 measurements starting 80 mm from the top and bottom of
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(a) (b) (c) (d) (e)

Figure 5.9: Images of residual cross-sections taken from center of a beam after �re tests
lasting: a) 62min (S2), b) 42min (S4), c,e) 31min (S5), d) 23min (S7).

Table 5.4: Charring rates determined directly using image analysis

Sample t dchar β
[min] [mm] [mm/min]

1 62.32 30.95 0.50
2 62.32 28.98 0.46
3 42.15 20.90 0.50
4 42.15 20.05 0.48
5 31.40 17.86 0.57
6 31.40 17.93 0.57
7 22.90 13.76 0.60
8 22.90 13.58 0.59
10 30.82 15.79 0.51
12 40.70 21.82 0.54
14 20.55 8.42 0.41
16 60.95 33.70 0.55

the original cross-section. The mean values of charring depth for individual samples are
listed in Table 5.4 together with �re duration times. The associated charring rates were
obtained again from Eq. (5.3). Figure 5.10 combines all the results presented in Fig. 5.8
and Table 5.4.

On average, the values of β obtained from direct measurement of dchar did not exceed
the value of β0=0.65mm/min for one-dimensional charring recommended by EN 1995-
1-2 [15]-Table 3.1. On the other hand, the values resulting from the application of
temperature isotherms show a quite signi�cant dependence on a number of factors such
as the high initial heat �ux; one- vs. two-dimensional heat �ow given by the location
of thermocouples and the duration of a �re where, especially at the onset of burning,
mass transport plays a major role. Nevertheless, the values of β, �rmly corresponding to
one-dimensional heat �ow, fall below the standard value as seen in Tables 5.3 and 5.4.



CHAPTER 5. GLT BEAMS EXPOSED TO FIRE 111

Figure 5.10: Comparison of charring rates determined indirectly for 280◦C and 300◦C
isotherms and those determined directly from measured char depth.

Inspired by mechanical tests and in support of the presented measurements we men-
tion one additional indirect method for estimating the charring depth. Because we take
into account an entire residual cross-section, the results associate with 2D charring rate
models and can be used to deliver directly the notional charring rate βn [mm/min].
In this context, an irregular cross-section in Fig. 5.9 is �rst replaced by an equivalent
rectangle bfi × hfi with a reduced width bfi [mm] and height hfi [mm] such that

bfi = b− 2dchar, hfi = h− 2dchar, (5.4)

where b, h are their original counterparts. Following the idea promoted in [18], charring
depth dchar can be now calculated by comparing, e.g. the second moment of area for an
equivalent rectangle

Ifi =
bfih

3
fi

12
, (5.5)

and one corresponding to the actual residual cross-section obtained using a suitable
graphical software.

To directly account for the zero-strength layer d0 [mm] and to avoid choosing a
particular value, e.g., d0 = 7mm as recommended in EN 1995-1-2 [15], the results of
a three point bending test (3PB) [28, 29] may be employed to estimate an e�ective
charring depth deff . To illustrate this, Fig. 5.11(a) plots the load-displacement curves
for the Group 1 beams.

Assuming an elastic response, the maximum de�ection wmax measured at the mid
span of a beam relates to the beam span L = 2200 [mm], the Young modulus E [GPa],
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(a) (b)

Figure 5.11: a) Load�displacement curves from 3PB test (Group 1 beams subjected
to �re prior to mechanical testing), b) e�ective charring rates given by Eq. (5.3) with
dchar = deff .

the applied force F [kN], and the reduced second moment of area Ifi [mm4] as

wmax =
FL3

48EIfi
=

1

(b− deff )(h− deff )3
FL3

4E
. (5.6)

The Young modulus was determined from a series of tensile tests performed on dog bone
specimens extracted from burned samples. Only non-brown specimens free of any defects
were considered to get the mean value of E equal to 10.18 GPa [30].

To obtain the e�ective charring depth deff from Eq. (5.6), several pairs of (F i, wi
max)

were taken from the interval of 0.2Fmax to (0.7-0.9)Fmax depending on the linear range
of the load displacement-curve (crosses in Fig. 5.11(a)). The value of dieff was then
introduced in Eq. (5.3) assuming dichar = deff to get the corresponding e�ective charring
rate βieff . The results are plotted in Fig. 5.11(b) with abscissa representing the ratio of
Fmax.

Although not fully compatible, we list in Table 5.5 the values of d0 to give the value
of deff = dim+d0 identical to that obtained from Eq. (5.6). Recall that dim corresponds
to the 1D image analysis summarized in the 3rd column of Table 5.4. The values of deff
in Table 5.5 were calculated for the maximum force fraction considered in Fig. 5.11(b).

Note that a more rigorous application of d0 in 2D charring rate models would require
deriving the notional charring depth, e.g., from 2D image analysis as in [18]. In any case,
it is interesting to see that for the �re lasting one hour the value of β7mm

im is quite close to
βeff provided by 3PB, thus supporting the value of d0 = 7 mm [15], while for shorter �res
the value of d0 = 7 mm appears nonconservative, which supports observations in [31].
Nevertheless, the higher values of d0 stored in Table 5.5 are still within the range of values
reported in the literature [18, 28]. This �nal comparison thus promotes measurements
from 1D image analysis to be further used in Section 5.5.
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Table 5.5: E�ective charring rate from bending test.

Sample tfi dim deff d0 βim β7mm
im βeff

[min] [mm] [mm] [mm] [mm/min] [mm/min] [mm/min]
1 62.32 30.95 38.14 7.20 0.50 0.61 0.58
3 42.15 20.90 34.05 13.15 0.50 0.66 0.80
5 31.40 17.86 30.53 12.67 0.57 0.79 0.98
7 22.90 13.76 24.57 10.81 0.60 0.91 1.07

dim ≡ dchar from 1D image analysis; d0 = deff − dim, β7mm
im for deff = dim + 7 mm

5.4 Charring depth from numerical simulation of heat trans-

port

As suggested in Section 5.3.5, one of the options for determining the charring depth is
associating it with a speci�c isotherm representing the char front. This, in turn, calls for a
reliable forward model predicting the evolution of temperature in the domain of interest.
If this is the only objective a detailed description of wood pyrolysis becomes impractical
because the conventional heat transfer model with temperature adjusted parameters has
proven su�ciently accurate [5, 6, 13]. Such a model, in general, grounds on the heat
balance equation written as

ρ(θ)c(θ)
∂θ

∂t
(x, t) = ∇(λ(θ)∇θ(x, t)) = 0, x, t ∈ D × (0, ts) , (5.7)

where θ [◦C] is the temperature inside the open bounded domainD ⊆ R3, ρ [kgm−3] is the
volumetric mass density, c [JKg−1K−1] is the speci�c heat capacity, λ [Wm−1K−1] is the
thermal conductivity, and ts [s] is the �nal time of the simulation. The strong formulation
requires supplementing the balance equation with boundary conditions. In general, the
Dirichlet, Neumann and Robin boundary conditions speci�ed along the boundary ∂D =
∂Dθ ∪ ∂Dq ∪ ∂Dr read

θ(x, t) = θ0(t), x ∈ ∂Dθ, (5.8)

λ
∂θ

∂n
(x, t) = qn(x, t), x ∈ ∂Dq, (5.9)

λ
∂θ

∂n
(x, t) = α(θ(x, t)− θ∞(x, t)) + eσ(θ4(x, t)− θ4∞(x, t)), x ∈ ∂Dr, (5.10)

where θ0 is the temperature prescribed on Dθ, qn [Wm−2] is the prescribed heat �ux in
the direction n normal to Dq, and θ∞ is the ambient temperature. The radiation con-
dition (5.10) speci�ed on ∂Dr introduces three environmental parameters α, e, σ, where
α [Wm−2K−1] is the heat transfer coe�cient, e [−] is the emissivity of the surface, and
σ [Wm−2K−4] is the Stefan-Boltzmann constant.

The �nite element method (FEM) limited for simplicity to the one-dimensional (1D)
analysis was used to solve Eq. (5.7) employing the radiation condition (5.10) on both
ends of the 1D domain speci�ed by the width of the cross-section of the beams tested.
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To this end, Eq. (5.7) was �rst discretized in time using the midpoint integration rule
and then introduced in the weak form, which upon discretization in space provided the
�nal system of nonlinear algebraic equations solved incrementally with the help of the
Newton-Raphson iterative procedure.

Both one-dimensional and two-dimensional (2D) versions of Eq. (5.7) were imple-
mented into our in-house Matlab �nite element code. While the 2D version was expected
to describe the evolution of the char front within an entire cross-section, the 1D variant
was adopted in the time-consuming calibration procedure presented next in Sections 5.4.1
and 5.4.2. To compare and verify both implementations, 2D analysis assumed the domain
discretization into a narrow band of 3-node triangular elements with element edges equal
on average to 0.8mm. This resulted in 258 and 412 degrees of freedom for cross-sections
100mm and 160mm wide, respectively. Simple 2-node rod elements were considered
next with the element size of 2mm to yield 51 and 81 degrees of freedom for the two
cross-sections. The time increment was set to 1 s for all temperature curves. This degree
of complexity was found optimal from both the computational time and accuracy points
of view, providing essentially the same response for both implementations.

(a) (b) (c)

Figure 5.12: Eurocode EN 1995�1�2: Temperature dependent (a) thermal conductivity,
(b) speci�c heat capacity, (c) density ratio.

For Equations (5.7)-(5.10) to simulate the process of pyrolysis, the literature o�ers
several relations stating the functional dependence of model parameters on temperature,
see e.g. [4] for a comprehensive list. Here, we built upon the relations presented in Eu-
rocode EN 1995�1�2 [15]. The actual curves describing the evolution of thermal transport
coe�cients under �re conditions are shown in Fig. 5.12. Since computational results ob-
tained with these speci�c representations did not satisfactorily match our experimental
data, we decided to parametrize them following [13].

To that end, 13 variables in total were introduced to parametrize the temperature-
dependent relations of parameters in the model, see Table 5.6. The speci�c heat capacity
and mass density were considered to be a multiplication of a constant value and a di-
mensionless function de�ning the functional dependency on temperature as

ρ(θ) = ρinrρ(θ), c(θ) = cinrc(θ), (5.11)
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Table 5.6: De�nition of ξ-parameters introduced into temperature-dependent relations
of thermal properties.

Symbol Description Range Unit
ξ1 [100, 300] [◦C]
ξ2 [301, 500] [◦C]
ξ3 [501, 700] [◦C]
ξ4 [λ(0), λ(ξ1)] [0.01, 0.4] [Wm−1K−1]
ξ5 [λ(ξ2), λ(ξ3)] [0.01, 0.4] [Wm−1K−1]
ξ6 λ(1200◦C) [0.1, 1.5] [Wm−1K−1]
ξ7 rc(ξ1) [1, 100] [−]
ξ8 rc(ξ1 − ξ8) = 1 [10, 90] [◦C]
ξ9 rc(ξ1 + ξ9) = 1 [10, 90] [◦C]
ξ10 rρ(ξ2) = 1− ξ10 [0.01, 0.25] [−]
ξ11 rρ(ξ3) = 1− ξ10 − ξ11 [0.01, 0.25] [−]
ξ12 rρ(1200

◦C) = 1− ξ10 − ξ11 − ξ12 [0.01, 0.49] [−]
ξ13 cin [700, 1300] [Jkg−1K−1]

where rρ [−] and rc [−] are the dimensionless density and speci�c heat capacity ratios,
respectively, both nonlinearly dependent on temperature, and ρin is the constant value of
the mass density set to ρair−dry = 410 kgm−3, the mean value from all control samples
in Table 5.2. For illustration, the parametrized thermal properties as a function of
temperature and ξ-parameters are plotted in Fig. 5.13.

(a) (b) (c)

Figure 5.13: Parametrized thermal properties as a function of temperature and ξ-
parameters: (a) thermal conductivity, (b) speci�c heat capacity ratio, (c) density ratio.

Two approaches, described next, were employed to �nd the set of optimal parameters
given in Table 5.6 exploiting the measured temperature curves acquired from the �re tests.
For the sake of completeness, we replotted the adopted furnace temperature curves in
Fig. 5.14, recall Section 5.3 and Fig. 5.3 for the set temperatures (black curves) pertinent
to individual samples.
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Figure 5.14: Furnace temperature curves used in calibration.

5.4.1 Deterministic calibration

A variety of deterministic identi�cation procedures can be used to �nd an optimal solution
to the identi�cation problem, each having its advantages and drawbacks. Mentioning all
of them goes beyond the scope of this paper and we limit the reader's attention here to
our in-house algorithm GRADE [9]. GRADE is a real-coded stochastic1 optimization
algorithm combining the principles of genetic algorithms and di�erential evolution.

In this setup, all 13 ξ-parameters were calibrated according to the ranges summa-
rized in Table 5.6. Moreover, for each of the laboratory tests, one additional parameter
was introduced to properly capture a slightly di�erent loading �re regime in the testing
chamber, see the de�nition of boundary condition (5.10). The variables ξ14, ξ15, ξ16 stand
for the heat transfer coe�cient α tuned speci�cally for the examined experiments No. 2
(Sample 4), 3 (Sample 6), and 4 (Sample 8), respectively.2 However, the calibration pro-
cedure was performed for all parameters simultaneously employing the three experiments
all at once.

The resulting set of optimally �tted material parameters ξ1 − ξ13 and boundary terms
ξ14, ξ15,ξ16 is available in Table 5.7. A graphical representation of optimal functional
variations of model parameters λ, c, rρ is evident in Fig. 5.15.

The numerically predicted evolutions of temperature, based on the distributions in
Fig. 5.15, appear in Fig. 5.16. Recall that a unique set of parameters ξ1 − ξ13 is adopted
regardless of the type of loading curve, while the tuned transfer coe�cient α relates to
a given �re test. Although an initial plateau was di�cult to reproduce, note similar
predictions presented in [6], the overall trend, especially in light of the temperature
predicted in the residual cross-section, appears satisfactory. However, we should keep
in mind that this good match required an independent determination of the transfer

1The solution is obtained in the form of deterministic ξ-parameter set, but the initial/starting point
is chosen randomly.

2Emissivity e is assumed constant in the calibration process.
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Table 5.7: Optimal values of ξ-parameters derived from deterministic and stochastic
minimization processes.

Symbol Deterministic Stochastic Unit
Mean StdDev Min Max

ξ1/ξ1 190.8 149.4 29.4 100.0 172.9 [◦C]
ξ2/ξ2 314.3 474.7 5.35 450.6 480.4 [◦C]
ξ3/ξ3 501.8 611.1 5.71 603.2 623.4 [◦C]
ξ4/ξ4 0.11 0.10 0.06 0.07 0.34 [Wm−1K−1]
ξ5/ξ5 0.15 0.10 0.04 0.02 0.16 [Wm−1K−1]
ξ6/ξ6 1.49 0.54 0.03 0.49 0.65 [Wm−1K−1]
ξ7/ξ7 14.5 15.0 10.9 1.65 63.1 [−]
ξ8/ξ8 55.8 43.9 6.30 28.1 56.0 [◦C]
ξ9/ξ9 89.2 68.9 1.18 66.8 72.2 [◦C]
ξ10/ξ10 0.03 0.05 0.01 0.04 0.07 [−]
ξ11/ξ11 0.06 0.08 0.01 0.04 0.09 [−]
ξ12/ξ12 0.43 0.07 0.02 0.04 0.11 [−]
ξ13/ξ13 1355.0 978.6 53.0 790.3 1061.4 [Jkg−1K−1]
ξ14/ξ14 10.1 22.0 1.32 17.8 25.8 [Wm−2K−1]
ξ15 7.32 [Wm−2K−1]
ξ16 49.3 [Wm−2K−1]

(a) (b) (c)

Figure 5.15: Comparison of thermal properties computed for the best �tted deterministic
parameter set with averaged values obtained from the Bayesian calibration: (a) thermal
conductivity, (b) speci�c heat capacity, (c) density.

parameter α for each loading �re curve, and this is unacceptable. An attempt to resolve
this issue is discussed below.

5.4.2 Stochastic calibration

Unlike the deterministic approach, the stochastic approach yields the identi�ed param-
eters in terms of distributions. Similar to [13] we grounded this approach on Bayesian
inference, which allowed us to rigorously represent the natural variability in material pa-
rameters as well as in experimental measurements. In this framework, the uncertainty in
experimental measurements was estimated along with the desired material parameters.
As described in Section 5.4.3, we began with an expert prior knowledge about material
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16: Comparison of experimental data and numerical response computed for the
best �tted deterministic parameter set: (a) Sample 4, depth 20mm, α = 10.1, (b) Sample
4, depth 50mm, α = 10.1, (c) Sample 6, depth 20mm, α = 7.3, (d) Sample 6, depth
50mm, α = 7.3, (e) Sample 8, depth 20mm, α = 49.3, (f) Sample 8, depth 50mm,
α = 49.3; α is given in [Wm−2K−1].

values. By exploiting the Bayesian theorem, we searched for improved posterior proba-
bilistic distributions of calibrated parameters [32]. For simplicity, the prior knowledge of
calibrated parameters ξi was assumed in the form of uniform distributions with ranges
given again in Table 5.6. As in the case of deterministic minimization, an additional
uniformly distributed parameter ξ14, corresponding to the heat transfer coe�cient α,
was introduced, but in this case, it was considered unique regardless of the type of �re.
Further details and other similar applications can be found in [33] and [32].

The basic statistics of calibrated parameters appear in Table 5.7. These were derived
from 30,000 realizations generated by the application of the Markov chain Monte Carlo
method in the updating process, see Section 5.5 for further details. The results obtained
indicate, how the initial, a relatively vague, knowledge about the material parameters was
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17: Comparison of experimental data and numerical response computed us-
ing thermal parameters calibrated using the Bayesian framework: (a) Sample 4, depth
20mm, (b) Sample 4, depth 50mm, (c) Sample 6, depth 20mm, (d) Sample 6, depth
50mm, (e) Sample 8, depth 20mm, (f) Sample 8, depth 50mm.

improved based on the available measurements. The associated numerical predictions are
compared to experimental measurements in Fig. 5.17. The red lines were constructed
by employing the mean values of ξ-parameters. The gray surface contains all numerical
responses computed for the posterior ξ-sets. When compared to results in Fig. 5.16
the stochastic approach may seem less accurate. Remind, however, that the calibrated
transfer parameter α was assumed unique for all �re scenarios. It is also worth mentioning
that the stochastic approach has one important added value: it accounts for the natural
variability in wood and opens the door to a probabilistic assessment of structural designs.
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5.4.3 Predicted charring depth from computationally determined char
front

This section focuses on the numerical prediction of charring depth by simulating the
evolution of char front represented by a certain temperature isotherm. We assumed
that wood chars instantaneously once reaching this temperature limit. To comply with
Section 5.3.5, 280◦C and 300◦C isotherms were examined.
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Figure 5.18: Evolution of charring depth. Charring depths measured for eight �re exper-
iments are displayed in the form of a box plot, i.e., showing their interquartile intervals,
range, and outliers.

Figure 5.18 presents our results and introduces four types of data. The measured
charring depths obtained from eight �re tests as described in Section 5.3.5 are displayed
in the form of a box plot. The box extends from the lower to upper quartile values of
measured data with the line marking the median. The whiskers extending from the box
show the range of data and the points mark individual outliers. The second type of data
is plotted in the form of curves labeled "FEM". These show the evolution of charring
depth deduced as the position of the 280◦C or 300◦C isotherm predicted by the FEM
heat model.

Following the discussion in the last paragraph of Section 5.4.2 we adopted in nu-
merical simulations the temperature variation of model parameters in Fig. 5.15 derived
from the application of stochastic calibration approach. The remaining curves present
three chosen empirical relations for charring depth. The EC5 curve represents char-
ring depth evolution for one-dimensional charring as recommended in EN 1995-1-2[15]
with β0=0.65mm/min, the AWC curve is the 1D variant of the curve suggested by the
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American Wood Council [16], see Eq. (5.25) in Section 5.5.3, and the Lizhong curve cor-
responds to the empirical model presented in [34]. Individual dots mark times at which
the temperature measured for a given distance from the surface of a beam reached 280◦C
or 300◦C assuming 1D charring.

It is seen that numerically predicted charring depths, essentially bounded by the
selected simpli�ed charring rate models, follow the experimentally obtained data fairly
well. The reason why the simulations corresponding to Samples 4 and 6 arrived at
approximately the same charring depth of about 17mm for di�erent durations of a �re
is explained in Fig. 5.14, which suggests that Sample 6 (green curve) was exposed to a
�re of higher intensity than Sample 4 (blue line). This example illustrates the principle
advantage of using simulations to predict the evolution of charring depth as oppose to
adopting simple charring rate models discussed in the next section: the former approach
essentially re�ects the type of �re load whereas the latter only assumes standard �re
exposure, as to be discussed in Section 5.5.5.

5.5 Charring depth from simple charring rate models

Perhaps the most common approach for predicting the evolution of charring depth is the
application of a charring rate model. The literature o�ers several models with varying
levels of complexity, see [14, and the cited references], which provide a critical overview
of the performance of individual models depending on the kind of �re scenario, type of
wood, and structural elements.

In this paper, we revisit some of these models in an attempt to improve their predictive
power based on available experimental measurements. For this reason, we limited our
attention to the two most simple models adopted by the European [15] and American [16]
design codes. While the former model assumes a constant value for the charring rate β
in Eq. (5.3), the latter formula, originally proposed by White [25] for one-dimensional
charring allows the charring rate to vary over time. Because of the natural variability
of wood and also in light of the stochastic calibration described in Section 5.4.2 we
approached these models in the statistical framework.

With reference to Eq. (5.3), all models express the expected value of charring depth
dchar as a product of the potentially time-dependent charring rate β and �re duration t

dchar(t) = β(t)t. (5.12)

The measured value, herein the values collected from the analysis of images in Fig. 5.9
with their mean values stored in Table 5.4, is assumed normally distributed around the
expected value with a standard deviation σd

dchar(t) ∼ N (dchar(t), σd). (5.13)

For all models, the distribution of the parameters was deduced from the measured char-
ring depths via Bayesian inference. In the following text, the �re experiments with
di�erent durations are indexed with i = 1, . . . , N , N = 8, while index j = 1, . . . ,Mi
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denotes the j-th charring depth measurement for a given sample. Thus dij represents
the j-th charring depth measured on all specimens subjected to �re duration ti, recall the
segments in Fig. 5.5 subjected to image analysis. Equation (5.13) will be now examined
in the formulation of the following three stochastic models.

5.5.1 Model 1 (M1): �xed charring rate β

In the simplest model, we assume the charring rate to be independent of time with a
�xed, known value β(t) = β0, where β0 = 0.65 mm/min is the one-dimensional design
charring rate suggested in Eurocode 5 [15]. The model's probabilistic and deterministic
relations then read3

dij ∼ N (di, σd) for i = 1 . . . N, j = 1 . . .Mi (5.14)

di = β0ti for i = 1 . . . N (5.15)

σd ∼ U(σd,min, σd,max) (5.16)

where the last relation indicates uniform distribution with limits σd,min and σd,max being
the prior distribution for σd; notice the similarity with the assumed initial, rather vague,
knowledge about the random model parameters also accepted in Section 5.4.2. Thus in
this model, the measurement error, given by the distribution of σd, is the only parameter
to be identi�ed.

5.5.2 Model 2 (M2): constant but unknown charring rate β0

In a direct extension of the above model, we add β0 to the list of model parameters and
infer its distribution from measured data instead of relying upon a speci�ed �xed value.
The relations of this model are given by

dij ∼ N (di, σd) for i = 1 . . . N, j = 1 . . .Mi (5.17)

di = β0ti for i = 1 . . . N (5.18)

σd ∼ U(σd,min, σd,max) (5.19)

β0 ∼ U(βmin, βmax) (5.20)

where Eq. (5.20) indicates the prior distribution of β0, again being uniform.

5.5.3 Model 3 (M3): time-dependent charring rate β

In this model, we acknowledge the nonlinear evolution of charring depth described and
approximated by White [25]

t = md
α
, (5.21)

3Henceforth, we drop the subscript char for the sake of simplicity.
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where the value α = 1.23 proposed by White is based on the measurement of various
wood slabs exposed to �re. Rewriting Eq. (5.21) into the form of Eq. (5.12) we get

d(t) = β(t)t =
aβ0
tb
t, (5.22)

where b = 1− 1/α, β0 is the nominal one-dimensional charring rate for a 60-minute �re
and a = 60b guarantees d(60 min) = 60β0. With reference to Eq. (5.22) and assuming
b and β0 as unknown parameters, we formulate the corresponding statistical model as
follows

dij ∼ N (di, σd) for i = 1 . . . N, j = 1 . . .Mi (5.23)

di = βiti for i = 1 . . . N (5.24)

βi =
aβ0

tbi
for i = 1 . . . N (5.25)

a = 60b (5.26)

σd ∼ U(σd,min, σd,max) (5.27)

β0 ∼ U(βmin, βmax) (5.28)

b ∼ U(bmin, bmax) (5.29)

where Eq. (5.29) indicates a uniform prior distribution of b.
The assumed ranges of uniform prior distributions for the above model parameters

σd, β0, b are listed in Table 5.8.

Table 5.8: Ranges of prior uniform distributions for model parameters.

Parameter Unit Lower limit Upper limit
σd [mm] 0.1 10.0
β0 [mm/min] 0.01 10.0
b [-] 0.01 1.0

Grounding on the Bayesian theorem [10, 11, 35, 36, to cite a few], the posterior joint
probability density functions (PDFs) of the parameters of the three models then become

π(σd|⟨dij⟩) ∝
N∏
i=1

Mi∏
j=1

fN (dij , di, σd)× fU (σd, σd,min, σd,max), (5.30)

π(σd, β0|⟨dij⟩) ∝
N∏
i=1

Mi∏
j=1

fN (dij , di, σd)×

fU (σd, σd,min, σd,max)× fU (β0, βmin, βmax), (5.31)

π(σd, β0, b|⟨dij⟩) ∝
N∏
i=1

Mi∏
j=1

fN (dij , di, σd)×

fU (σd, σd,min, σd,max)× fU (β0, βmin, βmax)× fU (b, bmin, bmax), (5.32)
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where

fN (x, µ, σ) =
1

σ
√
2π
e−

1
2(

x−µ
σ )

2

(5.33)

and

fU (x, a, b) =


1

b−a for a ≤ x ≤ b,

0 for x < a or x > b
(5.34)

represent the PDFs of normal and uniform distributions, respectively, and ⟨dij⟩ is a vector
collecting all measured depths. The function fN stands for the likelihood function, which
in fact is the probability distribution of the measured depths.

5.5.4 Inference of model parameters

The standard approach for inspecting a nontrivial Bayesian model consists of drawing
samples from the posterior distribution of parameters and calculating their statistics
such as the mean, higher moments, quantiles, and correlation coe�cients. In this study,
the NUTS sampler [37] from the PyMC3 [38] Python package for Bayesian statistical
modeling was employed to generate two independent Markov chains with 2000 samples for
each model. The posterior distribution of the model parameters, given a) the measured
values of charring depth {dij} and b) the boundaries of the prior uniform distributions
listed in Table 5.8, are presented in the form of kernel densities (KDEs) in Figs. 5.19 - 5.21
together with the chains of sampled values4.

To compare the inferred distribution of parameters for the M1, M2, and M3 models,
we �rst looked at the marginal distributions of σd. Since the M1 model has a �xed value
of charring rate β0 = 0.65mm/min, all discrepancies of the observed charring depth dij
are explained by the standard deviation σd only, which thus centers around a relatively
high value of σd = 6.23 mm/min. On the other hand, the M2 and M3 models, which
infer the value of β0 from the data although starting from a broad prior distribution,
yielded a signi�cantly lower value of σd centered around 3.2 mm/min and 3.025 mm/min,
respectively. The nominal charring rate β0 is centered around 0.522 mm/min for the M2
model and around 0.504 mm/min for the M3 model. The fact that the parameter b of
the M3 model is centered around a positive value 0.145 indicates that the instantaneous
charring rate β(t) decreases slightly with time and that the function d(t) is concave. This
�nding agrees with that of White [25].

All parameters in the model were identi�ed fairly well, despite relatively vague initial
knowledge about them, as seen in Table 5.8. This is strongly supported by narrow
posterior distributions observed in Figs. 5.19 - 5.21.

4Displaying both chains and their corresponding KDEs in a single image provides a quick visual check
of whether the generated chains converged to the expected probability distribution.
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Figure 5.19: Posterior distributions and traces σd in the M1 statistical model of charring
depth, i.e. with constant β(t) = β0 = 0.65.
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Figure 5.20: Posterior distributions and traces of σd and β0 in the M2 statistical model
of charring depth, i.e. with time-independent but unknown β(t) = β0.
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Figure 5.21: Posterior distributions and traces of σd, β0 and b in the M3 statistical model
of charring depth, i.e. with time-dependent β(t, β0, b).
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5.5.5 Posterior predictions

A crucial feature of statistical models is their ability to predict the quantity of interest.
For the models described above it is the charring depth at a given exposure time. The
predicted quantity is again not a single value but rather a random variable with a pos-
terior predictive distribution. The mean and the credible 95% interval of the predicted
charring depth as a function of time are displayed for each model in Figs. 5.22-5.24.

Apart from the median line surrounded by a 95% con�dence band, the �gures show
the directly measured charring depths and the charring depths calculated from the tem-
perature measurements listed in Table 5.3. The similarity of both the median line and
width of the credible band, apparent when comparing Figs. 5.23 and 5.24, suggests that
the nonlinearity introduced in the M3 model is quite marginal. From the engineering
point of view, the error one makes using the M2 model with a constant charring rate is
therefore negligible compared to the inherent uncertainty attributed to charring depth
in general.

To bring the predictions provided by the FEM heat model developed in Section 5.4
and the simpli�ed charring rate models to the same footing we introduced in Figs. 5.22-
5.23 also the results derived for standard �re exposure using FEM. Remember that the
parameters of the model were identi�ed from three �re scenarios slightly di�ering from
standard �re. In this regard, the FEM results (blue curve) match the mean predictions
obtained from the three adopted models (red curve) remarkably well. On the one hand,
this indicates that convectional heat transfer models are reliable for estimating the evolu-
tion of charring depth. On the other hand, it con�rms the applicability of basic charring
rate models when limiting attention to standard �re exposure. But keep in mind that
the FEM approach is more general and can be used for any type of �re, although more
complex parametric �res may call for another set of parameters to represent the cooling
branch [6] better.

Table 5.9: Credible intervals for charring depth [mm] predicted by the statistical model
with the time-dependent charring rate compared to ranges of measured data and charring
depth predicted by the FEM model.

Time [min] Posterior predictions (M3) Measured FEM model
23 7.52 � 19.16 10.29 � 17.41 12.30 (S8)
31 11.10 � 23.02 13.98 � 21.90 16.82 (S6)
42 16.30 � 28.38 15.04 � 25.80 16.62 (S4)
62 25.00 � 36.92 23.22 � 37.20 �

The 95% con�dence interval bounds provided by the M3 model for di�erent times are
summarized in Table 5.9 together with the measured minimum and maximum charring
depths and the values obtained from the FEM heat model for individual �re scenarios.
The reason for arriving at almost the same charring depth for two di�erent �re durations
(Samples 6 and 4) has already been explained in the last paragraph in Section 5.4.3.
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Figure 5.22: Posterior distribution of charring depth predicted by the model with �xed
charring rate β = 0.65.
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Figure 5.23: Posterior distribution of charring depth predicted by the model with time-
independent charring rate β.
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Figure 5.24: Posterior distribution of charring depth predicted by the model with time-
dependent charring rate β.

5.6 Conclusions

This paper described the methods for the probabilistic analysis of the evolution of char-
ring depth in GLT beams made of spruce wood when exposed to �re. The results of an
extensive experimental program were presented �rst to provide the basic data needed in
the theoretical part of this paper. To that end, several furnace temperature curves were
recorded for two load scenarios, the �SN EN 1363-1 and CONST 600◦ curves displayed
in Fig. 5.3. Apart from that, variable initial conditions of the furnace led to variations
in actual furnace temperature curves and therefore also to variations in the distribution
of temperatures recorded at several points within beam's cross-section. This �rst set
of experimental data was supplemented by directly measuring the charring depth with
the help of image analysis and by employing an indirect approach based on the 300◦C
(280◦C) isotherm and the knowledge of the de�ection of residual beams subjected to a
3PB test. As expected, the acquired values of the charring depth con�rmed a nonlinear
dependence on the duration of a �re and the in�uence of actual loading conditions.

Combining the uncertainty in the actual �re scenario and natural variability in wood
properties promotes an application of the tools of mathematical statistics when predicting
the evolution of charring depth computationally. In this regard, two commonly used
theoretical approaches were examined and compared.

The �rst approach allows for re�ecting the actual �re test and builds upon the appli-
cation of the conventional heat transfer model. From the engineering point of view, this
was shown to be su�cient as the interest is primarily in the prediction of temperature
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within beam's cross-section and not in the detailed description of complex physical pro-
cesses taken place in the burning section during pyrolysis. This is particularly seen in
Fig. 5.18 showing good agreement of theoretically predicted charring depth based on the
300◦C isotherm with the experimentally measured one especially if taking into account
the actual �re scenario. Recall that the calibration procedure for this model took advan-
tage of Bayesian inference yielding the basic material parameters of the heat transport
model in terms of distributions. This opens the way to stochastic analysis to examine
the in�uence of elevated temperature the wood is exposed to during �re on the material
parameters such as strength and sti�ness.

The second approach is rather standard and grounds on the application of simple
linear charring rate models. The Bayesian statistical approach was adopted again to
address the variability of the parameters of the selected models when departing from
standard �re assumed by these models. Limiting attention to a one-dimensional �re and
two basic models included in the design codes we observed no added value for use of
the nonlinear M3 model [16, 25] when compared to the linear M2 model [15]. For �res
examined here, which did not deviate much from standard �re exposure, the mean values
of β0 were 0.522mm/min for the M2 model and 0.504mm/min for the M3 model, re-
spectively, rather close to the 0.65mm/min value used by Eurocode 5 [15]. Bear in mind,
however, that the parameters of the model were again provided in terms of distributions
and thereby re�ected the variability of charring depth predictions caused by �uctuations
in the �re load. Recall that the experimental charring depths obtained from all �re tests
of Group 1, both directly and indirectly, were adopted in the identi�cation process.

To compare both approaches, FEM simulations were carried out for standard �re
exposure resulting in an almost perfect match with predictions provided by the most
simple charring rate models, notably the M2 and M3 models. A similar comparative study
could have been performed for other simpli�ed models such as the Lizhong model [34],
where the numerically predicted heat �ux rate, hardly constant, could be employed.
However, the corresponding stochastic model would grow in complexity as the error of
numerical analysis would have to be included, and this was beyond the scope of this
investigation.

In support of the simpli�ed, yet su�ciently accurate, approaches presented here, the
necessity of a rapid decision-making process after a real �re harnessing the power of such
models is perhaps more useful, from an engineering point view, than employing complex
constitutive models with a large number of parameters and unknown levels of accuracy.
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Chapter 6

Modeling glulams in linear range

with parameters updated using

Bayesian inference

This chapter presents the preprint version of the journal paper

�ejnoha, M.; Janda, T.; Melzerová, L.; Neºerka, V.; �ejnoha, J., Modeling glulams
in linear range with parameters updated using Bayesian inference, Engineering
Structures. 2017, 138 293-307. ISSN 0141-0296.

reformatted to align with the style of the thesis.

6.1 Abstract

A stochastic hierarchical model of a glued laminated timber beam loaded in bending is for-
mulated in this paper. Being attributed to the limited number of observed data the model
captures both the inherent variability of the elastic properties of individual timber boards
making up the laminated beam and the uncertainty of the parameters controlling their
probability distributions. Apart from the de�ection measurements obtained from the full
scale displacement-controlled, four point bending tests the model also incorporates the
data from numerous nondestructive macroindentation measurements. The forward deter-
ministic model of laminated beam is based on the Mindlin beam theory combined with
the �nite element method to simulate the laboratory measurements numerically. The
inference of the model parameters is performed in the framework of Bayesian statistics.
Apart from improved posterior distributions of material data, we also o�er an improved
formula for estimating the longitudinal elastic modulus from indentation measurements.

6.2 Introduction

Current building designs focus primarily on energy e�ciency, minimal environmental im-
pact, and healthy and safe conditions. To ful�ll the mentioned criteria, timber structures
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are a promising alternative to traditional concrete/masonry construction approaches.
Among other applications the glued laminated timber (GLT) beams receive a particular
interest owing to both their strength and aesthetic performance. On the other hand,
since being manufactured from natural wood they may experience a signi�cant variabil-
ity in their local material properties. At the structural level this variability may further
increase by producing unbalanced beams having boards of a higher quality on the tension
side in comparison to those placed on the compression side.

The manufacturing process, where individual timber boards of variable lengths are
bonded with adhesives, may result in cases where two neighboring boards di�er more
than twice in terms of their sti�ness. This �nding follows from the results of an extensive
experimental program, which involved �ve laminated timber beams made of spruce. The
beams were subjected to 3600 macroscopic indentation measurements carried out on
both sides of individual boards in a prede�ned grid of points spread 10 cm apart [1, 2].
Point out that only clear wood was indented. Thus if the selected point was found in a
knot, the indentation was shifted su�ciently far from the knot (at least 3× the average
indentation depth amounting to about 3 cm). The measured indentation depth was then
transformed into a local value of the modulus of elasticity along the �ber direction using
an empirical expression

E = A+Bd, (6.1)

where E is the longitudinal Young modulus in GPa, d is the indentation depth in [mm]
and A,B are the �tting parameters. Generally, Eq. (6.1) is used to provide estimates
of the Young modulus of clear wood free of weak sections such as knots or knot clus-
ters. Despite an unavoidable inaccuracy in the mapping equation, a signi�cant genuine
variability in material properties of GLT beams is indisputable.

Introduction of wood variability into structural design has been at the forefront of
engineering interest for last few decades. Attention has mostly been devoted to mechan-
ical properties such as sti�ness or strength being in�uenced in general by the presence
of knots and knot clusters and consequently by variation of grain angle along the lon-
gitudinal path. This promotes a sti�ness/strength pro�le in each board be regarded as
a one-dimensional stochastic process either discrete or continuous [3]. The mid-point
method is a typical representative of the former model whereas, for example Karhunen-
Loeve (KL) method (see e.g. [4] for applications in other engineering areas) or the spectral
density method proposed in [5] belong to the latter category.

This classi�cation re�ects both computational and experimental approaches needed
for obtaining stochastic model parameters. The �rst category covers the discrete param-
eter space models (DPS). It is based on splitting each board into cells of equal size being
assigned a constant value of sti�ness/strength. The second category represents the con-
tinuous parameter space models (CPS), where no �xed grid or coordinates are imposed
on the parameter space variable x. It can be further classi�ed into two sub/categories:
(i) weak zone models (WZ) characterized by randomly distributed WZs, each having a
given length and constant material parameters and (ii) a truly continuous model allowing
for di�erentiable sti�ness pro�les. Each model group makes it possible to construct a
set of process realizations from which the process characteristics can be obtained. On
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micro-scale, the sti�ness mean and the auto-covariance function express random ma-
terial properties stemming from irregularities within each board due to knot clusters.
On mesoscale, the cross-covariance functions re�ect the dependence of these properties
between adjacent boards.

The WZ models, associated with the hierarchical (micro/meso) models [6], became
very popular in the 1990s and were originally intended to predict strength. In [7] also
sti�ness as an exception is addressed. Building up on an extensive laboratory measure-
ments carried out in [8] the total knot area ratio tKAR and the dynamic sti�ness Edyn

were observed as the most useful indicators for the prediction of sti�ness and strength of
both the clear wood (CWS) and knot sections (WS). In this model, tKAR is expressed as
an exponential function of three variables - the deterministic logarithmic mean tKAR of
all WS within a sample of boards, next the microscopic normally distributed �uctuations
of the logarithmic tKARij of the WSj within the board i, and �nally, the mesoscopic
normally distributed di�erence between the logarithmic mean tKAR of individual boards
and a sample of all boards. In truly continuous models the micromechanical models, see
Section 6.4.3, are recommended in conjunction with grain angle information obtained
by laser scanning [3]. In view of prospective numerical analysis the stochastic process
is prevailingly expressed as a linear combination of deterministic functions with random
coe�cients such as, e.g. in the KL expansion. It is argued in [9] that the WZ models,
in analogy to the DPS models, are not expected, in contradiction to the CPS models, to
correctly consider the �ber deviations before knot and after knot clusters. Probabilistic
models either discrete or continuous if focused just on variations within one board may
underestimate, particularly in GLT beams, the mitigating impact of clear wood in adja-
cent boards (above and below) on the vicinity of the WZ in the middle board. To analyze
this problem consistently, the cross-covariance functions of material properties need to
be at hand. The di�erence of the logarithmic tKARs between the boards as proposed
in [7], however promising, could capture the spatial variability only on average.1

It is clear that on this structural level the macroscopic properties of boards are highly
dependent on the way they are processed from original wood although they are cut
merely along the grain. Apart from that, the wood microstructure should not be com-
pletely omitted when referring to its macroscopic properties. To that end, a consid-
erable di�erences in the porosity of early and latewood, volume fractions of individual
material phases building the cell wall, and the micro�bril orientation angle (MFA), in
particular, play a signi�cant role in estimating the e�ective properties, e.g. from ho-
mogenization [11, 12, 13, 14]. Although the random nature of volume fraction of lumens
and MFA will not be directly addressed in this paper, some elements of homogenization
will be adopted to provide initial estimates of shear moduli also needed in the adopted
numerical analysis, see Section 6.4.

In all above cases the initial estimates of material properties entering the predictive
numerical analyses often show a considerable scatter and call for improvement. Here,

1A similar mitigating e�ect is well known from aerodynamics. As was recognized in the early 1990s,
the average pressure of turbulent air �ow on a surface decreases with the area of the surface. This
phenomenon is described, e.g. by means of the coherence function, see [10].
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a suitable method of attack is the Bayesian statistical method [15, 16] or the Bayesian
inference if referring directly to the process of updating our prior state of knowledge
about the adopted parameters based on what we know now, see also [17] for a particular
application to wood. The Bayesian inference �nds its application in many �elds when
one wants to update the prior belief about distribution of possible values of unobservable
model parameters such as material properties or �tting parameters based on various
types of measured data, e.g. displacements. This is commonly the case in engineering,
since there are numerous ways the parameters can in�uence the measurable properties
of the system in question. With reference to GLT beams a general methodology has
been suggested in [18] concentrating, however, on the longitudinal modulus of wood
only. In this paper, we revisit this task in much broader sense addressing other sources
of uncertainties in the material model and accounting for the geometrical assumptions
when designing a macroscopic model of the beam as a whole.

The Bayesian notion of probability is taken more generally as we commonly do. The
distribution of values, typically given by the probability density function (PDF) is at-
tributed not only to the observed data but also to the unobserved model parameters.
The Bayes theorem serves us to reappraise our prior belief (distribution) of the model
parameters based on the data that the model produced. The result is an updated (pos-
terior) distribution of the model parameters. The main advantage of this approach is
that the extent to which our prior belief gets re�ned inherently re�ects the number and
credibility of the observed data. On the other hand, the method does not provide any
feedback about the model correctness and prior parameter distribution suitability. If
these are wrong, we get the wrong posterior distribution without warning.

Although formulation of the posterior distribution is quite straightforward, the pro-
cess of obtaining the statistics of this distribution, e.g. expected values and standard
deviations, can be challenging especially when the joint posterior distribution is of a high
dimension. Then the posterior distribution has to be analyzed numerically from simu-
lations, which is typically a variant of the Markov chain Monte Carlo method (MCMC)
such as the Metropolis�Hasting algorithm, Hamiltonian Monte Carlo algorithm or Gibbs
sampling. For details on these algorithms we refer the interested reader to [19]. Note that
in many cases there is no need to program own code as for example the last method is
implemented in open source program JAGS (Just Another Gibbs Sampler, [20]), which al-
lows the user to specify the stochastic model declaratively in a dialect of BUGS (Bayesian
inference Using Gibbs Sampling, [21]) language and generate the samples of unobserved
model parameters distributed according to their posterior joint distribution. This pro-
gram is also exploited in the present study.

While not of our primary interest the joint probability density function provided by
MCMC can be used to extract marginal distributions of model parameters of interest to
be further utilized in other types of stochastic simulations adopting typically the �nite
element method (FEM) to solve the underlying structural problem, e.g. the GLT beam.
As typical of many branches of engineering, the following three technologies are advocated
for a fully probabilistic reliability analysis of timber structures, e.g. [9]: (i) Stochastic
FEM in conjunction with Monte Carlo or Latin Hypercube Sampling simulations, (ii)
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the perturbation method, (iii) the spectral stochastic FEM. The perturbation method
involves linearization at the mean and as such is limited to small values of coe�cients
of variation (COV should be less then 0.1), see e.g. [22]. As was corroborated by data
presented in [9], this requirement is mostly (as a rule) met. The opposite is rather an
exception though it cannot be ruled out with a certainty. This piece of knowledge will
be exploited in Section 6.5.2 when linearizing the proposed �nite element model of GLT
beam.

This short exposure to various approaches to the analysis of wood and timber struc-
tures proves a considerable interest in stochastic and probabilistic modeling. However,
to bring this issue to points of practical applications seems far from satisfactory. To
reach out to practical engineers while still re�ecting the random nature of wood prop-
erties in structural design we propose a simple tool allowing for a reliable prediction
of the linear response of glued laminated timber beams, thus concentrating on sti�ness
or serviceability. The present approach can be regarded as an alternative to standard
discrete as well as continuous models. From the practical applicability point of view it
falls into the category of models exploiting nondestructive measuring techniques such as
laser scanning [9, 23] or application of more appealing descriptors such as knot indicator
Km or the dynamic modulus of elasticity Em [7] which can be all adopted with or linked
to the machine grading process.

To proceed one step further towards the evaluation of already existing beams in
cases where no control on layup of commercially produced beams is being enforced, we
consider the material parameters be obtained from standard macroscopic indentations
measurements using the Pilodyn device together with Eq. (6.1). This requires:

� Formulating an e�cient and su�ciently accurate FEM model of a glued laminated
timber beam. If limiting our attention to elasticity the standard beam elements
developed on the bases of Mindlin's beam theory prove su�cient.

� Improving estimates of the longitudinal elastic modulus E provided by the Pilodyn
device through the modi�ed parameters A,B, recall Eq. (6.1). In such a case this
equation is approached in a broader sense to give values of a certain model pa-
rameter representing a smeared longitudinal elastic sti�ness of wood that combines
both the clear wood and weak sections.

� Estimating the longitudinal shear modulus G or the G/E ratio that appears in
the formulation of the material model and the derivation of the through thickness
homogenized properties of GLT beams.

This methodology would thus allows for combining the developed computational
model and the indentation measurements employing the improved parameters A,B in
predicting the response of other GLT beam to be used on the construction side, which
can be possibly compared with the original design.

Achieving this goal is outlined in the remainder of the paper. To introduce the sub-
ject we begin in Section 6.3 with the description of the stochastic model where individual
stochastic parameters are identi�ed. Determination of the experimentally measured data
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is provided in Section 6.4. Therein, we also show how our initial guesses about stochas-
tic parameters, which enter the Bayesian theorem, are obtained. We then proceed to
Section 6.5 by formulating the corresponding �nite element model for the evaluation of
some of the measured data numerically. Finally Sections 6.6 and 6.7 provide discussions
and comments on the results and validation of the proposed methodology.

6.3 Hierarchical stochastic model

Hierarchical stochastic model is a system of parameters and data linked by either stochas-
tic or deterministic relations. The stochastic relation x ∼ A(a, b)means that the quantity
x is distributed according to distribution A with parameters a and b. The deterministic
relation x← A(a, b) states that the quantity x takes the value of expression A involving
parameters a and b. Following the BUGS language inspired notation the present model
reads

wij ∼ N (w̃ij , σw), (6.2)

w̃ij ← fij(E,G), (6.3)

γj ∼ N (γ̃j , σγ), (6.4)

γ̃j ← gj(E,G), (6.5)

dkl ∼ N (d̃k, σd), (6.6)

d̃k ← (Ek −A)/B, (6.7)

Gk ← rGEEk, (6.8)

Ek ∼ N (µE , σE), (6.9)

µE ∼ U(µE,min, µE,max), (6.10)

σE ∼ U(σE,min, σE,max), (6.11)

σw ∼ U(σw,min, σw,max), (6.12)

σγ ∼ U(σγ,min, σγ,max), (6.13)

σd ∼ U(σd,min, σd,max), (6.14)

A ∼ U(Amin, Amax), (6.15)

B ∼ U(Bmin, Bmax), (6.16)

rGE ∼ U(rGE,min, rGE,max). (6.17)

The stochastic model describes how the measured data are actually generated. Since
concentrating on serviceability of GLT beams we choose de�ections wij as the most
easily measurable macroscopic indicator of bending sti�ness expected also to su�er from
much smaller measurement error in comparison for example to longitudinal strains. The
average shear strain γj is then selected to address the variability of shear sti�ness entering,
apart from the longitudinal sti�ness, the computational model discussed in detail in
Section 6.5. The variability of the longitudinal sti�ness within each board is �nally
linked to the indentation depth dkl as the most easily measurable indicator of local
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sti�ness. While the �rst two quantities follow from the four point bending test, the last
quantity is obtained from the application of the Pilodyn 6J indentation device [1, 14],
see also Section 6.4 for some details on the present experimental program. Nevertheless,
some brief explanation is needed already here to understand the adopted notation. In
particular, we expect that the vertical de�ection wij is measured at selected points (i =
1, . . . , Nw) on the bottom face of the beam and recorded for each of the applied loading
steps. Although the behavior is essentially elastic, choosing a relatively large number of
loading steps (j = 1, . . . , NF ) gives us a su�cient amount of data for properly identifying
the measurement error. The average shear strain γj was determined indirectly by means
of digital image correlation (DIC) again for all loading steps. The indentation depth dkl
identi�es the lth indentation (l = 1 . . . Nind,k) measured in the kth board (k = 1 . . . Nb),
where Nb and Nind,k represent the total number of boards making up the beam and the
corresponding number of indentations within a given board, respectively.

Equation (6.2) expresses our assumption that the measured values of the vertical dis-
placement wij are normally distributed around their theoretical values w̃ij with standard
deviation σw. This assumption is equivalent to the measured values being in�uenced
by a random error, i.e. wij = w̃ij + ϵ, where ϵ ∼ N(0, σw) is a normally distributed
measurement error with zero mean and standard deviation σw. The theoretical value of
the displacement w̃ij follows from the FEM simulation for given values of the longitu-
dinal elastic and shear moduli. The FEM simulation is formally denoted in Eq (6.3) as
fij(E,G), where E,G represent the vectors of particular outcomes, Ek, Gk, of moduli in
each board k. In analogy, Eqs. (6.4) and (6.5) state that the average shear strain γj is
normally distributed around the theoretical value γ̃j with a di�erent standard deviation
σγ . Its theoretical value is again obtained by FEM computations denoted as gj(E,G).
Similarly, the measured values of indentation depths dkl are normally distributed around
their theoretical value d̃k with standard deviation σd. Although we assume in the compu-
tational part a homogeneous material in each board, the stochastic relation (6.6) captures
both the experimental error and the natural variability of the wood properties. The the-
oretical mean value of the penetration depth d̃k is assumed unique for each board k and
depends linearly on the theoretical value of the Young modulus Ek according to rela-
tion (6.7). It is clear from Eq. (6.8) that the board shear modulus Gk is not taken as
an independent quantity subject to identi�cation but is rather tied to a corresponding
Young modulus Ek through the rGE ratio, which in turn is considered stochastic and
shared by all boards.

Equations (6.9)�(6.17) provide a list of unobservable parameters considered random
in the present model and expresses our prior belief about their values. The values of
the Young modulus Ek are again assumed normally distributed with the mean µE and
the standard deviation σE , both common to all timber boards. This stems from the fact
that the entire beam is composed of one type of wood only. In particular, the analyzed
beam was produced commercially out of spruce timber of average density ρ = 499 kg/m3

resulting in the glulam strength class GL28h as speci�ed by the supplier.
Stochastic relation (6.9) then re�ects the natural variability of the wood quality

among di�erent boards. The hierarchy of the model now becomes clear once choosing
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the parameters µE and σE as random and statistically independent. These parameters,
together with the measurement error measures σw, σγ , σd and the G/E ratio rGE , are
termed the top level parameters in this hierarchical model. To complete our exposure to
the model parameters we mention the last two top level parameters A and B in Eq. (6.7).
This parametric equation is in general used in its inverse version to allow for mapping
the indentation depth to the longitudinal elastic modulus, recall Eq. (6.1). However,
unlike treating them as deterministic, which is a common engineering approach, these
parameters are considered random thus allowable for updating.

For simplicity, all the top level model parameters are assigned uniform prior distribu-
tions U(xmin, xmax). By this choice we express our believe that the value of a particular
parameter is within certain limits (xmin, xmax), but no value within these limits is as-
sumed to be more probable than any other. For particular values, see Section 6.4. Choos-
ing wij , γj , dkl and Ek to follow normal distribution is also driven purely by simplicity.
While adopting log-normal distribution appears more appropriate to avoid sampling neg-
ative values, the use of normal distribution proved su�cient as no such di�culties have
been observed in our study. This is attributed to a moderate variability of wood seen
for example in the distributions of board elastic moduli Ek in Fig. 6.12 found from the
original Pilodyn equation (6.22). Comparison of the measurements of elastic modulus
of Norway Spruce �tted to various types of distributions can be found, e.g. in [24] for
a broad range of grain orientation and load direction showing no particular di�erence
between normal and log-normal distribution thus further supporting the present choice.

Before proceeding with the mathematical formulation of the Bayesian theorem per-
tinent to the present model we would like to mention several assumptions adopted when
building the model. These include ergodicity of the experimental errors σw and σd and
their independence of the actual value of the measured de�ection or indentation depth.
Further, we assume that the same experimental error applies to all three locations where
the de�ection is monitored. We further assume that the geometry of the beam, i.e. the
board length and thickness, the distance of the supports, the position of the loading
forces and de�ection sensors are known exactly. We also do not concede any error in the
value of the loading force Fj .

The following paragraphs outline the speci�c format of the Bayesian theorem in the
light of the present model. An inexperienced reader may also consult a brief exposition
to a general theory of Bayes' theory and Bayesian updating given in the appendix.

Suppose that vector a = ⟨ai⟩ represents the sequence

⟨ai⟩1≤i≤n = (a1, a2, . . . , an)

and ⟨aij⟩ stands for

⟨aij⟩1≤i≤m,1≤j≤ni = (a11, a12, . . . , a1n1 , a21, a22, . . . , a2n2 , . . . , am1, am2, . . . , amnm).
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The normal distribution and uniform distribution PDFs are denoted as

fN (x;µ, σ) =
1

σ
√
2π

e
−
(x− µ)2

2σ2 , (6.18)

fU (x; a, b) =


1

b− a for x ∈ [a, b]

0 otherwise
. (6.19)

Having the model formulated and taking into account the above notation we may now
proceed to rephrase the Bayesian statistical method to express the posterior (improved)
joint PDF of model parameters as

π(⟨Ek⟩, µE , σE , σw, σγ , σd, A,B, rGE |⟨wij⟩, ⟨γj⟩, ⟨dkl⟩) ∝ (6.20)
Nw∏
i=1

NF∏
j=1

fN (wij ; w̃ij , σw)×
NF∏
j=1

fN (γj ; γ̃j , σγ)×
Nb∏
k=1

Nind,k∏
l=1

fN (dkl; d̃k, σd)×

Nb∏
k=1

fN (Ek;µE , σE)× fU (µE ;µE,min, µE,max)× fU (σE ;σE,min, σE,max)×

fU (σw;σw,min, σw,max)× fU (σγ ;σγ,min, σγ,max)× fU (σd;σd,min, σd,max)×
fU (A;Amin, Amax)× fU (B;Bmin, Bmax)× fU (rGE ; rGE,min, rGE,max),

where the operator �∝� means proportional to (that is, the two sides are equal except
for the normalizing constant C). The quantities ⟨w̃ij⟩, ⟨γ̃j⟩, ⟨d̃k⟩, entering the likelihood
function (the �rst three terms on the right hand side of Eq. (6.20)), and the shear moduli
⟨Gk⟩ are computed according to the deterministic relations (6.3), (6.5), (6.7) and (6.8),
respectively. The prior distributions of the top level parameters (the terms following the
likelihood functions) are assumed statistically independent. This, however, is no longer
true when referring to the posterior joint PDF on the left hand side of Eq. (6.20), because
the statistical dependence manifests itself through the data entering this equation.

The expression on the right hand side is thus not exactly a PDF in the statistical
sense as its (Nb + 8)-dimensional integral over the entire stochastic domain would not
equal to one but to the aforementioned constant C. Fortunately, the family of MCMC
algorithms allows us to generate samples of parameters distributed according to the
posterior distribution in such a proportional form. Once we have a su�ciently large
number of samples of the updated model parameters (the Markov chain is su�ciently
long to produce stationary distributions - in the present the length of chain amounted to
5000 samples with the burn-in period equal to 1000 samples), we compute their statistics
from marginal distributions, compare them to the prior distributions and thus learn how
the observed data changed our prior estimates of the model parameters. To support
credibility of the obtained results, two such chains were generated and compared.

But before arriving at these distributions presented in Section 6.6 there are still a few
steps to take as discussed next.



CHAPTER 6. MODELING GLULAMS IN LINEAR RANGE 142

6.4 Laboratory testing of laminated timber beam and prior

distributions

An extensive laboratory program has been established to acquire the necessary infor-
mation needed in Eq. (6.20). The observable measured data, i.e. wij , γj , dkl entering
the de�nition of the likelihood function were determined by combining the macroscopic
four-point bending and Pilodyn 6J indentation tests. These were accompanied by small
scale nanoindentation tests combined with homogenization in the solution of a certain
inverse problem to obtain a rough notion about the bounds appearing in the prior dis-
tributions, namely Eq. (6.17). This, however, goes beyond the present scope and the
interested reader is referred to [25]. For convenience, some elementary steps concerning
the homogenization of wood will be outlined later in this section. In addition, Eq. (6.7)
given in its original form with the values of parameters A,B typically used in engineering
practice will be employed to feed Eqs. (6.9)�(6.11).

(a) (b)

Figure 6.1: Four point bending test: (a) experimental setup, (b) geometry, loading
conditions, board number, number of indents in parenthesis for the GLT-2 beam, see
Section 6.4.1

6.4.1 Four-point bending test and digital image correlation

The standard four-point bending test enhanced by Digital Image Correlation (DIC) has
been chosen to measure the beam vertical displacements, and through-thickness strain
averages.

Three simply supported GLT beams, further referred to as GLT-1, GLT-2, GLT-3,
were tested after several weeks of being stored in the lab which resulted in the average
moisture content u ≈ 12%. All experiments were performed in a displacement control
regime with a gradual increase of the prescribed vertical displacements at two di�erent
loading rates (r1 = 1.2mm/min, r2 = 0.3mm/min) until failure as shown in Fig. 6.2(a).
The locations of the two loading points is seen in Fig. 6.1 together with the beam geometry
(length L = 4600 mm, width b = 100 mm, height h = 320 mm), layup, and the actual
board number. Three vertical displacements were measured at the bottom surface of the
beam below the two loading points (w1, w3) and at the beam center (w2). Thus i = 1, 2, 3
in Eq. (6.2).
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While the results pertinent to the GLT-2 beam were exploited in the derivation of the
posterior PDF and the associated marginal distributions including the Pilodyn equation
parameters A, B, the results of the other two beams were used to check, at least partially,
the applicability of the proposed strategy mentioned in the introductory part.
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Figure 6.2: Results of the four point bending test for GLT-2: (a) variation of the resulting
force as a function of time, (b) variation of vertical displacements at selected points
w1, w2, w3 as a function of the applied load

In particular, variation of the measured vertical displacements as a function of the
applied load is plotted in Fig. 6.2(b).2 The horizontal line indicates the maximum load
level of F = 50 kN adopted in the Bayesian updating. This value is found well bellow
the ultimate load Fu = 65.6 kN, thus ensuring the assumption of the linear behavior of
the system.

Recall that even the theoretical values of vertical displacements w̃ij depend on the
value of shear modulus G linked in the Mindlin beam theory to the cross-section shear
strain γ̃j . If we wish to introduce this quantity in the Bayesian inference a corresponding
measured value is needed. Unlike a vertical displacement, a direct measurement of this
quantity is not an easy task. Herein, DIC method was used to provide local strain pro�les,
see also [23].

It allows for tracking the motion and distortion of the speckled color pattern applied
on the surface of a specimen. It should be noted that the pattern quality has a dominant
in�uence on the resolution and accuracy of the DIC results. Beside the high-contrast
requirement, the pattern must be random and isotropic [26, 27, 28].

The main idea of DIC is to match a subset of gray-scale pixels in the reference image
(representing the initial state) to a similar subset in the target image of a deformed
surface. The output of DIC is provided in the form of a grid containing information
about displacements and strains with respect to the reference con�guration. For details
on DIC algorithms, we refer the interested reader to [29, 30]. For illustration, some of
the results derived from the four-point bending test are presented for the left part of the

2For the sake of brevity and if not otherwise stated the plotted results were found for the GLT-2
beam.
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beam in Fig. 6.3.3 Therein, the results found directly from the reference-deformed image
mapping were further interpolated to get the plotted continuous �elds.

The results in Figs. 6.3(c,e) support the theoretically expected zero shear strain and
no dependence of through-thickness variation of axial strain on x in the mid section of
the beam between the two loading points. They were derived with the open-source code
Ncorr-Post-CSTool [31, 32], applied successfully to more advanced issues such as cracking
of cementitious composites [33], as an extension of DIC code Ncorr v1.2 [34].

(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Selected results from DIC measurements for GLT-2 pertinent to load step
No. 25: (a) horizontal displacement [m], (b) vertical displacement [m], (c) axial strain
[�], (d) vertical strain [�], (e) shear strain [�], (f) shear strain from FEM [�]

The fact that in the Mindlin beam theory the shear strain is assumed constant over
the beam height promotes two options how to introduce this quantity into the Bayesian
inference. One can either calculate the average shear strain at a given location, say x = x̄,
adopting the Mindlin beam theory as

γxz(x̄) = φy(x̄)︸ ︷︷ ︸
∆u(x̄)

h

+
dw

dx
(x̄), (6.21)

where h is the beam height, or by averaging the shear strain derived directly from DIC, re-
call Fig. 6.3(e). This latter option has been adopted in the present study. Unfortunately,

3Note that due to laboratory space limitations only one side of the beam was subjected to DIC
measurements. Also, the end sections to the left and right from the beam supports were not examined
due to presence of stabilization elements, see Fig. 6.1(a).
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for specimens of this size the resulting strains show a considerable noise when plotted
point-wise at speci�c locations. Some sort of averaging is therefore needed to arrive at
meaningful results. Here, the variation of the �maximum� shear strain as a function of
the applied load within the section of a theoretically constant shear force was found by
averaging the local strains over a certain region. In particular, two such regions on both
halves of the beam having dimensions 500 × 50 mm and 1000 × 100 mm, respectively,
were analyzed, see Fig. 6.3(e). It is evident from Fig, 6.3(e) that both averaging regions
fall out of the reach of local e�ects as schematically depicted in Fig. 6.3(d) and further
corroborated by numerical results in Fig. 6.3(f). Note that the FEM analysis was carried
out assuming a homogeneous beam with an equivalent Young's modulus derived from
Eq. (6.38).
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Figure 6.4: Variation of the average shear strain γ as a function of the applied load
derived by scaling the �maximum� shear strain averaged over a) 500 × 50mm and b)
1000× 100mm sections

Assuming that the actual shear strain follows parabolic distribution over the beam
height these values were further scaled by the factor of 2/3 to get the required strain
averages. The associated variation of the shear strain is plotted in Figs. 6.4(a,b)4. A
simple 2D FEM plane stress analysis was performed for the homogeneous beam with
some equivalent properties listed in the last row of Table 6.2 to check the credibility of
this approach. To give reasons for the �nding that the GLT-3 beam exhibits a slightly
less sti� response, seen e.g. in Fig. 6.4(b), we store in Table 6.1 the equivalent bending
sti�nesses for individual beams derived from the four point bending test together with
basic statistics of the axial Young modulus found from all indentation measurements using
the original (PO) as well as updated (PU) parameters A, B in the Pilodyn equation (6.1).
Derivation of these quantities is provided in detail in Section 6.6.

4Note that the parabolic shear strain averaged over a certain mid section s of the beam height h
equals to ⟨γ⟩s = γmax (1 − 1

3
( s
h
)2). Thus in our two cases (s1=100mm and s2=50mm) we get

⟨γ⟩100 = 0.97γmax and ⟨γ⟩50 = 0.99γmax, respectively.



CHAPTER 6. MODELING GLULAMS IN LINEAR RANGE 146

Table 6.1: Equivalent bending modulus derived from the four point bending test and
averages and standard deviations of the axial Young modulus calculated from indentation
measurements. All values are in [GPa]

Beam Eeq (bending test) µPO
E σPO

E µPU
E σPU

E

GLT-1 11.66 13.62 1.048 12.35 1.424
GLT-2 12.15 13.59 0.836 12.31 1.136
GLT-3 10.09 12.82 1.477 11.26 2.008

6.4.2 Macroscale indentation with Pilodyn 6J testing device

Modulus of elasticity of wood can be measured by various methods. When considering
wood segments already built into an existing structure it is necessary to adopt non-
destructive testing methods, which cause either no or negligible damage to the tested
material. Owing to a considerable heterogeneity of laminated timber structures a large
number of local measurements is needed. At present, only one such experimental method,
which builds upon driving an indenter with the help of Pilodyn 6J device in Fig. 6.5 into
the wood, is available.

Figure 6.5: Pilodyn 6J indentation device

In particular, a spike of 2.5 mm in diameter is shot into the wood with the enforced
energy of 6 J. While driving the indenter more or less in the transverse direction, the
empirical equations (6.1) or (6.7) provide the local elastic modulus in the �ber direction [1,
14]. For spruce the following values of parameters A,B have been found optimal

E = A+Bd = 19.367− 0.5641d. (6.22)

The Pilodyn 6J device allows for reading d with the accuracy of 0.5 mm, which yields the
corresponding error of the computed elastic modulus equal to 0.28 GPa. Additional error
follows from the material heterogeneity and uneven inclination of tangents to annual rings
at the point of indentation with respect to the vertical surface of the structural element.
In the presented Bayesian inference all these errors are re�ected by a single parameter
σd in Eq. (6.6).
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Basic statistical evaluation summarized in the last four columns of Table 6.1 was
performed on the basis of 368 indentations for GLT-1, 368 indentations for GLT-2, and
328 indentations for GLT-3, respectively. The measurements of indentation depth were
carried out on both sides of all beams on a regular grid of points spread 20 cm apart.
These measurements provided also bounds on parameters µE , σE in Eq. (6.9). The
number of indents is much smaller in comparison to 3600 indents examined in [1] and
used in [18] to determine statistical moments pertinent to each board and subsequently to
specify the prior distributions for each board directly in the form of normal distribution.
Also note that the number of indents in some of the boards indicated in Fig. 6.1(b)
is not su�cient to arrive at reliable mean values, which further promotes our present
hierarchical model.

6.4.3 Homogenization of wood

Unfortunately, there is no such simple experiment to measure the shear properties of
wood. Therefore, if the in�uence of shear sti�ness is to be investigated independently
from tensile/compression e�ects, we should seek for an alternative such as homogeniza-
tion. Because only a rough estimate of the longitudinal shear modulus is needed, we adopt
here the Mori-Tanaka [35] analytical scheme, thus omitting some of the microstructural
details [36]. Moreover, we follow closely the footprints of a hierarchical homogenization
laid down in [11] combined here with nano [13, 37, 38] or macroindentation [14] to address
the in�uence of MFA, which considerably in�uences the e�ective shear sti�ness.

Performing a two-step homogenization procedure at the level of cell wall as proposed
in [11] yields the estimates of e�ective properties of the cell wall. This comprehensive
paper provides all the necessary information regarding the tissue independent properties
of individual material phases including their volume fractions to enter the Mori-Tanaka
predictions of the homogenized sti�ness Lhom and compliance Mhom matrices written as

Lhom =

[
N∑
r=1

crLrTr

][
N∑
r=1

crTr

]−1

, Mhom =

[
N∑
r=1

crMrWr

][
N∑
r=1

crWr

]−1

, (6.23)

where cr is the volume fraction of the phase r, Lr and Mr store the corresponding
sti�nesses and compliances and N is the number of phases. Tr and Wr are the partial
strain and stress concentration factors depending on the shape and orientation of the
inclusion and the properties of the matrix phase and follow from the solution of the
Eshelby transformation inclusion problem. For further details we refer the interested
reader to [13, 35].

The resulting elastic properties for the crystalline cellulose being aligned with the
direction of lumens are stored in the 1st row of Table 6.2, where subscripts A, T refer to
axial and transverse directions, respectively. To arrive at these results, we neglected for
simplicity water and other wood extractives and considered only the cylindrical �ber-like
aggregates of crystalline cellulose and of amorphous cellulose embedded into an isotropic
polymer matrix of hemicellulose and lignin, see [13] for details. This simpli�cation is in
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(a) (b) (c)

Figure 6.6: Transverse cross-section of spruce provided by optical microscope: a) mi-
crostructure of early and latewood transition, b) detailed representation of earlywood, c)
detailed representation of latewood

accordance with the fact that only a rough estimate of rG/E ratio is needed to formulate
the prior distribution of this quantity to run the Bayesian updating.

Obtaining the e�ective properties of wood requires two additional homogenization
steps as evident from Fig. 6.6. At the level of early and latewood the next homogenization
step still exploits Eq. (6.23) but in this case we consider a composite having the properties
of the homogeneous cell wall and being weakened by aligned cylindrical voids (lumens).
In the present study the volume fraction of lumens for both early (cLE = 0.54) and
latewood (cLL = 0.28) were found simply from binary counterparts of color images in
Figs. 6.6(b,c). The last homogenization step exploits the laminated structure of annual
rings seen in Fig. 6.6(a). Using standard rule of mixture the Voigt and Reuss bounds on
the e�ective sti�ness and compliance matrices follow from

Lvoigt = cEWLEW + cLWLLW, Mreuss = cEWMEW + cLWMLW, (6.24)

where cEW = 0.69, cEM = 0.31 stand for the volume fractions of the earlywood and
latewood, respectively.

Table 6.2: E�ective elastic properties from four-step homogenization

Level EA GA νA ET GT νT GA/EA

[GPa] [GPa] [�] [GPa] [GPa] [�] [�]
Cell wall (MFA=0◦) 42.34 2.91 0.25 9.23 2.74 0.42 0.07
Cell wall (MFA=30◦) 22.72 6.45 0.45 8.73 3.27 0.34 0.28
Wood (MFA=0◦) 22.56 1.09 0.25 2.22 0.82 0.36 0.05
Wood (MFA=30◦) 12.07 2.30 0.45 2.49 0.88 0.31 0.19

But before proceeding with this machinery we return back to the level of cell wall.
The literature o�ers a number of evidences suggesting a non-zero MFA. The results pro-
vided by nanoindentation is just one particular source [37, 38]. In conjunction with this
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approach one may run a solution of a certain inverse problem to estimate the distribu-
tion of MFA from a large pool of nanoindentation measurements to be compared with
the outcomes of homogenization. A rigorous approach based on the theory of anisotropic
nanoindentation has been o�ered in [39]. We revisited this approach in [40] where detailed
comparison between the MFA estimates provided by both the isotropic and anisotropic
theory of nanoindentation and Pilodyn type of macroindentation is given. When limiting
our attention to anisotropic theory of nanoindentation we receive the value of MFA= 30◦

calculated as an average from 50 nanoindentations. The corresponding values of elastic
sti�nesses are stored in the 2nd row of Table 6.2.

Given the particular value of MFA it is now possible to project the local properties,
calculated in the direction of crystalline cellulose, along the direction of lumens, say x3.
Further suppose, that MFA is de�ned as the angle between the x3-axis and a line xMFA

contained by a plane being perpendicular to the x1x2 plane, i.e. the plane normal to the
x3-axis. If no preferential direction of this plane is assumed than orientation averaging is
employed to account for all possible orientations of the x3xMFA plane. In case of discrete
averaging the moduli in the 2nd and 3rd rows of Table 6.2 were extracted from

〈〈
LCW

〉〉
=

1

N

N∑
i=1

LCW(αi,MFA, 0), (6.25)

were N → ∞ and LCW is the sti�ness matrix of the homogenized material surrounding
the lumens, thus the properties of the cell wall. This results in a transversely isotropic
material. These properties then enter the subsequent homogenization steps at the level
of earlywood, latewood and laminate to get the searched value of the e�ective rG/E ratio.

To conclude this part of the study point out that the averaging based on Eq. (6.25)
corresponds to the Voigt type of bound. It is worth mentioning that an analogous
approach having attributes of the Reuss averaging, i.e. the sti�ness matrix L is replaced
with the compliance matrix M in Eq. (6.25), predicts for the same searched indentation
modulus a di�erent, typically much smaller, value of MFA so that

〈〈
LCW

〉〉−1 ̸=
〈〈
MCW

〉〉
,

although EReuss
A ≈ EVoigt

A . This is not the case when orientation averaging is performed
directly within the Mori-Tanaka method, see e.g. [13, 41, 42], rendering a unique value
of MFA being almost identical to the Voigt bound further supporting the present choice
of Eq. (6.25). Some improvements can be expected if adopting the lamination theory
outlined in [43].

The e�ective properties of the clear wood are listed in the last two rows of Table 6.2
together with the rGE ratio. Clearly, neglecting the non-zero value of MFA largely
overestimates the actual wood sti�ness.

6.4.4 Selected parameters of prior distributions

Based on the previous experimental-numerical studies the following limits on top level
prior distributions listed in Table 6.3 were chosen in this study. Clearly, some of them
are unnecessarily wide. But this is done on purpose to show the robustness of Bayesian
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inference in conjunction with the MCMC method and support the choice of observable
parameters to drive the updating process.

Table 6.3: Minimum and maximum values of the top level parameters set in the uniform
prior distributions

Parameter Unit lower limit upper limit
µE GPa 4 30
σE GPa 0.05 4
σw mm 0.1 2
σγ � 0.00001 0.0002
σd mm 0.1 4
A GPa 19.367− 5.0 19.367 + 5.0
B GPa/mm −2 0
rGE � 0.05 0.5

6.5 Finite element model of laminated timber beam

To provide the theoretical values of the vertical displacement w̃ij and the average shear
strain γ̃j from deterministic relations (6.3) and (6.5) the four point bending test was
simulated by means of the Finite Element Method (FEM) assuming one-dimensional
beam elements to discretize the laminated beam at hand. The element formulation is
based on the Mindlin beam theory taking both the curvature and shear strain into account
as outlined next in Section 6.5.1. Although quite simple and e�cient the resulting �nite
element model will appear still to complex for a direct use with the JAGS software.
Therefore, a further simpli�cation, discussed in Section 6.5.2, is needed.

6.5.1 Element sti�ness matrix and discretization

To formulate the bending and shear sti�nesses of the beam we �rst express the e�ective
properties of a rectangular cross-section which consists of eight layers, recall Fig. 6.1(b),
with di�erent values of E and G, see Figure 6.7(a).

In what follows, Em denotes the value of Young's modulus, Gm is the shear modulus
and zm is the distance between the mth segment center and the center of the entire
cross-section. The homogenized bending sti�ness of the cross-section then becomes

Db = bd3
1

12

8∑
m=1

Em + db
8∑

m=1

Em(zm − zT )2, (6.26)
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(a) (b)

Figure 6.7: a) Geometry of the laminated timber beam cross-section, b) Model of lami-
nated timber beam (note that rectangles denote nodes and the connecting lines denote
elements)

where d and b are the board width and thickness, respectively, and zT represents the
position of the centroid of the homogenized cross-section written as

zT =

8∑
m=1

Emzm

8∑
m=1

Em

. (6.27)

The homogenized shear sti�ness of the cross-section reads

kGA =
D2

b b
2

bd
8∑

m=1

(ES)2m
Gm

, (6.28)

where

(ES)m = bd
8∑

n=m

En(zn − zT ). (6.29)

Conventionally, the vector of nodal forces of the �nite element is expressed as a product
of the element sti�ness matrix and the vector of nodal displacements

Re = Kere. (6.30)
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Omitting the axial forces, which are zero during a pure bending, we express the vectors
of nodal forces and displacements as

Re = {Z1,M1, Z2,M2}T, (6.31)

re = {w1, φ1, w2, φ2}T. (6.32)

The associated sti�ness matrix of the beam element with the length L simpli�es to

Ke =
2Db

(1 + 2κ)L



6

L2
− 3

L
− 6

L2
− 3

L

− 3

L
2 + κ

3

L
1− κ

− 6

L2

3

L

6

L2

3

L

− 3

L
1− κ 3

L
2 + κ


, (6.33)

κ =
6Db

kGAL2
. (6.34)

Apart from the material properties of participating boards Em, Gm the element sti�-
ness matrix depends on the element length Le. This length is chosen such as to span
the distance between the two closest �nger joints in the entire beam as schematically
illustrated in Fig. 6.7(b). With reference to Fig. 6.1(b) we arrive in this particular case
at a �nite element model having 8 elements of a di�erent length, recall Fig. 6.1(b).
Obviously, the element sti�ness matrix remains constant within each element but may
change from element to element depending on the actual values of Ek, Gk in a given
board k = 1, . . . , Nb generated when constructing a Markov chain during the Bayesian
inference.

Upon assembly we obtain a system of liner equations to provide unknown nodal
displacements and rotations for a given value of the applied load. Using the standard
shape functions for beam elements we express the displacements at the three monitored
points, i.e. w1 = w(x = l/3), w2 = w(x = l/2) and w3 = w(x = 2l/3), and the average
shear strain γ = γ(x = 0) above the left support.

For the use within the hierarchical stochastic model it is convenient to think of the
FEM computations as a simple function mapping an arbitrary set of values Ek, Gk and
the load force Fj to the displacements w̃ij and shear strain γ̃j at measured points as,
recall Eqs. (6.3) and (6.5),

w̃ij = fi(E,G)Fj , γ̃j = fγ(E,G)Fj . (6.35)

Although the MCMC programs are capable of calling a user de�ned function from
an external module, this approach can be limiting for two reasons. First, the function
(the �nite element model) has to be implemented exclusively in C++, compiled only with
recommended compiler and wrapped up in module class implementing speci�c interfaces.
Even though the process of creation custom module is documented to a certain level it can
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be quite demanding to wire things together correctly. The second potential reason is the
performance limit. The custom function is evaluated every time the MCMC algorithm
generates one of typically thousands of samples (outcomes). Therefore, an alternative
approach to overcome these drawbacks is proposed in the next section.

6.5.2 Approximation of FEM model

The objective here is to replace the previously formulated FEM model with its suitable
approximation, which can be directly implemented in the stochastic model de�nition
and is also faster to evaluate. In the present context, it follows from the linearization of
function fi in Eq. (6.35)1 in the form

f i(E,G) = fi(E0,G0) + (∇fi)E0,G0
· (E −E0,G−G0). (6.36)

The derivatives of fi with respect to the components of E are precomputed numerically
as

∂fi
∂Ej

∣∣∣
E,G

≈ fi(⟨Ek + δjkh⟩, ⟨Gk⟩)− fi(⟨Ek + δjkh⟩, ⟨Gk⟩)
2h

, (6.37)

where h represents a small change in the particular value of Ek. The partial derivatives
of fi with respect to the components of G are computed analogically. Similar actions
are taken to get an approximation to function fγ in Eq. (6.35)2. The applicability of
Eq. (6.36) has been tested in [18] by comparing predictions provided by this simpli�ed
approach with a detailed two-dimensional �nite element simulations for given values of
material parameters. The components of vectors E0,G0 were chosen based on homoge-
nization.

Having the precomputed function values and derivatives at hand the evaluation of
the approximated function (6.36) involves only matrix operations which are trivial to
express in the dialect of modeling language provided by JAGS.

6.6 Resulting estimates of posterior distributions

Running the model in the JAGS program produces a Markov chain (a sequence of samples
of random parameters) whose stationary distribution is the searched posterior joint prob-
ability distribution π(⟨Ek⟩, µE , σE , σw, σγ , σd, A,B, rGE |⟨wij⟩, ⟨γj⟩, ⟨dkl⟩) in Eq. (6.20)
conditional on the measured data ⟨wij⟩, γj , ⟨dkl⟩. Picking only the components of the
chain pertinent to a given parameter allows us to estimate the corresponding marginal
distribution. These are plotted in terms of histograms together with the original uniform
prior distributions in Figs. 6.8�6.11. The basic statistics of individual distributions are
summarized in Table 6.4.5

It is obvious that our original, relatively vague, knowledge of these parameters has
been considerably improved. In particular, given a relatively large number of measure-
ments, even though assuming an elastic response throughout the loading process, pro-
vided a very clear indication of the measurement errors. Second, almost a deterministic

5Recall that measurements from the GLT-2 beam were exploited in the Bayesian updating.
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Table 6.4: Resulting statistics of the top level parameters extracted from the resulting
Markov chain

Parameter Unit expected value standard deviation
µE GPa 12.30 0.191
σE GPa 0.655 0.222
σw mm 0.269 0.023
σγ � 1.21× 10−5 1.83× 10−6

σd mm 1.30 0.049
A GPa 20.15 0.109
B GPa/mm -0.766 0.187
rGE � 0.16 0.0017
µPO
E GPa 13.59 0.83
µPU
E GPa 12.31 1.13

value of the identi�ed mean of the Young modulus of wood indicates that the four point
bending test is a �correct� experiment to update this parameter. This is supported by
the results in Fig. 6.10(b). Take note that the average of the rGE ratio amounts to 0.16
which is rather close to the ratio predicted by homogenization, recall the last row in
Table 6.2. Finally, the results in Fig. 6.11 con�rm a truly empirical format of Eq. (6.22)
suggesting that a considerable scatter of Young's moduli can be expected if using solely
this equation for their estimation.

In [18] the prior distributions were estimated directly from statistics of Young's moduli
derived for individual boards purely from indentation. It might therefore be interesting
to compare these distributions with those provided by the present model. This can be
done as the MCMC produces samples of Ek for each board, recall Eq. (6.9). We plot the
resulting histograms for the selected boards in Fig. 6.12. It is perhaps fair to mention
that in some cases, recall Fig. 6.1(b), the construction of PDF from Eq. (6.22) relies,
as mentioned before in Section 6.4.2, on a limited number of indents. Nevertheless, the
message is clear. In particular, improvements to our initial assumption in the distribution
of Ek can be expected in boards which may considerably a�ect the measured vertical
displacements as is the case of, e.g. boards No. 14, 15, presented in Figs. 6.12(a,b). On
the contrary, boards No. 11, 13, 16 have smaller e�ect on the vertical de�ection which
causes a wider spread around the mean value, see also Table 6.5. Both these, rather
intuitive, �ndings are consistent with the Bayesian inference which strongly depends on
the construction of a suitable likelihood function.

A �nal note to this subject addresses the updated parameters A,B. Undoubtedly,
if these are introduced in the Pilodyn equation (6.22), a better prediction of the Young
modulus, measured by the expected value, is achieved, both in terms of the mean value
and standard deviation.

This is also supported by the statistics found from all measurements for individ-
ual beams when compared to the associated equivalent bending modulus in Table 6.1
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Figure 6.8: Prior and posterior distribution of Young's modulus of wood: (a) µE (b) σE
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Figure 6.9: Prior and posterior distribution of measuring errors: (a) σw, (b) σγ
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Figure 6.10: (a) Prior and posterior distribution of (a) measuring error σd and (b) ratio
rGE

provided by familiar formula, see e.g. [7],

Eeq =
3aL2 − 4a3

2bh3
(
2
w2 − w1

F2 − F1
− 6a

5Gbh

)
,

(6.38)
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Table 6.5: Statistics of Young's moduli in each lamina provided by the Pilodyn equa-
tion (6.1) using original (PO) and updated (PU) parameters A,B and extracted directly
from posterior (pos) marginal distribution; li is the board length, Nind is the number of
indentations in a board

i li Nind µPO
E σPO

E µPU
E σPU

E µposE σposE

[m] [GPa]
1 2.53 28 13.87 0.85 12.69 1.16 12.56 0.16
2 1.67 18 14.45 0.62 13.48 0.84 13.45 0.36
3 2.026 22 13.08 0.76 11.61 1.04 11.60 0.30
4 2.174 24 12.69 0.85 11.08 1.16 11.28 0.32
5 2.015 22 13.38 0.63 12.02 0.86 12.01 0.23
6 2.185 24 13.92 0.58 12.76 0.79 12.74 0.22
7 1.686 18 13.86 0.76 12.67 1.04 12.61 0.24
8 2.514 28 13.68 0.72 12.43 0.98 12.44 0.20
9 1.37 16 13.08 0.73 11.61 1.00 11.69 0.31
10 2.83 30 13.47 0.75 12.14 1.02 12.17 0.20
11 1.128 14 13.32 0.51 11.93 0.70 11.97 0.28
12 3.072 32 13.27 0.60 11.87 0.81 11.92 0.22
13 0.354 6 14.13 0.77 13.03 1.05 12.81 0.38
14 3.846 40 14.12 0.87 13.03 1.19 12.98 0.21
15 3.588 38 13.65 0.67 12.38 0.92 12.37 0.13
16 0.612 8 13.36 0.57 11.99 0.77 12.08 0.33

where a is the distance between the point of load application and the support, L, b, h
are the length, width and height of the beam, respectively, F2−F1 is the rate of loading
within the load interval between 0.1Fu and 0.4Fu, w1, w2 are the associated de�ections
and G is the shear modulus, which is often neglected. For illustration, this quantity
is compared for the GLT-2 beam with the statistics of the moduli found for individual
elements Ee

eq from Eq. (6.26) when dividing the homogenized bending sti�ness Db by
the beam moment of inertia I = bh3/12. The marginal distributions of Ek pertinent to
individual boards (k = 1, . . . , 16) were adopted. In particular, the actual values from
Markov chain EI

k (I = 1, . . . , 5000) were associated with Em for a given board in a
given element in Eq. (6.26). The results are listed in Table 6.6. The equivalent bending
modulus in the last row of this table, recall also Table 6.1, was calculated from Eq. (6.38)
setting both G = 0 and G = 2.3 GPa (the value of longitudinal shear modulus found
from homogenization), but the di�erence was negligible.

This �nally brings us to the point of checking, whether the improved parameters A,
B of the Pilodyn equation allow for better predictions when adopted in the analysis of a
di�erent beam, which falls at least into the same strength class. To that end, the GLT-1
and GLT-3 beams were evaluated numerically and compared with laboratory measure-
ments. This comparison in terms of vertical de�ection and average shear strain appears
in Table 6.7. Note that when computing the homogenized bending and shear sti�nesses
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Table 6.6: Statistics of the equivalent element bending moduli derived from through
thickness homogenization for GLT-2 beam

Element No. µEe
eq

[GPa] σEe
eq

[GPa]
1 12.34 0.082
2 12.36 0.056
3 12.36 0.054
4 12.36 0.054
5 12.36 0.054
6 12.35 0.052
7 12.61 0.094
8 12.53 0.131

Average 12.41
Experiment Eq. (6.38) 12.15

Table 6.7: Comparison of the measured and predicted vertical de�ections w and the
average shear strain γ for the associated load F = 50 kN for individual beams

Beam Method w1 w2 w3 γ
[mm] [-]

Measured 18.5 20.8 18.4 0.00046
GLT-1 FEM-PO 15.6 17.9 15.6 0.00037

FEM-PU 17.0 19.6 17.1 0.00041
Measured 17.2 19.7 17.9 0.00039

GLT-2 FEM-PO 15.8 18.2 15.9 0.00035
FEM-PU 17.4 20.1 17.5 0.00040
Measured 21.7 23.9 21.2 0.00051

GLT-3 FEM-PO 17.2 19.7 17.1 0.00038
FEM-PU 19.6 22.6 19.6 0.00044

of individual elements, only the averages of Young's moduli for individual boards, found
adopting either the original (FEM-PO) or the updated (FEM-PU) parameters A, B, were
used.

Obviously, almost perfect match is found for the GLT-2 beam when comparing the
measurements and the results from FEM-PU. For other two beams it is not as good, but
the improvement in the prediction of the beam response with FEM-PU in comparison to
FEM-PO is clear.

It remains to verify that the proposed linearization is adequate in view of the actual
FEM analysis. To that end, individual samples generated in the Markov chain were
again exploited. In particular, 5000 pairs of Ek, Gk within each board were adopted to
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calculate mid-span de�ections of the GLT-2 beam for the load level of 50 kN using both
the linearized (wLIN ) and FEM (wFEM ) models. The results summarized in Table 6.8 in
terms of means and standard deviations from 5000 realizations indicate that linearization
introduces an error of about 0.15%, which is negligible.

Table 6.8: Comparing mid-span de�ection of GLT-2 beam for the load level of 50 kN
provided by linearized and FEM models

Method µw [mm] σw [mm]
Linearization (wLIN ) 20.05 0.057
FEM (wFEM ) 20.09 0.054
Di�erence (∆w = |wFEM − wLIN |) 0.03 0.006

6.7 Conclusions

A stochastic hierarchical model developed on the basis of a four-point bending test of
a glued laminated timber beam was presented. Treating the material as characterized
by random variables the Bayesian statistical theory was exploited to improve our initial
(prior) information about their variability. The presented results o�er the following
conclusions:

� Grounding the formulation of the likelihood function on vertical displacements
for updating the expected value of the longitudinal Young modulus µE appears
reasonable, recall Fig. 6.8(a).

� The Bayesian inference enhanced by the MCMC method allowed us to quantify a
natural variability of the elastic properties for di�erent pieces of spruce appearing
in the beam, recall Fig. 6.12.

� Although not directly related to the stochastic model, the present study veri�ed
the simple FEM model of a beam with the homogenized layered cross-section.

� One may notice a certain di�erence in the posterior mean value of the longitudinal
Young modulus µE in comparison to the predictions provided by homogenization.
In particular, a slight increase in the Young modulus and a slight decrease in the
shear modulus provided by the Bayesian inference is observed. While these param-
eters are controlled solely by the macroscopic data, i.e. de�ection and shear strain
of the beam and its computational simpli�cation in FEM analysis, the homogenized
properties depend primarily on the local elastic properties and microstructural de-
tails. We would like to point out that in homogenization only the MFA was taken
as a random parameter whereas other parameters such as volume fractions of lu-
mens of early and latewood were assumed deterministic and derived from a single
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sample only. Much e�ort is now being invested into this issue and the results are
to be published shortly.

However, explaining this di�erence is perhaps much simpler. First, no account has
been made to the e�ect of glue in deriving the homogenized cross-sectional sti�ness
parameters of a beam element, recall Eqs. (6.26)�(6.29). Next, the di�erences in
moduli can also be attributed to the Mindlin assumptions reducing the number of
degrees of freedom of the cross-section in warping.

Thus to avoid further confrontation of the two vastly di�erent approaches we may
associate the posterior estimates of material parameters not directly with wood but
rather with the glued laminated beam made of spruce representing the adopted
simpli�ed FEM model. Such parameters might be recommended to use when pre-
dicting the response of similar beams in other practical applications. This can
be supported by the results obtained for GLT-1 and GLT-3 beams when using
the updated Pilodyn equation parameters A,B to estimate the longitudinal elastic
sti�ness of individual boars making up those beams. Recall that these updates
were found from the application of experimental data associated with other GLT-2
beam.

While still to be con�rmed by a large experimental program we wish to conclude that
with these updated information we should be able to predict, hopefully more accurately,
the values of the vertical de�ection in case of another laminated beam. If the new beam
is tested by the Pilodyn device we may estimate the values of Young's moduli in each
board by conditioning the distribution of E ∼ N (µE , σE) on the measured data. These
values would then enter the FEM model. One option would be to get the most probable
value of the de�ection using the highest likelihood estimates of the model parameters.
The second option would require sampling parameters from the posterior distribution
to obtain the corresponding samples of de�ections and subsequently to compute the
con�dence intervals for de�ections.
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Appendix

Bayes' theorem is the only way in which a coherent analyst can update his/her state of
knowledge [15]. One of the most useful formulas in the theory of applied probability,
Bayes' theorem, can be derived by using the concept of conditional probability in this
form

P (A|B) =
P (B|A)P (A)

P (B)
∝ P (B|A)P (A). (6.39)
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Let A represent a proposition of interest and B some new information. Bayes' theorem
states that the analyst's probability A, given new evidence B, is proportional to the
product of the probability for the truth of A prior to the collection of new evidence, i.e.
P (A), and the probability that evidence B would be observed if A is indeed true, i.e.
P (A|B). The proportionality (normalizing) constant is provided by P (B).

Let now A be a continuous model parameter Θ, e.g. the shear modulus. Then the
probability that ϑ ≤ Θ ≤ ϑ+ dϑ (before collecting new evidence B = E) is

P (ϑ ≤ Θ ≤ ϑ+ dϑ) = fΘ(ϑ) dϑ, (6.40)

and Eq. (6.39) assumes this form

π(ϑ|E) ∝ L(Eϑ)fΘ(ϑ), (6.41)

where L(E|ϑ), the analog to P (B|A) is called the likelihood function. It either the con-
ditional probability of observing E (e.g. the beam's de�ection), given ϑ, or proportional
to that probability; fΘ(ϑ) is the prior probability density function. In this paper it is
expressed hierarchically, recall Section 6.3. The posterior probability density function
π(ϑ|E) is to be obtained, e.g. using the JAGS computer code.
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Chapter 7

Bayesian inference as a tool for

improving predictions of e�ective

elastic properties of wood

This chapter presents the preprint version of the journal paper

�ejnoha, M.; Janda, T.; Vorel, J.; Kucíková, L.; Padev¥t, P.; Hrbek, V., Bayesian
inference as a tool for improving estimates of e�ective elastic parameters of wood,
Computers and Structures. 2019, 218 94-107. ISSN 0045-7949.

reformatted to align with the style of the thesis.

7.1 Abstract

A simple approach to the identi�cation of geometrical and material uncertainties of wood
is presented. This stochastic mechanics problem combines classical micromechanics, com-
putational homogenization and experimental measurements with Bayesian inference to
estimate potential errors in the prediction of macroscopic elastic properties of wood
caused by randomness of microstructural details on the one hand and experimental error
on the other hand. The former source of uncertainty includes, for example, variability
in micro�bril angle and growth ring density. Even such limiting consideration of random
input illustrates the need for combined computational and experimental approach in a
reliable prediction of the desired material properties. Tying the two approaches in the
framework of Bayesian statistical method proves useful when addressing their limitations
and as such giving better notion on the credibility of the prediction. This is demonstrated
here on one particular example of spruce wood.

7.2 Introduction

In recent years, the Bayesian inference has been successfully exploited in many �elds
of engineering particularly in cases where the material, model or even computational
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uncertainty is relatively high [1, 2, 3]. In case of wood the concept of Bayesian statistics
has been adopted, e.g. in [4, 5, and references therein] to narrow down uncertainty of
the computed as well as locally measured elastic moduli of individual plies of a glued
laminated timber (GLT) beam.

While elastic response of such structures may not draw particular attention, the issue
of uncertainty quanti�cation gains importance once exceeding the strength limits. A
reliable description of fracture is then driven by the overall material anisotropy. Even
if limiting attention to macroscopically orthotropic systems, the determination of all
material constants purely experimentally is a challenging task introducing, apart from
aleatory, also the epistemic uncertainties associated with the measurements.

Other method of attack o�ers homogenization [6, 7]. Such an analysis requires knowl-
edge of material properties of various material components on very low scale and detailed
description of wood microstructure. This approach is certainly appealing from the en-
gineering point of view as it provides the full sti�ness matrix at a macroscopic material
point while accounting for the overall material anisotropy speci�ed by the material sym-
metry of local phases and microstructural details of wood. A single value (deterministic)
prediction may, however, be rather erroneous given large scatter in local properties and
microstructure complexity of natural materials.

It is therefore logic to combine both experimental and numerical approaches in order
to identify/limit errors, which may arise, if applying them independently. This brings us
back to Bayesian inference as a method, which provides their natural link. Such a way
of thinking makes it possible to formulate the principal objectives of this contribution:

� Derive macroscopically homogeneous sti�ness matrix of spruce wood by incorpo-
rating homogenization, nanoindentation at cell wall level, and macroscopic tensile
tests into the framework of Bayesian inference.

� Alongside this, focus on properly addressing an experimental uncertainty with em-
phases on identifying a measurement error as it plays a crucial role in successfully
completing the above task.

In case of input variables we admit variability in micro�bril angle orientation and dry
wood density of earlywood, i.e. volume fraction of earlywood within an annual ring, only.
Therefore, the elastic properties of individual constituents building the cell wall together
with their volume fraction and the volume fraction of lumens within the earlywood and
latewood are considered constant. An initiative work on this subject can be found in [8].
To arrive at the desired results we organize the remainder of the paper as follows.

In Section 7.3 we provide a brief theoretical background of analytical and computa-
tional micromechanics to formulate the forward deterministic model for the prediction
of e�ective properties on individual scales. This step relies on the de�nition of relevant
volume fractions. Measurements on a series of wood specimens presented in [9] suggest
constant values of volume fractions of lumens in both earlywood and latewood. On the
contrary, a notable variability of dry wood density from specimen to specimen and thus
also the associated variability of volume fraction of earlywood within growth rings has
been observed. It would thus appear reasonable to treat this parameter as random in
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stochastic simulations. Within the present concept of Bayesian updating this would,
however, required knowing the variation of earlywood volume fraction from ring to ring
in a given specimen. Because this detailed information is not available at present and
the variability measure is provided only in terms of the bulk value, the average volume
fraction of earlywood pertinent to the whole specimen, we considered this variable also
constant in Bayesian inference but variable from specimen to specimen in the homoge-
nization step.

An extensive experimental program to provide measured data of observed variables
needed in Bayesian inference is summarized in Section 7.4. In Section 7.4.2 we begin with
measurements of indentation moduli at cell wall level. Following in footsteps of [10, 11]
by employing the theory of anisotropic indentation described in details in [12, 13] allows
us to introduce a link between the only currently assumed random variable, the micro�b-
ril angle (MFA), and the theoretically calculated indentation modulus. This step calls for
homogenization, because expressing the indentation modulus requires the knowledge of
cell wall sti�ness. While a direct comparison of theoretically derived and measured inden-
tation moduli appear su�cient in estimating MFA, we proceed further in Section 7.4.1
with macroscopic tensile tests on elastic longitudinal modulus and Poisson ratio, con-
sidered also random, to support/decline the credibility of the measured nanoindentation
moduli.

The principal part of this contribution, the Bayesian inference, is �nally described in
Section 7.5. An engineering friendly introduction to this subject is provided in [14, 15].
Similarly to [1, 2, 5], the proposed formulation introduces a hierarchical stochastic model
that allows us, through the application of Bayes theorem, to improve our prior knowl-
edge on input random parameters given the measured data. Mathematically, such im-
proved/updated notion about random variables is represented by their posterior joint
probability distribution function. Because the measurement error of the observed (mea-
sured) variables is also considered random with some prior distribution, the Bayesian
updating naturally reveals the epistemic uncertainties of the adopted experimental data.
The posterior distribution function is typically constructed numerically from simulations
employing the Markov chain Monte Carlo (MCMC) algorithm [16]. The theoretical
formulation of the present stochastic model is given in Sections 7.5.2 and 7.5.3, while
speci�cs on numerical implementation together with obtained results are described next
in Section 7.5.4.

The list of essential conclusions and some potential future perspectives are provided
in Section 7.6.

7.3 E�ective elastic properties from homogenization

Since the early work of Eshelby [17] and Hill [18] analytical micromechanics based models,
although ignoring the inhomogeneity of local deformation and stress �elds, have proved
useful in many areas of engineering. Among them, the Mori-Tanaka [19] method has
enjoyed a particular interest. In some applications, detailed distribution of local �elds
is important, which calls for numerical simulations performed on microstructure based
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computational models, unit cells [20]. A comprehensive overview of both analytical and
numerical homogenization schemes is available in [21, 22]. In many applications that
require hierarchical homogenization, the two approaches are often combined.

Lignin
Hemicellulose

Cellulose

(a) (b) (c)

Figure 7.1: a) Cell wall level (schematic representation of micro�brils [6] embedded in
the matrix of lignin), b) Level of lumens (binary image of earlywood), c) Level of annual
rings (gray scale image suggesting laminate like structure of earlywood and late wood)

To introduce this subject, we draw the reader's attention to Fig. 7.1 identifying three
scales we consider here in the derivation of e�ective elastic properties of spruce wood.
To be consistent with [9] we build our homogenization model at the cell wall level on
the data adopted from [6]. Therein, a multilayered structure of cell wall is simpli�ed to
three layers: M layer (middle lamella, primary wall and outer layer of secondary wall S1),
S2 layer (middle layer of secondary wall), and S3 layer (inner layer of secondary wall).
Each layer is further decomposed into three basic phases: lignin, hemicellulose, cellulose
(crystalline and amorphous). Their elastic properties are listed in Table 7.1. Because of
limited information, these parameters are assumed constant (deterministic). The same
assumption is accepted for the phase volume fractions in individual layers. Other cell
wall constituents such as extractives and water were neglected.

Table 7.1: Phase properties at cell wall level and their volume fractions in M, S2 and S3
layers [6].

Local E11 E22,33 G12,13 ν21,31 ν23 Volume fractions [-]
constituents [GPa] [GPa] [GPa] [-] [-] M S2 S3
Cellulose 150.00 17.50 4.50 0.01 0.50 0.20 0.49 0.49
Hemicellulose 16.00 3.50 1.50 0.10 0.40 0.15 0.27 0.27
Lignin 2.75 2.75 1.03 0.33 0.33 0.15 0.27 0.27

Considering a statistically homogeneous and ergodic distribution of the basic con-
stituents building the cell wall opens the way to the application of the Mori-Tanaka
method to establish e�ective properties on this smallest scale. Referring to Fig. 7.1(a)
these are found in two steps imagining �rst an elliptic cylinder like cellulose in the matrix
of hemicellulose. This new homogeneous inclusion (micro�bril) of a similar shape is then
introduced in the matrix of lignin. The ratio of major to minor semi-axes of the elliptical
cross-section is taken from [6] being equal to 3 and 2.5 for S2 and S3 layers and 5 and
3.5 for M layer for the two homogenization steps, respectively. In each step, a two-phase
composite is therefore considered which results in the estimate of the e�ective sti�ness
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matrix in the form

Lhom
cw = L0 + f1(L1 − L0)A

dill
1

(
f0I+ f1A

dill
1

)−1
, (7.1)

where L0 and L1 are the sti�ness matrices of the matrix and inclusion, I is the second
order identity tensor, f0 and f1 are the volume fractions of corresponding phases, and
Adill

1 is the partial strain concentration factor of the inclusion given by

Adill
1 =

(
I+ S1L

−1
0 (L1 − L0)

)−1
, (7.2)

where S1 is the Eshelby tensor depending on the inclusion shape.
At the level of lumens, Fig. 7.1(b), the microstructure images allow us to construct

a realistic computational model, a unit cell (UC). A reasonable point of departure in
constructing the UC model would be to treat the cell wall thickness and shape and area of
lumens as random and derive, by matching material statistics of real microstructure and
UC, the so called statistically equivalent periodic unit cell (SEPUC) [20, 22]. However,
this step goes beyond the present scope and we settle for a simple model based on an
hexagonal arrangement of lumens of both earlywood and latewood, respectively, and
constant cell wall thickness.
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Figure 7.2: Geometry and plane view of discretized PUCs: a) earlywood, b) latewood;
c) Dimensions of M (green), S2 (red) and S3 (blue) layers

The corresponding periodic unit cells (PUC) are displayed in Fig. 7.2(a,b). Both mod-
els involve all three layers of the cell wall. This is evident from Fig. 7.2(c) schematically
showing the PUCs dimensions1. These dimensions were obtained by �rst associating the
inner dimensions of lumens with the major and minor semi-axes of the ellipse approxi-
mating their real shape. An experimental study performed on the analyzed specimens of

1Dimensions pertinent to latewood are given in parentheses.
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spruce, see [9, 23] and Fig. 7.3, further revealed more or less constant volume fractions of
both earlywood (EW) and latewood (LW) set equal to flum,EW = 0.69 and flum,LW = 0.12
in the present study. The estimated cell wall thickness together with volume fractions of
individual layers taken again from [6], see Table. 7.2, then rendered the �nal geometry
of both PUCs.
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Figure 7.3: Volume fraction of a) lumens in earlywood and late wood, b) earlywood of
tested specimens with a given dry wood density

It is well known that micro�brils wound helically within the cell wall and are not
perfectly aligned with the longitudinal (lumen) direction. Instead, they deviate by a
certain angle called the micro�bril angle. This is schematically shown, together with
the assumed local coordinate system2, in Fig. 7.2(c). The corresponding Euler angles
following z−y′−z′′ convention then serve to transform the homogenized sti�ness matrix
provided by Eq. (7.1) into the global coordinate system of the unit cell.

Table 7.2: Volume fraction and MFA of individual cell wall layers [6].
Layer M S2 S3
fM,S2,S3(EW) 0.352 0.609 0.039
fM,S2,S3(LW) 0.117 0.870 0.013
MFA [◦] ± 45 ± MFA ± 75

The fact that S2 layer is the principal carrier of the wood sti�ness promotes itsMFA be
considered random, while the remaining two layers adopt constant values speci�ed in
Table 7.2.

The computational homogenization then follows the lines outlined in [24]. To that
end, suppose that the composite is loaded on its external boundary by displacements
compatible with the macroscopic strain E. The local displacements and strains then
split into homogeneous and �uctuating parts as

u = E · x+ u∗, ε = E + ε∗. (7.3)

For the prescribed displacement boundary conditions the Hill lemma reads

1

Ω

∫
Ω
δεTσ dΩ = 0, (7.4)

2Axis 1 is reserved for the micro�bril direction assuming MFA=0◦.
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where Ω is the volume of the unit cell. Substituting Eq. (7.3)2 into Eq. (7.4) yields∫
Ω
δε∗TLε∗ dΩ = −

∫
Ω
δε∗TLE dΩ, (7.5)

where L is the local sti�ness matrix. Eq. (7.5) is typically solved using the �nite element
method. The periodic boundary conditions are generally adopted to enforce the volume
average of the �uctuation part of strain �eld ε∗ disappear, see e.g. [22]. In deriving the
homogeneous sti�ness matrix at the level of lumens Lhom

lum we load the unit cell in turn
by each component of E, while the other components vanish. The corresponding volume
stress averages normalized with respect to E then furnish individual columns of Lhom

lum .
The last homogenization step is concerned with the level of annual rings where the

parallel arrangement of the earlywood and latewood, recall Fig. 7.1(c), suggests ap-
plication of lamination theory [25]. This step, which involves the volume fractions of
earlywood and latewood within annual rings, renders the searched homogeneous sti�ness
matrix of wood Lhom

w .
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Figure 7.4: Variation of a) elastic modulus EL, b) Poisson ratio νLR as a function of
MFA assuming dry wood density ρdry = 410 kgm−3

For illustration, in Fig. 7.4 we plot the distribution of the macroscopic elastic modulus
EL and Poisson ratio νLR to be determined also experimentally.

7.4 Experiment

Formulation of the stochastic model presented in Section 7.5 relies on two types of ex-
periments. While nanoindentation may provide an insight into the response of wood at
the lowest considered scale, the macroscopic tensile tests may serve to validate the whole
homogenization process. The two experiments are now brie�y discussed.

7.4.1 Macroscopic tensile tests combined with digital image correlation

The macroscopic tensile tests aimed at determining the longitudinal elastic modulus EL

and Poisson ratio νLR of wood. This notation is consistent with a schematic representa-
tion of specimen orientation and loading conditions in Fig. 7.5(a) so that

εL =
σL
EL

, εR = −νLRσL
EL

, νLR = −εR
εL
. (7.6)
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Fig. 7.5(b) clearly indicates a deviation of grains in real specimens which in turn is the
source of potential mismatch of measured and theoretically derived Poisson's ratio in
particular. An experimental setup is illustrated in Fig. 7.5(c).
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Figure 7.5: a) Specimen geometry and assumed orientation of grains, b) Real orientation
of grains in plane normal to loading direction, c) Example of tensile test setup

The tensile test measurements were carried out on 28 specimens in the displacement
control regime using an electromechanic MTS Alliance RT30kN loading machine. A
standard extensometer with the measurement length of 100 mm, the measurement range
from +5 to -2.5 mm and sensitivity of 0.1% was adopted �rst to measure extension of 20
specimens, see Fig. 7.5(c). To allow for the determination of Poisson's ratio, the results
from 8 specimens were evaluated using digital image correlation (DIC). This approach
has proved useful in many engineering applications where all strain components in the
measured plane are needed [9]. To that end, the examined specimens were airbrushed
with a random pattern of black dots. Tracking the motion and distortion of the speckled
pattern makes possible to evaluate the local strain pro�les. Details on DIC algorithms
are available, e.g. in [26, 27, 28]. Note that our interest here is in the bulk response
only. The local strains are then conveniently provided as volume averages derived from
the evolution of displacements along a certain boundary line Γ as

εij =
1

2A

∫
Γ
(uinj + ujni) dΓ, (7.7)

where ui, ni represent, respectively, the components of the displacement �eld and unit
outward normal to the boundary line. They were derived with the open-source code
Ncorr-Post-CSTool [29, 30].

Three regions displayed in Fig. 7.6 were examined in numerical evaluation of Eq. (7.7).
A potential in�uence of the selected region on the measured strains, a clear example of an
epistemic error, is indicated by averages of elastic modulus and Poisson's ratio calculated
over the range of tensile stress σL ∈ < 20, 60 > MPa, see Table 7.3.
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(a)

(b)

(c)

Figure 7.6: Regions to perform calculation of macroscopic strains: a) region 1, a) region
2, a) region 3

Table 7.3: Elastic modulus EL and Poisson's ratio νLR determined from DIC measure-
ments using Eqns. (7.7) and (7.6)

Specimen Elastic modulus EL [GPa] Poisson ratio νLR [-]
No. Region 1 Region 2 Region 3 Region 1 Region 2 Region 3
1 13.539 13.783 14.009 0.588 0.535 0.409
2 16.918 16.612 16.502 0.558 0.520 0.427
3 14.727 14.828 14.966 0.484 0.485 0.403
4 15.676 16.048 16.017 0.394 0.408 0.382
5 14.867 14.539 14.162 0.760 0.822 0.739
6 12.231 12.337 12.617 0.265 0.243 0.218
7 12.788 12.822 12.843 0.147 0.095 0.067
8 17.472 16.608 16.316 0.706 0.733 0.743
9 14.043 13.739 13.845 0.449 0.488 0.459
10 11.304 11.405 11.496 0.162 0.177 0.181

7.4.2 Nanoindentation measurements at cell wall level

Nanoindentation tests became a common mean of assessing material properties at the
level of microns. Also in timber engineering, applications of this experimental technique
are growing [10, 11, 22, 31, 32, 33]. In the context of this contribution the most relevant
work is that of Jäger et al. [11], where micromechanical homogenization was combined
with indentation into S2 layer to determine MFA. The same strategy is employed hence-
forth focusing also on the prediction of measurement error.

Indentation measurements were conducted on 6 specimens extracted from 6 specimens
tested previously in tension. An attempt was made to identify indents not falling into
S2 layer, which would be excluded from further analysis. Examples of such a visual
inspection appear in Fig. 7.7(a,b). Red and green circles indicate indents potentially
made into M and S3 layers, respectively. Orange circles indicate indents, which are
considered suspicious. A similar attention as to applicability of the collected data was
given to indentation curves in Fig. 7.7(c). All measurements resulting in curves similar
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Figure 7.7: Indentation into: a) earlywood, b) latewood; c) Indentation curves

to the green curve showing oscillations due to local vibrations, the blue curve indicating
an excessive creep, and the red curve associated with a sudden drop in air pressure were
excluded. Thus only measurements associated with curves of a similar shape as the
black one were taken into account. After eliminating all unacceptable measurements we
remained with 507 indents to enter the process of MFA estimation.

In a typical indentation test, an indenter is driven into the material of interest at a
constant loading or displacement rate until a certain load or depth is reached. After a
short hold period, the load is gradually removed from the indenter. During this process,
both load and displacement are recorded continuously. The recovery during the unloading
process, i.e. the initial slope of unloading curve, is then calculated based on the theory
of elasticity as presented, e.g., in [34]

S =
dF

dU
=

2√
π
M exp

√
Ac, (7.8)

where F is the applied load, U stands for the penetration depth and Ac is the projected
area of contact under the indenter and M exp is the indentation modulus.

Because of material anisotropy of S2 layer an anisotropic nanoindentation theory is
needed to relate the measured and theoretically calculated indentation moduli. At this
point, we wish to remain as brief as possible and refer the interested reader to [11, 12, 13]
for details on theoretical formulation. For simplicity, we consider the same arrangement
of indentation test as presented in [11]. In particular, we consider a conical indenter
being driven into a generally anisotropic half space, see Fig. 7.8(a). Therein, xi axes rep-
resent the material local coordinate system with the x1 axis aligned with the micro�bril
direction. The x3 axis, independent of MFA, is located in the loaded area. The loading
direction is assumed to be aligned with the direction of lumens and perpendicular to the
loaded area of a cell wall material.

An approximate solution to this problem departs from Barber's theorem [35] suggest-
ing that the contact area Ac in Eq. (7.8) is the one that maximizes the indentation force
F . Assuming an elliptical shape of contact area and applying this theorem Vlassak et
al. [13] provides a theoretical derivation of indentation modulus Mnum starting from a
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displacement w(r, θ) caused by a concentrated force

w(r, θ) =
h(θ)

r
, (7.9)

where h(θ) is the angle dependent part of surface Green's function [12] and r, θ are polar
coordinates3. A graphical representation, adopted from [11], is plotted in Fig. 7.8(b).
Given this function Vlassak et al. [13] derived, for a �at punch and conical indenter, the
relation between indentation force F and penetration U as4

F (e) =
U2

cot γα(e)E(e)
, α(e) =

∫ π

0

h(θ)√
1− e2 cos2 θ

dθ, (7.10)

where E(e) is the complete elliptic integral of the second kind, e =
√

1− b2/a2 is the
eccentricity of contact ellipse in Fig. 7.8(a), a, b are the major and minor semi-axes,
and γ is the cone angle5. According to Barber's theorem the solution of conical con-
tact, Eq. (7.9)1, is obtained by choosing the eccentricity e that minimizes the product
α(e)E(e). Introducing this equation into Eq. (7.8) then gives the equivalent, theoretically
calculated, indentation modulus in the form

Mnum =
1

α(e)(1− e2)1/4 . (7.11)

3Angle φ in Fig. 7.8 also enters de�nition of h(θ), see [12, 13] for details.
4It is assumed that x3 axis in Fig. 7.8 is taken as the reference direction for de�nition of function

h(θ).
5Note that the Berkovitch indenter with γ = 70.32◦ was used in actual measurements. It has been

suggested in [12] that cone representation of the Berkovitch tip is su�ciently accurate.
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Because de�nition of Green's function requires knowing the whole sti�ness matrix of
S2 layer, which in turn depends on micro�bril angle, it is now possible by matching
the measured and theoretically calculated indentation moduli to get for each indent the
corresponding MFA.

7.5 10.0 12.5 15.0 17.5 20.0

M [GPa]

0

25

50

fr
eq

u
en

cy

20 40 60 80

MFA [deg]

0

50

100

fr
eq

u
en

cy

(a) (b)

Figure 7.9: Histograms of: a) measured indentation modulus M exp, b) micro�bril angle
MFA

Figure 7.9 illustrates the distributions of measured indentation moduli and the corre-
sponding distribution of calculated micro�bril angles. A high variability of the measured
indentation modulus is evident. One also observes a relatively low value of this quantity
on average resulting in a high value of MFA. Inspection of Fig. 7.4(a) then suggests
unrealistically low value of the longitudinal modulus. These issues will be elaborated
next in Section 7.5.

7.5 Bayesian inference

This section follows the usual steps of Bayesian inference to derive the posterior distribu-
tion of the unobservable model parameters. The main advantage of this approach over
single point estimation such as maximum likelihood estimation is that the result contains
information not only about the most probable (optimal) values of the model parameters
but also the information about its possible ranges, e.g. the con�dence intervals.

The distribution of the measured data is speci�ed by a hierarchical system of stochas-
tic and deterministic relations. This system is sometimes called a forward model as it
describes our belief on how the observed random data are generated given certain �xed
values of model parameters and explanatory variables. The forward model thus com-
pletely de�nes the multivariate probability density function (PDF) of data y. Viewing
PDF as a function of model parameters θ, while data y are �xed at their measured values,
de�nes the likelihood p(y|θ). The posterior PDF of the parameters is then given by the
Bayes theorem in the form

p(θ|y) ∝ p(y|θ)p(θ), (7.12)

where p(θ) is the prior distribution and symbol ∝ means that the left hand side is
proportional to the right hand side up to a constant independent of θ.

The posterior distribution de�ned in this manner is typically intractable analytically
but it is possible to sample from it using a variety of Markov chain Monte Carlo methods.
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7.5.1 Observed data

As outlined in Section 7.4, the data from three types of experiments are assumed in
this analysis. Henceforth, the tensile test with axial strains recorded using the contact
extensometer, recall Fig. 7.5(c), will be termed the standard tensile test. The 2nd, 6th
and 10th columns in Table 7.4 identify the number of strain measurements collected at
various stress levels for particular specimens. The number of measurements of axial and
radial strains provided by DIC as described in Section 7.4.1 are available in the 3rd, 7th
and 11th column of Table 7.4. One particular example of such data is plotted in Fig. 7.10
for illustration. The last set of data corresponding to indentation moduli extracted from
nanoindentation measurements described in Section 7.4.2 are available in the 4th, 8th
and 12th column of Table 7.4.

Table 7.4: Overview of specimens: i is the specimen's number, Ni is the number of
stress-strain pairs from the tensile test with extensometer, N ic

i is the number of records
from the tensile test with DIC measurement and Nni

i is the number of indents at i-th
specimen.

i Ni N ic
i Nni

i

1 50 � 77
2 58 � �
3 63 � �
4 64 � 70
5 � 225 �
6 86 � �
7 � 96 �
8 31 � 77
9 33 � �
10 17 � 97

i Ni N ic
i Nni

i

11 � 205 �
12 � 190 �
13 42 � �
14 90 � �
15 76 � �
16 � 132 �
17 52 � �
18 � 113 �
19 � 150 �
20 � 84 �

i Ni N ic
i Nni

i

21 31 � 52
22 52 � �
23 50 � �
24 39 � �
25 60 � �
26 21 � 134
27 51 � �
28 60 � �
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Figure 7.10: Example of experimental data recorded during tensile test with DIC mea-
surements on specimen No. 5
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7.5.2 Hierarchical model

The forward hierarchical model describes how the measured random data are generated
given �xed values of parameters and explanatory avriables6. To specify the model, we
begin by providing notation and a theoretical representation of the available experimen-
tal data. A standard tensile test performed on the i-th specimen provides a sequence of
measured longitudinal strains εL,ij and a corresponding sequence of measured stresses7

σL,ij . Therefore, i ∈ A and j ∈ {1 . . . Ni}, where, with reference to Table 7.4, A repre-
sents a set of specimen numbers that underwent the tensile test and Ni is the number
of data points measured on the i-th specimen. The measured stresses are assumed nor-
mally distributed around a theoretical mean value σij with standard deviation sσ,i. This
relation is written as

σL,ij ∼ Normal(σL,ij , sσ,i), (7.13)

where sσ,i is a top-level parameter8 attributed to each i-th specimen. The prior distri-
butions of all top-level parameters are speci�ed in Section 7.5.3. The theoretical mean
value of the measured stress is given by the one-dimensional Hooke's law in the form

σL,ij = EL,iεL,ij + ai, (7.14)

where EL,i is the longitudinal elastic modulus and ai is the intercept of the stress-strain
diagram on a vertical axis for the i-th specimen. It plays a similar role as the intercept bi
associated with DIC measurements, which is schematically shown in Fig. 7.10(a). Each
intercept ai is a top-level parameter.

As mentioned in Section 7.3, elastic modulus depends (deterministically) onMFA and
the volume fraction of earlywood fEW. Homogenization of wood properties, recall Sec-
tion 7.3, can be regarded as a function gE(MFA, fEW), resp. gν(MFA, fEW), that maps
the micro�bril angle and the volume fraction of earlywood to the longitudinal elastic
modulus EL and the Poisson ratio νLR, respectively. Since these functions have to be
evaluated many times during the MCMC sampling, it is convenient to construct their
faster approximation. In particular, the assumed polynomial representation of the 4th
order is a perfect match to the results derived from homogenization, see Fig. 7.11. Isolines
of these approximations are plotted in Fig. 7.12.

6We distinguish between three types of quantities: The explanatory variables are known and �xed
(or more speci�cally �we do not need to bother to model them as random�[36]). The explained variables

are observable and modeled as random but stochastically related to explanatory variables. In Bayesian
approach the observed explanatory variables are called data. Finally, parameters are the unobservable
quantities that we want to infer from observed data. Since in Bayesian approach all unknown quanti-
ties are considered random, there is no clear distinction between parameters and latent (unobservable)
variables.

7The measured stresses are essentially derived from the reaction force corresponding to the prescribed
displacement as a force divided by the area of specimen cross-section. The term �measured� is used for
convenience to identify them with experiments.

8The top-level parameters are random model parameters with the speci�ed prior distribution, see
Table 7.5.
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Figure 7.11: Comparison of values of a) EL and b) νLR obtained from FEM homogeniza-
tion with the polynomial approximation
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Figure 7.12: Isolines of functions a) gE(MFA, fEW) and b) gν(MFA, fEW)

Therefore, the longitudinal elastic modulus of the i-the specimen can formally be
expressed as

EL,i = gE(MFAi, fEW,i). (7.15)

As already mentioned in the introductory part, see also Fig. 7.3 in Section 7.3(b), the
volume fraction of earlywood varies from specimen to specimen but for a given specimen
is considered known and �xed explanatory variable in the Bayesian updating.

The sought distribution of the micro�bril angle within each specimen is assumed to
be bounded in the interval (0,MFAmax = 50◦)9. To de�ne its bounded distribution, we
map MFA to its normalized value mi by

MFAi = miMFAmax, (7.16)
9The values of MFA in Fig. 7.9, which fall out of this interval, are assigned to M and S3 layers not

previously eliminated by visual inspection, recall Section 7.4.2.
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where mi ranges from 0 to 1. At this interval, mi is assumed to follow the beta distribu-
tion

mi ∼ Beta(αm , βm ), (7.17)

with parameters αm and βm being the top-level parameters common to all specimens.
This relation expresses the idea that the values of MFAi are not mutually independent
but rather share the above distribution and its parameters which are intrinsic properties
of the tested spruce wood.

Analogically, for specimens that underwent tensile tests with DIC measurements we
work with a series of measured longitudinal strains εicL,ij , radial strains ε

ic
R,ij and longitu-

dinal stresses σicL,ij with i ∈ Aic, j ∈ {1 . . . N ic
i } where Aic is a set of numbers of specimens

in question and N ic
i is the number of records in Table 7.4 obtained for the i-th specimen.

Similarly to Eq. (7.13) the measured stress is normally distributed around its theoretical
value with standard deviation of the measurement error

σicL,ij ∼ Normal(σicL,ij , s
ic
σ ), (7.18)

where standard deviation sicσ is the top-level parameter10 whereas the mean value of stress
is given by

σicij = EL,iε
ic
L,ij + bi, (7.19)

where bi is again the intercept of the stress-strain diagram depicted for clarity in Fig. 7.10(a).
Therein, this intercept arises because the reference image used in DIC does not corre-
spond to the zero level of the applied load. The measured radial strain εicR,ij is also
assumed to be subjected to a measurement error with an unknown standard deviation
sicε and therefore normally distributed

εicR,ij ∼ Normal(εicR,ij , s
ic
ε ). (7.20)

The mean value is calculated from the Poisson ratio and longitudinal strain as

εicR,ij = −νLR,iε
ic
L,ij + ci, (7.21)

where ci is possibly a nonzero intercept of this linear relationship observed in Fig. 7.10(b)
for illustration. Similarly to EL,i, the Poisson ratio νLR,i is therefore a parameter at-
tributed to the i-th specimen and is deterministically related to the micro�bril angle
and the volume fraction of earlywood. Here, however, we do not proceed directly in
footsteps of Eq. (7.15). Instead, we admit a certain uncertainty associated with the DIC
measurements of radial strains. The corresponding uncertainty in experimentally deter-
mined Poisson ratio can be foreseen from the variability of νLR in Table 7.3 potentially
attributed to the actual orientation of grains in Fig. 7.5(b) not re�ected in Eq. (7.21). To
incorporate this issue in the model formulation we consider the �measured� Poisson ratio,

10The standard deviation of the DIC measurement error is the same for all specimens.
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i.e. the slope of the line approximating the data in Fig. 7.10(b), be normally distributed
around its theoretical value νLR,i, i.e.

νLR,i ∼ Normal(νLR,i, sν). (7.22)

The standard deviation sν is a top-level parameter and the theoretical value of Poisson
ratio νLR,i is deterministically de�ned by MFA and fEW as

νLR,i = gν(MFAi, fEW,i). (7.23)

Thus the di�erence between the two types of errors, one with standard deviations sicε and
the other with standard deviation sν is that the former describes the noise of the measured
data points around the theoretical line while the latter characterizes the uncertainty of
the experimentally obtained slope of this linear relationship.

Finally, nanoindentation provides a series of indentation moduli Mij for i ∈ Ani,
j ∈ {1 . . . Nni

i }, where Ani is the set of specimen numbers involved in nanoindentation
tests and Nni

i is the number of indents in the i-th specimen speci�ed again in Table 7.4.
The measured values of indentation modulusMij are normally distributed around a mean
value M ij +∆M with standard deviation sM

Mij ∼ Normal(M i +∆M, sM ), (7.24)

where M i is a theoretical value of the indentation modulus in the i-th specimen, ∆M is
the correction of a systematic error of nanoindentation tests and sM is standard deviation
of the measured values. The parameters ∆M and sM are the top-level parameters, while
M i depends deterministically on the micro�bril angle according to

M i = gM (MFAi), (7.25)

where gM is a polynomial approximation of the relationship between MFA and M pro-
vided by the theory of anisotropic indentation, recall Section 7.4.2. This function is
plotted in Fig. 7.13, analogously to EL and νLR approximations in Fig. 7.11.

0 20 40 60 80
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20

M
[G

P
a]
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approximation

Figure 7.13: Comparison of the values of M obtained from anisotropic theory of inden-
tation with corresponding polynomial approximation

The meaning of all quantities mentioned above is summarized in Table 7.5. Note that
the model considers a separate value micro�bril angle MFAi for each specimen which
� together with known volume fraction of earlywood fEW,i � explains the mechanical
properties Ei, νi and Mi.
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Table 7.5: Quantities and their roles in the hierarchical Bayesian model.
Explanatory variables εL,ij , εicL,ij , fEW,i

Explained variables σL,ij , σicL,ij , ε
ic
R,ij , Mij

Top-level parameters sσ,i, sicσ , s
ic
ε , sν , sM , αm , βm , ∆M , ai, bi, ci

Parameters σL,ij , σicL,ij , ε
ic
R,ij , M i, EL,i, νLR,i, νLR,i, MFAi , mi

7.5.3 Prior distribution of top-level parameter

Bayesian inference requires specifying the prior distribution of the top-level model pa-
rameters. For all standard deviations of measurement errors, i.e. for sσ,i, sicσ , s

ic
ε , sν ,

and sM , we adopted the gamma distribution with scale α = 0.001 and rate β = 0.001.
These values are commonly chosen to de�ne a vaguely informative prior for positive pa-
rameters. For unbounded parameters ∆M , ai, bi and ci we assumed normal distribution
with µ = 0 and σ = 10. Finally, for parameters αm and βm in Eq. (7.17) we accept
again the gamma distribution with scale α = 1, and rate β = 0.001. This is because,
when combined with Eq. (7.16), such a choice renders approximately a uniform prior
distribution of MFA on its assumed range (0,MFAmax), see ahead Figure 7.16(c).

7.5.4 Application and results

Having de�ned the hierarchical stochastic model in Section 7.5.2 and 7.5.3 we can examine
the posterior distribution by drawing samples from the generated Markov chains. In
particular, the model has been implemented in PyMC3 package [37] and two chains each
of 1000 samples were generated using the No-U-Turn sampler [38] based on Hamiltonian
Monte Carlo method. The marginal posterior distribution of each parameter is best
presented by plotting its kernel density estimate (KDE), i.e. PDF estimated from the
generated samples11.

We �rst explore the distributions of measurement errors plotted in Fig. 7.14. It can
be seen that standard deviations of all assumed errors are quite conclusively inferred
from the measured data and their distributions are relatively narrow. A little less certain
are the values of standard deviations of measurement errors associated with standard
tensile tests, Fig. 7.14(a). Recall that separate values of standard deviation of the mea-
surement error were assumed for individual specimens. This choice now seems justi�able,
because some of the KDEs in Fig. 7.14(a) do not practically overlap indicating that the
measurement noise on these specimens probably di�ers.

The systematic error in measured indentation modulus ∆M is also clearly identi-
�ed with a narrow posterior distribution centered around -7 GPa, see Fig. 7.14(f). This
correction compensates relatively small values obtained from nanoindentation measure-
ments, Fig. 7.9(a), which would otherwise be incompatible with the expected values of
MFA.

Figure. 7.15(a) shows the posterior distribution of micro�bril angle of each specimen.

11The kernel density estimate can also be seen as a smoothed histogram.
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Figure 7.14: Posterior distributions of standard deviations of measurement and modeling
errors of a) stress sicσ in the standard tensile test, b) Poisson ratio sν in the DIC measure-
ments, c) stress sicσ in DIC, d) radial strain sicε in DIC, e) nanoindentation measurements
sM and f) posterior distribution of systematic error of measured indentation modulus
∆M

The transformed marginal distributions of quantities EL, νLR and M are plotted for
individual specimens in Figs. 7.15(b-d). Remember that they depend deterministically
onMFA through Eqns (7.15), (7.22) and (7.25). Relatively narrow posterior distributions
associated with majority of specimens indicate that the value of MFA and subsequently
the values of EL, νLR and M were inferred from the measured data with quite a low
uncertainty. On the other hand, the locations of these distributions are quite dispersed
suggesting a signi�cant variability of these quantities from specimen to specimen. In
terms of uncertainty categories, the width of each distribution characterizes the epistemic
uncertainty of MFAi on the i-th specimen, which could possibly be reduced by increasing
the number of measured data and/or by modifying the model. On the other hand, the
variability of the locations of the posterior distribution shows the aleatory (irreducible)
uncertainty of MFA of a given specimen. This uncertainty is described in the model with
the beta distribution scaled to the maximum acceptable value of MFAmax = 50◦, recall
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Figure 7.15: Posterior distribution of a) micro�bril angle, b) longitudinal elastic modulus,
c) Poisson's ratio, d) indentation modulus of each tested specimen
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Eqns. (7.16) and (7.17). The prior and the posterior marginal distribution of MFA is
plotted in Fig. 7.16(a). This distribution quanti�es jointly the aleatory and epistemic
uncertainty of MFA in the tested spruce wood. On the contrary, the distributions of
its mean value, Fig. 7.16(b), and standard deviation, Fig. 7.16(c), which are computed
directly from the top-level parameters αm and βm, describe only the epistemic uncertainty
attributed to a limited number of measured data and simpli�cations adopted in the
forward hierarchical model.

7.6 Conclusions

Small scale laboratory experiments are often used to provide inputs to a theoretical
model subsequently adopted in the prediction of the response of large structural elements.
However, if such experimental data are of low credibility, which might be di�cult to
see directly, the theory will provide inadmissible predictions regardless of its accuracy.
Two particular examples are presented in this contribution in support of derivating the
e�ective sti�ness matrix of spruce via homogenization:

� The �rst approach grounds on the application of nanoindentation to estimate the
micro�bril angle to give reduced properties of wood at cell wall level. Adopting
the present results without scrutiny would signi�cantly underestimate the actual
macroscopic sti�ness of the examined wood, recall relatively low values of indenta-
tion moduli in Fig. 7.8(a) inconsistent with the measured macroscopic sti�ness in
Table 7.3.

� The second approach, although not speci�cally mentioned in the previous discus-
sions, may start from macroscopic measurements of elastic modulus and Poisson's
ratio to estimate the micro�bril angle from inverse analysis. The macroscopic sti�-
nesses would be then provided in analogy to the �rst approach. This path may
eventually lead to inability of �nding a unique MFA which would provide e�ective
properties matching both the measured elastic modulus and Poisson ratio. The
main cause would be an unacceptable level of inaccuracy of the measured radial
strains associated with the deviation of grains from the radial direction assumed in
theoretical predictions, recall Figs. 7.5(a,b).

Identifying the measurement error, if experimental uncertainty may prove signi�cant,
is therefore of paramount importance. In the present study, the Bayesian inference was
exploited to uncover this, initially hidden, information.

To recapitulate, we have formulated hierarchical stochastic model in order to track
down the variation of the micro�bril a angle among specimens of spruce wood. This
material property is of essential interest since it � together with volume fraction of early
wood � theoretically de�nes all components of macroscopic sti�ness matrix. Beside the
sought distribution of MFA, the model identi�es wide range of errors contributing to the
randomness of observed data. In particular, a systematic di�erence between the measured
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indentation modulus and the theoretical value obtained via the theory of anisotropic in-
dentation was identi�ed. Quite signi�cant error in the measured Poisson ratio was also
found suggesting that either the particular setup of the DIC measurement of transverse
strain is far from optimal or that the current model formulation ignores some relevant
phenomenon. Either way, the Bayesian inference proved to be �exible tool for identi�ca-
tion of these uncertainties.
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Apendix A � Construction of posterior distribution

The posterior probability density function p(θ|y) can be unambiguously constructed from
the hierarchy of stochastic and deterministic relations that de�ne the forward model.
However, this is commonly done automatically under the hood of the Bayesian modeling
software. The software usually accepts a model described in a domain speci�c language
that is very similar to Eqns. (7.13)�(7.25). Nevertheless, we feel useful to provide a
simple yet illustrative example on how the posterior PDF is constructed.

For simplicity, consider N specimens made of the same material each subjected to a
displacement-control tensile test to yieldMi stress-strain pairs (εij , σij) for each specimen
i. The model is then formulated as

σij ∼ Normal(σij = Eiεij , sσ) for i = {1 . . . N}, j = {1 . . .Mi}, (7.26)

Ei ∼ Normal(µE , sE) for i = {1 . . . N}, (7.27)

where µE , sE , sσ, and Ei are the model parameters, εij are the explanatory variables
and σij are the data. Recall that the normal distribution denoted as Normal(µ, s) and
parameterized by mean µ and standard deviation s reads

p(y|µ, s) = fN(y, µ, s) =
1√
2πs2

e−
(y−µ)2

2s2 . (7.28)

A series of K statistically independent and normally distributed variables y provides

p(y|µ, s) =

K∏
k=1

fN(yk, µ, s). (7.29)

Using the rule of conditional probability, the posterior distribution of all model parame-
ters given the measured data is written as

p(E, µE , sE , sσ|σ) =
p(σ,E, µE , sE , sσ)

p(σ)
∝ p(σ,E, µE , sE , sσ). (7.30)
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Applying the chain rule of conditional probability and considering Eqns. (7.26) and (7.27)
gives

p(σ,E, µE , sE , sσ) = p(σ|E, sσ)p(E|µE , sE)p(µE)p(sE)p(sσ) (7.31)

=
N∏
i=1

Mi∏
j=1

fN(σij , σij = Eiεij , sσ)
N∏
i=1

fN(Ei, µE , sE)p(µE)p(sE)p(sσ), (7.32)

where p(µE), p(sE) and p(sσ) are the prior distributions of the top-level parameters.

Apendix B � Model hierarchy

The relation between the quantities in the statistical model can be represented in the
form of graph. The elliptical nodes in Fig. 7.17 are parameters, the rectangular nodes
are quantities computed deterministically from the parent values, and the gray nodes
represent the observed data. The nodes contained in rectangles with rounded corners
are array quantities. The number in the lower right corner speci�es the length of these
arrays. Explanatory variables are not shown.
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Chapter 8

Conclusions

The presented research demonstrates the broad applicability of Bayesian inference to
various problems and tasks in civil engineering. This approach allows for learning about
unobservable quantities or model parameters from observable data while systematically
accounting for uncertainties inherent in the data acquisition process.

Two key strengths of the Bayesian approach deserve particular emphasis:

� Hierarchical Bayesian models naturally and e�ciently consolidate the information
about the parameters, even when the data come from di�erent sources and are
in�uenced by distinct errors. This capability enables robust modeling in com-
plex engineering contexts where data variability and measurement discrepancies
are common.

� Bayesian inference is especially valuable in situations where the colloquial rule of
thumb � "at least 30 data points are needed for a good sample size" � might
discourage statistical analysis. By combining a well-chosen prior distribution with
any amount of observed data, Bayesian methods produce a meaningful posterior
distribution, enabling robust analysis even with limited data.

Despite its strengths, Bayesian inference also presents challenges that require careful
consideration.

� The concept of prior distribution can be contentious as there is no universally rigor-
ous method for its selection, leading to concerns about subjectivity. Although this
is a valid critique, many engineering problems already depend on expert judgment.
Bayesian methods provide a systematic way to integrate expert knowledge with
empirical data, making this subjectivity an asset rather than a drawback when
handled appropriately.

� Large-scale deterministic simulations are often integral to probabilistic models in
engineering problems. However, the inclusion of computationally expensive func-
tions within the likelihood expression poses challenges to e�cient sampling. In such
cases, two primary strategies can be employed, each with its own limitations:
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� Evaluating the simulation at each MCMC step can be computationally expen-
sive, particularly for high-dimensional problems. Additionally, many simula-
tions do not provide gradients, restricting the use of more e�cient Hamiltonian
Monte Carlo methods.

� Creating a surrogate model introduces approximation errors, adding another
source of uncertainty to the problem. This approach may also struggle with
complex simulations that involve a large number of parameters.

The studies presented in this thesis illustrate how Bayesian statistics enhance our abil-
ity to quantify uncertainty and make data-informed decisions about unobservable model
parameters, but also provides a structured framework for predictions of yet unobserved
quantities.

Future research can further expand the utility of Bayesian methods, particularly in
re�ning selection strategies for prior distribution and integrating large-scale engineering
simulations into probabilistic models.


