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Chapter 1

Introduction

Many problems in the field of civil engineering can be described with the help of differential
equations. Their manual solution is very demanding and for real engineering problems
impossible in many cases. The development of numerical methods for their solution was
thus tightly connected with the emergence of computer technology in the common practice
in the last decades. Differential equations describing the given problem is often solved
with the help of finite element method (FEM) and there is a lot of commercial software
packages employing FEM that were developed in past decades ranging from more general
ones such as ABAQUS, ADINA, ANSYS, COMSOL to more specific such as ATHENA,
CSI Bridge, RAM, RFEM, SCIA Engineer, SAP2000 to name only a few of them.

Many of these commercial software packages involve possibility of implementation
user defined element, material model or even a solver but there are areas such as nonlocal
material models that can be hardly implemented without the access to source codes that
are not available in these cases. There may also be some hidden implementation details
that can influence the computation significantly and that are not clearly described in the
documentation.

These reasons led many researchers to develop their own codes including author’s re-
search group. The development of FEM package SIFEL has started in 2001 within the EU
project MAECENAS in the part addressed to the simulation of concrete behavior used at
nuclear reactor vessels. Fundamental concepts of SIFEL stemmed from the requirements
of several universities involved in the project and most of them was preserved in course
of development time. Authors also decided to develop code as an open source under the
GPL license.

The document is organized as follows. The first part contains three chapters. The first
chapter deals with the history and fundamental concepts of the SIFEL package. It is based
on the extended paper presented at the 10th International Conference on Computational
Structures Technology 2010. The next chapter is devoted to exploiting new advanced
features of the programming language in the finite element (FE) code design, and there
is also a performance comparison of particular approaches.

The second part deals with the implementation of stage construction. It contains
three chapters with real-world engineering problems solved by SIFEL. The motivation
originated in 2005 when the analysis of the casting procedure of the thick foundation slab
in Těšnov was conducted. The analysis of the foundation slab is described in the first
chapter of the second part.



12 Introduction

Later in 2013, some lack of implementation was revealed in connection with the TAČR
project, where simulation of the creep behaviour of the pre-stressed box girder bridge in
Mělńık where the simulation of construction stages played a significant role. Thus the
second chapter addresses the creep analysis of the bridge in Mělńık and a simulation of
the gradual bridge construction.

The last extension of the implementation in this field was connected with the simu-
lation of engineering barriers in nuclear waste repositories where the nonlinear material
model needed a special treatment of load increment vector due to removed elements. The
last chapter, therefore, concerns the implementation of the model for the expansive clay
and the simulation of the structural part removal. The proposed techniques are demon-
strated in the trench excavation problem.
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Part I

Development strategies of the finite
element code
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Chapter 2

Moderate use of object oriented
programming for scientific
computing

2.1 Introduction

Engineering and scientific computing was mostly based on the usage of the FORTRAN
programming language for a long time. Since 90s, other programming languages have
emerged in the field. The most important languages are C and later C++. The C lan-
guage enables dynamic memory allocation and better memory management which was
understood as a significant advantage in comparison with the FORTRAN 77 common
blocks. The C++ language is an object-oriented language enabling data encapsulation,
function/operator overloading, multiple inheritance and templates. Many additional ex-
tensions were established by the newer standards starting with C++11 up to the latest
C++20.

Over time, the FORTRAN was changed, and some features of C and C++ languages
were incorporated. The newer language versions, called FORTRAN 90 and FORTRAN 95,
adopted dynamic memory allocation and some object-oriented features. These changes
made the FORTRAN language attractive again. The latest FORTRAN 2008 involved
support for object-oriented programming and support for parallel programming. In ad-
dition to FORTRAN, some other object-oriented languages have emerged, such as Java
and C#. With respect to experience with the C++ concept, the new languages adopted
only some features of the original C++. One-level inheritance was an example, while the
multiple inheritance was replaced by so-called interfaces, which seemed more acceptable.

This chapter summarizes experiences with programming languages based on the de-
velopment of large finite element code SIFEL. It is an open-source code [SIFEL, 2022],
[Koudelka et al., 2011] that has been developing for more than 20 years at the Department
of Mechanics of Civil Engineering Faculty of the Czech Technical University in Prague.
Except for the author, there are Tomáš Krejč́ı and Jaroslav Kruis who belongs to the
principal developers of the software. The development of the code started in 2001 within
the scope of the European research project MAECENAS which dealt with the assessment
of properties of reactor vessels of nuclear power plants at the end of their service life.
The project was solved at several universities across Europe (Glasgow, Nantes, Padova,
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Prague and Sheffield), and the aim was to develop extensible computer code for coupled
hydro-thermo-mechanical analysis. There were some computer codes for particular prob-
lems at involved universities, but their connection or merging was impossible. Therefore,
the development of a new code was started, and the project participants determined the
following requirements:

� Portability of the code - universities had different hardware and software equipment.
Especially, the portability between different operating systems was required (Linux,
Windows, Unix).

� Simple programming techniques - the members of the project were experts in the
branch of mechanical and transport processes and they knew programming lan-
guages but they were not professional programmers. Source codes should be com-
prehensible for all team members as well as for new participants.

� Speed of code - the programming language should be compiled (FORTRAN, C++)
rather than precompiled and interpreted (Java).

Interpreted languages were rejected due to speed requirements. FORTRAN 77, FOR-
TRAN 90 and C++ were compared from the above points of view and the summary
follows:

C++ + very portable language,

+ source codes using basics of C++ are comprehensible,

+ C++ compilers produce fast executables,

− extensive usage of object oriented programming techniques decreases clarity
for new participants.

F77 + very portable language,

+ language syntax is comprehensible,

+ compilers can produce from the numeric source code very fast executables,

− memory management is poor because the standard does not support dynamic
memory allocation,

− memory organized in Fortran COMMON blocks can be understood with prob-
lems.

F90 + language syntax is comprehensible, it supports dynamic memory management,

+ compilers produce very fast numeric code,

− portability was limited due to non-availability of compilers supporting FOR-
TRAN 90 at that time,

− uncertainties about the future development of FORTRAN 90 compilers.

It was concluded that C++ language would be used but without most object-oriented
programming features and concepts, which cause main difficulties for new users.
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2.2 Object oriented concepts of C++ in practical us-

age

2.2.1 Main concepts of the OOP

The object-oriented programming consists of three main concepts:

� Data abstraction and encapsulation

� Inheritance

� Polymorphism

Data abstraction means that data and operations, which operate on that data, are viewed
as one data aggregate, and they are considered by the language similarly to built-in data
types. These data aggregates have to be defined by users, and therefore they are some-
times called user-defined types. C++ calls these data aggregates classes and variables
type of class are called objects or instances. Every class has its data members - attributes
and functions called methods. Access to data members can be limited by the applica-
tion of different specifiers (private, public, protected). Merging data and functions for
manipulation of that data in one data type is called encapsulation.

Classes can be composed of the basic data types, but they can also be derived from
the existing ones. The derivation of a new class from one or more existing classes is called
inheritance. The new class may expand the inherited content depending on the actual
needs, and usually, it changes the implementation of some or even all of the methods.
Thus, the inheritance provides reusability of the existing code, which can be adjusted for
user purposes.

Every class should have a separate part of the user interface and its implementation.
The interface shows the user what the class tends to do, and implementation shows how it
is done. Changes in implementation should not influence the interface, and they remain
hidden from the user of the class. It is possible to create several classes by inheritance
from the base class with the same interface but a different implementation. This feature is
called polymorphism, and it makes possible unified access to instances of different classes
via interfaces even though the performed actions can be (and usually they are) different.

It should be noted that the C++ implementation of polymorphism is established on
the pointers to objects of base class type, and the rule that a derived class type may be
used if the base class type is required. If the object of the derived class is used directly
instead of the base class type object, the slicing problem takes place. In such a case,
new data members, together with all specialized features of the derived class object, are
dropped, which is not desirable behaviour usually. Thus the using of C++ polymorphism
causes, in practice, memory fragmentation for large arrays of pointers to polymorphic
objects due to the need of dynamic memory allocation of the individual array elements.
There may also be some performance penalties due to the need for pointer dereferencing.
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2.2.2 Strong and weak points of the C++ OOP and generic
programming

In this subsection, the strong and weak points of OOP and generic programming will
be discussed with respect to the given requirements for the SIFEL development. From
the portability point of view, most of the OOP features in C++ were perfectly portable
across the compilers and platforms. The other thing was generic programming with
the Standard Template Library (STL), which contained many useful data structures and
algorithms that were easy to use, but its implementation suffered from compatibility issues
on former C++ compilers until 2005 at least. The situation changed gradually after the
release of the C++11 standard, and also compiler producers made a significant effort
to make their compilers more standard compliant. Another issue with templates was
automatic template code generation by the compiler, which could lead to huge executable
files. There were also difficulties with compiler error messages regarding templates and
debugging of code with templates. These reasons led to the suppression of templates in the
SIFEL code to a minimum level at the beginning of the development. Similar conclusions
about templates and exceptions were made by Mozilla.org and Google (see [Mozilla, 2014],
[Google, 2014]). On the other hand, this might be revised in view of new C++ standards
where new features like constexpr or lambda expressions together with template meta-
programming allowed for polymorphic behaviour without memory fragmentation, and
the performance improvement might be comparable with the C style programming. More
details are given in Chapter 3.

The second requirement was the comprehensibility of the code. SIFEL was developed
by a core team, which remained almost the same over time, and a team of participants,
which changed occasionally. These participants were often master or doctoral students
with low or zero programming skills. In many cases, they solved some specific problems
not implemented in the code, and they needed to implement them in a reasonable time.

Data abstraction and encapsulation were found as good concepts, and they were com-
prehensible for all participants of the development team. Data were combined with essen-
tial and interface functions that initialise them and performed basic operations. Compared
to the usual recommendations, the data was left public at the beginning, and it could
be changed to private later depending on needs and experiences when the code become
stable.

Polymorphism and inheritance were found that might cause problems. In procedural
programming, these concepts correspond to classical switch or if statements, which
can be quite huge, but the user knows which function may be called at the compile time
already. Even well-written OOP code using inheritance and polymorphism can become
hardly readable because the type of object is known at runtime only and which function
is being called is hidden in the so-called virtual method table (VMT). Generally, for the
given function call, there is no portable way how to determine which functions could be
called at the source code level. That can be partially mitigated by the use of development
tools with the intelligent code analyser and visualisation of class relationships, but there
are issues with the portability of these tools.

Inheritance was found to be a powerful tool for systems whose hierarchy is known
in advance and does not change too much in time. We found that a working cycle of
implementing an engineering problem starts with a low knowledge base. At this level, the
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proper design of classes is complicated, and with increasing knowledge of the problem, the
hierarchy and system of classes change. New experiences and new needs often required a
redesign of class hierarchy, and from this point of view, classical procedural programming
was found to be more flexible.

On the other hand, a well-designed class system with inheritance and polymorphism
decreases the amount of work for maintenance, updates or extension, which is a strong
point of OOP. This feature is often preferred over performance reasons because as the
code grows, the maintenance time becomes much more significant, and it should be pro-
portionally added to the total sum of time needed to solve a particular problem.

From the performance point of view, the polymorphism causes a performance penalty
due to the pointer dereferencing and mainly due to memory fragmentation, as was stated
in the previous subsection. Of course, these penalties depend on the C++ compiler imple-
mentation and used hardware. Some comparisons of different FEM code implementation
strategies will be given in Chapter 3. Exceptions also belong among object properties of
C++ language. They represents an attempt to solve the error handling problem but at
the cost of performance degradation and executable code bloating [Google, 2014], [Clang,
2012]. Also, writing exception-safe code can be quite demanding; see [Meyers, 2005] and
[Alexandrescu, 2000]. It was concluded not to use exceptions in SIFEL.

2.3 SIFEL

The development of SIFEL code was originally intended for the solution of coupled hydro-
thermo-mechanical problems and the code was supposed to be easily extended. This sec-
tion is split into several subsections. Subsection 2.3.1 describes very briefly theoretical
background of coupled thermo-hydro-mechanical problem discretized by FEM. Subsection
2.3.2 deals with the code structure while the last subsection 2.3.3 describes the extensi-
bility of the code.

2.3.1 Problem description

The thermo-hydro-mechanical (THM) analysis can serve as an example of general coupled
problem. FEM discretization in space of a THM problem leads to the following system
of ordinary differential equations

Cuu CuT Cup1 Cup2

CTu CTT CTp1 CTp2

Cp1u Cp1T Cp1p1 Cp1p2

Cp2u Cp2T Cp2p1 Cp2p2



ḋu
ḋT
ḋp1
ḋp2

 + (2.1)

+


Kuu KuT Kup1 Kup2

KTu KTT KTp1 KTp2

Kp1u Kp1T Kp1p1 Kp1p2

Kp2u Kp2T Kp2p1 Kp2p2



du
dT
dp1
dp2

 =


fu
fT
f p1
f p2

 ,

where K denotes the stiffness or conductivity matrices, C denotes the capacity matrices
and f denotes the prescribed nodal forces or prescribed nodal flux resultants, d denotes
the vector of unknowns and ḋ denotes the time derivates of unknowns. The subscript
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u denotes the displacements, T denotes the temperature, p1 and p2 denote quantities
associated with the mass transfer. In the case of moisture transfer, they may denote the
pressure of liquid water and water vapour. It should be noted that the system (2.1) is
nonlinear generally.

The stiffness and conductivity matrices (denoted by K with appropriate subscripts)
generally have the form

Kαβ =

∫
Ω

BT
αDαβBβdΩ , (2.2)

where Bα and Bβ denote the gradient matrices, Dαβ denotes the matrix of stiffness or
conductivity of the material and the subscripts α and β substitute any of subscripts u,
T , p1 or p2. Similarly, the capacity matrices (denoted by C with appropriate subscripts)
have generally the form

Cαβ =

∫
Ω

NT
αHαβNβdΩ , (2.3)

where Nα and Nβ denote the matrices of base functions and Hαβ denotes the matrix of
material parameters.

Prescribed nodal force vector can be defined as

fu =

∫
Ω

NT
uNub̂ dΩ +

∫
Γt

NT
uNut̂ dΓt, (2.4)

where the vectors b̂ and t̂ represent nodal values of body forces and surface tractions,
respectively.The vectors fT and f pi contain flux resultants due to prescribed nodal fluxes
and can be defined in the from

fT =

∫
ΓT

NT
T q̂TdΓT , f pi =

∫
Γpi

NT
piq̂pidΓpi, (2.5)

where q̂T denotes the prescribed heat boundary flux and q̂pi denotes the prescribed mass
boundary fluxes of the i-th quantity .

For better understanding, the following extension of the mechanical analysis is pre-
sented. Let an elastic material be assumed. The constitutive equation (Hook’s law) has
the form

σ = Duuε(u) (2.6)

and it relates the strains ε and stresses σ. It should be noted that the strains depend on
displacements u which are discretized and the nodal displacements are denoted by du.
The mechanical problem with negligible inertial forces can be written in the form

Kuudu = fu , (2.7)

where Kuu denotes the stiffness matrix and fu denotes the vector of prescribed nodal
forces. Equation (2.7) expresses the equilibrium condition.

If the non-constant temperature plays a role, the constitutive relationship (2.6) has to
be replaced by the following constitutive equation

σ = Duuε(u) +DuT∇T , (2.8)
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where the temperature T occurs. Moreover, the constitutive relationship between the
heat flux q and the temperature gradient is needed and it has the form

q = DTT∇T . (2.9)

It is usually accepted that the heat flux is independent of the displacements u. Equilib-
rium condition (2.7) is therefore extended with the heat balance equation for the station-
ary heat transfer and the system of equations has the form(

Kuu KuT

0 KTT

)(
du
dT

)
=

(
fu
fT

)
. (2.10)

The first equation in the system (2.10) expresses the equilibrium condition while the
second equation in the system (2.10) expresses the heat balance condition. The zero block
in the heat balance equation is consequence of the independence of the heat transfer on
the mechanical problem but on the contrary, the mechanical problem is coupled with the
heat transfer by the matrix Kut.

Additional variables can be introduced in the constitutive equations and additional
balance equations can be added to the system. The thermo-mechanical problem (2.10)
extended by the pore pressures and capacity terms due to the non-stationary transfer
results in the form (2.1).

2.3.2 Code structure

The code is split into independent parts which deal with a single physics problem. The
part dealing with mechanical analysis is denoted MEFEL, and the part dealing with
transport processes is denoted TRFEL. There is also a part called GEFEL that collects
common features of all problems, and the part METR addresses the coupling of individual
physics problems.

Let the matrix K defined in (2.1) be assumed. It can be split into submatrices
indicated by the lines

K =


Kuu KuT Kup1 Kup2

KTu KTT KTp1 KTp2

Kp1u Kp1T Kp1p1 Kp1p2

Kp2u Kp2T Kp2p1 Kp2p2

 (2.11)

The diagonal block Kuu is the stiffness matrix and it associated with a pure mechanical
analysis. This submatrix is assembled in the part MEFEL. Second diagonal block KTT KTp1 KTp2

Kp1T Kp1p1 Kp1p2

Kp2T Kp2p1 Kp2p2

 (2.12)

is the block of conductivity matrix associated with the transport process where heat and
moisture is assumed. This submatrix is assembled in the part TRFEL. Two offdiagonal
submatrices (

KuT Kup1 Kup2

)
(2.13)
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and  KTu

Kp1u

Kp2u

 (2.14)

describe coupling between mechanical behaviour and transport processes and they are
assembled in the part METR.

Structure of MEFEL, TRFEL and METR

For each module (MEFEL, TRFEL, METR), the data describing the given problem are
split in five large classes.

� probdesc - class containing the problem description,

� gtop - class containing data describing general topology of finite element mesh,

� top - class containing data describing properties of finite element mesh in the given
problem type,

� mat - class containing data describing used material models,

� crsec - class containing data describing cross-sections,

� bclc - class containing data describing boundary conditions and loading.

The names of classes differ for particular problems by a pre/postfix created from the
problem name abbreviation. The data of these classes are necessary almost everywhere in
the code, and this led to making them global objects. Thus, each class has one instance,
which is a global variable. This approach reduces the number of passed parameters in
functions. In addition to that, each module contains global objects connected with the
system matrices and vectors of unknowns.

The class probdesc contains attributes describing the solved problem. There is a
group of attributes describing the type of problem, computed quantities and solver of
the systems of linear equations. Depending on the problem type, the object of class
hdbcontr is initialized, which controls the storage/restore of individual time steps
to/from the disk. In the case of nonlinear or time-dependent problems, probdesc initial-
izes also objects of class timecon and nonlinman. The timecon holds data controlling
time steps while the nonlinman contains control parameters for the Newton-Raphson
or arclength methods.

The class gtop contains pure topological data connected with the mesh of elements.
It mainly contains two arrays of classes gnode and gelem. The class gnode contains
nodal coordinates, the array of the number of degrees of freedom (DOF) at particular
nodes and arrays of DOF numbers for each node. The class gelem contains array of nodal
connectivity, number of DOFs on elements and eventually, the array of DOF numbers in
the case that they are defined on elements (e.g. definition of joined beam elements). Both
classes, gnode and gelem, also contain data about the hanging nodes and identifiers of
time functions that control nodal/element switching on/off for the problems with changing
geometry. These data are initialized if they are used in the given problem only.
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The class top contains data about finite element mesh connected with the given
problem. There are two main arrays of objects of classes node and element. The class
node holds data about the nodal local coordinate systems and the type of nodal cross-
sections. There are also arrays of the resulting nodal reactions, strains, stresses, fluxes,
gradients and other state variables of the material model used. The class element
holds data about the finite element type (identifies the element shape and approximation
functions), element cross-section, material model type and the arrays of integration point
identifiers used for the numerical integration of quantities on individual elements. If the
problem solved contains the changing geometry in time, there is initialized array of initial
values of primary unknowns (e.g. displacements). Additionally, the top contains arrays
of adjacent nodes, elements and distances of integration points which may be used, e.g.
in the non-local material models.

The array of objects of intpoints is the most important data member of the class
mat. The class intpoints contains state variables computed in the particular integra-
tion points, such as strains, stresses, fluxes, gradients and other state values. There are
also arrays of initial conditions for integrations points, an array of values of unknowns
from coupled problems, etc. For example, in the mechanical part, mat class contains ar-
rays of temperature and moisture values at integration points. The mat class also holds
arrays of objects of supported material types (i.e. implemented material models). Each
material type has one object per set of material parameters. These instances of material
models are referenced from elements and integration points by the corresponding indices.

The class crsec contains arrays of objects for particular cross-section types. There
are also methods for retrieving basic cross-section parameters such as thickness or area.
These cross-section properties are referenced from nodes and elements.

The bclc class collects data about boundary conditions that are arranged in particular
load cases. Several load cases can be defined in time-independent and also in time-
dependent problems. Every load case can contain several sub-load cases due to better
control of the time-dependent load. The boundary conditions can be specified for the
given load case at nodes, elements, edges and surfaces. Thus, bclc class contains the
array of objects of the loadcase class, in which the boundary conditions are stored,
an array of initial conditions and several auxiliary data members. The bclc class has
only several methods for data manipulation, and most of the functionality provides the
loadcase class.

2.3.3 Extensibility with respect to mass transport problem

Contrary to the mechanical problems and heat transfer problems, where the description
with the help of displacement and temperature vectors is well established, there is no
common general model for mass transport in porous media. The primary unknowns are
selected with respect to the number of phenomena captured in the material behaviour,
and also accessibility of material parameters plays a significant role. That was the reason
for increased demands on the extensibility of the transport part of the code TRFEL and
METR. The coupled problems with many variables can be introduced in the transport
part of the code with the help of the system of row and column indices. It can be
documented on the assembling of conductivity matrix block (2.12), where three primary
unknowns are used in the model. These unknowns are temperature T , pore pressure p1
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1 for (i=0;i<ntm;i++){
2 for (j=0;j<ntm;j++){
3 conductivity_matrix (i,eid,i,j,lkm);
4 codnum (rcn,i);
5 codnum (ccn,j);
6 mat_localize (km,lkm,rcn,ccn);
7 }
8 }

Table 2.1: Assembling of the conductivity matrix.

and pore pressure p2.
Table 2.1 shows a part of the code that computes and assembles a finite element’s

conductivity matrix. ntm denotes the number of primary unknowns. In the case of
matrix (2.12), ntm=3. Third row of Table 2.1 represents subroutine which computes a
submatrix defined by Equation (2.2). The matrix is stored in lkm. Appropriate row and
column indices are obtained by the subroutine codnum (lines 4 and 5) and they are stored
in rcn and ccn. The submatrix (2.2) is localized to the conductivity matrix of a finite
element denoted km. Later on, at the global level of conductivity matrix assembling, the
element matrix is added to the matrix K of the system (2.1).
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Chapter 3

Using new C++ standard extensions
in the finite element code design

3.1 Introduction

The design of the SIFEL code favors composition over inheritance, and therefore the
source code contains a number of functions with switch statements that are intended
for computations on individual elements and material points. Traditional switch state-
ments are easy to understand even for less experienced programmers and have better
performance than dispatching calls to virtual functions, as will be shown later with an
example. This C-style design also does not lead to memory fragmentation due to arrays of
pointers to base class type objects. All of these advantages lead to good code performance,
but there are some problematic aspects of this design.

One of the known major drawbacks can be observed when a new element or material
point is introduced into the system. The user has to add new cases to the switch
statements, and if any of them are missing, an error may be reported at runtime only
contrary to the concept of abstract base class where the compiler reports error if some of
the pure virtual function would not be implemented.

Also, code maintenance in the case of using inheritance is usually easier. For example,
errors caused by changing the number of parameters or their types in the base class meth-
ods are clearly reported by the compiler and the number of source code changes can be
significantly less than the case with composition design approach. Hence, the inheritance
leads to performance hit at runtime while the composition results to ’performance hit’ at
the code maintenance.

New C++11/14 standard extensions can be exploited for a compromising code design
concept inspired by interfaces in C# and Java. The concept should preserve performance
of the procedural/composition style with arrays of objects (not pointers to objects) and
reduce maintenance costs by elimination of switch statements and by the reporting of
interface incompleteness at compile time. The key new components for the interface im-
plementation are function templates, metaprogramming techniques, std::tuple class,
std::function class and lambda expressions.

The concept can be demonstrated by implementing such an interface for general class
Element. The class Element represents one general finite element of mesh with common
properties, while the interface provides an implementation of various FE types (bars,
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triangles, quadrilaterals, tetrahedrons, and hexahedrons). Typically, the interface should
provide a call to the appropriate function to calculate the stiffness matrix or internal force
vector, which varies according to the formulation of the given finite element, e.g. bar
with linear approximation or quadrilateral element with quadratic approximation. In the
composition/procedural style, the interface comprises functions with switch statements
over implemented FE types where the switch statement is typically controlled by the
element type identifier et.

Data about the element’s geometry is stored in the general element class. The class
methods that provide calculations for a given FE type get data through their arguments
or by accessing global variables. Thus only one instance of the given FE type class is
needed. In the new concept, these particular element type objects are stored in the class
derived from class template std::tuple, representing a fixed-size collection of heterogeneous
values whose size must be known at compile time.

3.2 FE interface - the direct approach

The interface of obligatory defined functions on individual FE types can be defined with
the help of the class whose initialization is provided by a constructor template. Assuming
the general Element class holds all runtime-defined element data, the interface class can
be defined by the code in Table 3.1. The definition of class IElemDef starts on line 2.

1 enum elemtype {noelem=0, linbar=1, lintr=2, linquad=3};
2 class IElemDef {
3 public:
4 // template of constructor intializing interface
5 // from element type T
6 template<class T> IElemDef(T& t) :
7 et{t.et},
8 get_ndofe{T::get_ndofe},
9 stiff_matrix{T::stiff_matrix},

10 int_forces{T::int_forces}
11 {}; // constructor body
12
13 // element type
14 elemtype et;
15
16 // returns the number of DOFs on element
17 int (*get_ndofe)();
18
19 // computes stiffness matrix
20 void (*stiff_matrix)
21 (matrix &sm, int id, gtop &g, top &t, crsec &c, mat &m);
22
23 // computes internal force vector
24 void (*int_forces)
25 (vector &ifor, int id, gtop &g, top &t, crsec &c, mat &m);
26 };

Table 3.1: Template of element interface - the direct approach.
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The class contains four data members defined on lines 14, 17, 20 and 24.
Line 14 defines FE type identifier whose values are given by enumeration elemtype

defined on line 1. Lines 17, 20 and 24 represents interface functions that should be defined
for every FE type. Typically, the interface function needs for the calculation data about
topology, materials and cross-sections, which are stored in mentioned global structures
top, gtop, crsec and mat. These data can be passed to the function by arguments or
stored in the globally accessible variables. Access to the element data in these structures
is realized with the help of element index id. All remaining data are considered to be
constant for the given FE element type, and they are defined in the corresponding class
of FE, e.g. barlin, trlin or quadlin. This is important because in such a case, all
data members may be defined as static constants, and all methods in FE classes may
be of static kind. A static method can be called without an instance of the given class,
and a pointer to a static method is defined. Thus due to constantness of the FE classes,
the interface functions can be stored directly in the form of pointer to function, see data
member type on lines 17, 20 and 24.

The key part of the class is the constructor template IElemDef(T& t) whose def-
inition starts on line 6. It is defined with one template parameter T, which is supposed
to be instantiated by the FE class type. The initializer list of the constructor on lines
7–10 initializes all data members, where pointers to the interface functions (lines 8–10)
are initialized directly by the static methods of the given FE element class type T, e.g.
T::get ndofe.

The simplified structure of a general element class is illustrated in Table 3.2. The

1 class Element{
2 public:
3 // default constructor
4 Element() : t{noelem}, aux[0]{’\0’}, defifc{nullptr} {};
5 // reading element data from file in (et, aux)
6 int read(FILE *in);
7 // FE type identifier
8 elemtype et;
9 // member aux substitutes all element data defined at runtime

10 char aux[184];
11 // pointer to interface class
12 const IElemDef *defifc;
13 };

Table 3.2: Class of general element with interface.

Element class is intended to be instantiated within an array by the default constructor on
line 4. Pointer to the IElemDef class defifc is initialized with null value. Initialization
on the appropriate pointer to IElemDef object is supposed to be performed after the
reading of element data from an input file when the proper FE type identifier et is known
(line 8). Instances of IElemDef class for particular FE types are considered to be stored
in an static array to access during the initialization of Element class member et.

For convenience, classes of all FE types are collected in the std::tuple object, which
allows for the traversing of particular FE types by the index known at compile time. A
new FE type is just added to that collection; thus, no other common code is touched
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by implementing that new FE type. The tuple object is defined at line 2 of Table 3.3.
It is initialized by the class names of particular FE types LinBarElem, LinTrElem
and LinQuadElem. The number of FE types in elobjs is known at compile time, and

1 // tuple of particular FE classes
2 static constexpr std::tuple
3 <LinBarElem, LinTrElem, LinQuadElem> elobjs;
4
5 // the total number of FE type classes
6 static constexpr int nelemt =
7 std::tuple_size<decltype(elobjs)>::value;
8
9 // type name alias for the array of FE type interface

10 using eldefifc = std::array<IElemDef, nelemt>;
11
12 // array of FE interface objects
13 const static eldefifc eldefifcarray{eldefifcfiller(elobjs)};
14
15 // comparison operator needed in std::find applied to eldefifcarray
16 inline bool operator==(const IElementDefault &lhs,
17 const elemtype &rhs){
18 return lhs.et == rhs;
19 }

Table 3.3: Storage of interface objects in std::tuple, array of FE interface objects.

therefore it is retrieved as the compile time constant at line 6. Such constants can be
used in the definition of a static array as exploited further in the code. The static array
of the IElemDef objects is defined at lines 10 and 13. It is initialized with the particular
FE types by a metaprogramming technique, which is represented by the set of function
templates eldefifcfiller. These function templates are instantiated recursively for
particular FE types stored at the tuple elobjs. Finally, they return a static array
initialized by an initializer list composed from objects of IElemDef interfaces. Thus the
constructor call of static array at line 13 of Table 3.3 will be expanded by the compiler
as indicated in Table 3.4 where, e.g., line 3 represents object of FE interface constructed

1 const static eldefifc eldefifcarray{
2 std::array{
3 IElemDef(LinBarElem),
4 IElemDef(LinTrElem),
5 IElemDef(LinQuadElem)
6 }
7 };

Table 3.4: Initialization of array of FE interfaces.

from the FE type class LinBarElem. More details are given further in Table 3.5.
Initialization phase of individual objects of Element class requires an access to com-

ponents of array eldefifcarray in order to obtain interface object corresponding to
some FE type identifier Element.et. STL algorithm template std::find can be
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used for the searching of the interface object with the given FE type identifier in array
eldefifc. Algorithm std::find requires the operator ==(IElemDef, elemtype)
whose definition is given at lines 16–19 of Table 3.3.

Table 3.5 summarizes the code of the function templates used for the filling of static
array type of eldefifc. The first function template has value argument N whose de-

1 // recursively called function template for all FE type objects
2 // stored in elobjs tuple except the first one
3 template <size_t N=nelemt, typename... Tn>
4 constexpr typename std::enable_if< 0<N, eldefifc>::type
5 eldefifcfiller(decltype(eobjs) &elems, const Tn& ...rest)
6 {
7 return eldefifcfiller<N-1>
8 (elems,
9 IElemDef(std::get<N-1>(elems)),

10 rest...);
11 }
12
13 // function template for the first FE type object
14 // in elobjs tuple that stops recursion and returns
15 // the resulting array of interface objects
16 template <size_t N, typename... Tn>
17 constexpr typename std::enable_if<N==0, eldefifc>::type
18 eldefifcfiller(decltype(eobjs) &elems, const Tn& ...rest)
19 {
20 return eldefifc{rest...};
21 }

Table 3.5: Function templates for the filling of a static array type of eldefifc.

fault value is the number of FE types, i.e. nelemt, see line 3. This value argument
is followed by the type argument pack denoted by Tn. The function template can be
instantiated if the value argument N is greater than zero. This is provided by the stan-
dard metafunction std::enable if which defines the return type of function to be
eldefifc type if the condition N > 0 is met, see line 4. The first argument of function
itself (elems) is type of tuple of FE types (decltype(eobjs)) while the number of
remaining function arguments is variable and they are defined with the help of param-
eter type pack Tn ...rest, see line 5. The function body contains just one return
statement (line 7), which returns the result of the instance of the same template function
(template recursion), but it decrements the value argument N of the template (line 7
eldefifcfiller<N-1>). Moreover to the first function argument elems, it adds one
new object of the FE interface class IElemDef in the argument list, which is constructed
from the FE type class of the (N-1)-th object stored in the tuple elems, see line 9.
Finally, the remaining argument pack denoted as rest is passed at the end of function
argument list (line 10).

The recursive call of instances of the first function template is stopped by the sec-
ond function template, which represents specialization for the value argument N == 0.
If the recursion reaches this template specialization, then the function argument list
Tn ...rest contains objects of interfaces created for all FE types collected in the tuple
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eobjs. Thus the static array can be initialized by the initializer list of objects in rest
and the resulting static array is returned from function at line 20 (cf. with Table 3.4).

Every FE type is represented by the dedicated class, which contains the implemen-
tation of the FEM computational interface. Table 3.6–3.8 contains a reduced form of
class definition for the bar element with linear approximation LinBarElem, triangular
element with linear approximation LinTrElem and quadrilateral element with linear
approximation LinQuadElem.

1 class LinBarElem{
2 public:
3 static constexpr int ncomp = 1; // number of strain components
4 static constexpr int ndofe = 4; // number of DOFs on element
5 static constexpr elemtype et = linbar;
6 static constexpr int get_ndofe() {return ndofe;};
7 static void stiff_matrix (matrix &sm, int id, gtop &g,
8 mtop &t, mcrsec &c, mmat &m){
9 // code for the computing \int_V BˆT D B dV

10 };
11 static void int_forces (vector &ifor, int id, gtop &g,
12 mtop &t, mcrsec &c, mmat &m){
13 // code for the computing \int_V BˆT \sigma dV
14 };
15 };

Table 3.6: Definition of class LinBarElem.

1 class LinTrElem{
2 public:
3 static constexpr int ncomp = 3; // number of strain components
4 static constexpr int ndofe = 6; // number of DOFs on element
5 static constexpr elemtype et = lintr;
6 static constexpr int get_ndofe() {return ndofe;};
7 static void stiff_matrix (matrix &sm, int id, gtop &g,
8 mtop &t, mcrsec &c, mmat &m){
9 // code for the computing \int_V BˆT D B dV

10 };
11 static void int_forces (vector &ifor, int id, gtop &g,
12 mtop &t, mcrsec &c, mmat &m){
13 // code for the computing \int_V BˆT \sigma dV
14 };
15 };

Table 3.7: Definition of class LinTrElem.

The runtime variable data of particular FE elements are collected in the general el-
ement class Element and thus the content of classes can be specified to be static
or static constexpr. Data members and methods with such specifications may be
used/called without an instance of the given class.

Finally, Table 3.9 represents a code excerpt of the global computational procedure
where the usage of the developed concept is being demonstrated. There is the initialization



Using new C++ standard extensions in the finite element code design 31

1 class LinQuadElem{
2 public:
3 static constexpr int ncomp = 3; // number of strain components
4 static constexpr int ndofe = 8; // number of DOFs on element
5 static constexpr elemtype et = linquad;
6 static constexpr int get_ndofe() {return ndofe;};
7 static void stiff_matrix (matrix &sm, int id, gtop &g,
8 mtop &t, mcrsec &c, mmat &m){
9 // code for the computing \int_V BˆT D B dV

10 };
11 static void int_forces (vector &ifor, int id, gtop &g,
12 mtop &t, mcrsec &c, mmat &m){
13 // code for the computing \int_V BˆT \sigma dV
14 };
15 };

Table 3.8: Definition of class LinQuadElem.

of Element class member defifc with the corresponding pointer to the FE interface
object and usage of the interface for assembling the global stiffness matrix. There are
instances of the mentioned five large classes at lines 3–7. Data members of these classes
are read from the input file in at lines 14–17. Class mtop contains data member elems
that represents array of Element class instances. These instances have their et members
set to the proper FE type identifier after the call of mt.read at line 15 and thus their
defifc member can intialized. Apropriate FE interface object can be found at the
static array eldefifc (Table 3.3 line 13) with respect to the FE type identifier with
the help of standard function std::find at line 22. This function requires specifying
the range of the lookup, which is defined in terms of iterators of eldefifc. In this
case, the range is set across the whole array by the start iterator eldefifc.begin()
(line 22) and final iterator eldefifc.end()(line 23). The searched value is the last
parameter of std::find where the FE type identifier of the i-th element is passed by
mt.elems[i].et. The std::find returns an iterator to the found element or position
one past the last array element if nothing is found. The index of FE interface object j
can be calculated as a difference between std::find result and the beginning of array
(line 25). Finally, after the check of interface index at line 26, the defifc of i-th element
is being initialized with the pointer to the j-th interface at line 27.

3.3 FE interface - the function wrapper approach

The FE interface proposed in Table 3.2 is defined in terms of direct pointers to function and
therefore FE type classes LinBarElem, LinTrElem and LinQuadElem must define the
implementation of interface functions to be static. The static functions must not access
runtime non-static data members in the given class. That restriction can be avoided
by the data decomposition approach, like in the case of the general Element class,
which collects all runtime-defined data. In this case, the static function specification
requirement is not too restrictive because most data directly connected with the given
FE type and used in the computational procedures (number of nodes, number of DOFs,
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1 // ... other code
2 // instances of main classes
3 mprobdesc mp;
4 gtop gt;
5 mtop mt;
6 mcrsec mc;
7 mmat mm;
8 // input file pointer
9 FILE *in;

10 // ... other code
11
12 // read input data from file referenced by in
13 // (problem description, mesh topology, cross-sections, materials)
14 mp.read(in);
15 mt.read(in, gt);// array of Element class is stored in mt.elems
16 mc.read(in);
17 mm.read(in);
18 // ... other code
19
20 // initialize element interface
21 for (i=0; i<mt.ne; i++){
22 size_t j = std::find(eldefifcarray.begin(),
23 eldefifcarray.end(),
24 mt.elems[i].et)
25 - eldefifcarray.begin();
26 assert(j<nelemt);
27 mt.elems[i].defifc = &eldefifcarray[j];
28 }
29 // ... other code
30
31 // Assembling of the system stiffness matrix
32 skyline smat(gt); // system stiffness matrix
33 matrix lsm; // element stiffness matrix
34 ivector eldofn; // vector of DOF numbers at one element
35
36 smat.null();
37 for (int i=0; i<mt.ne; i++){
38 int ndofe = mt.elems[i].defifc->get_ndofe();
39 lsm.realloc(ndofe, ndofe);
40 eldofn.realloc(ndofe);
41 gt.gelems[i].give_eldof(eldofn);
42 mt.elems[i].defifc->stiff_matrix(sm, i, gt, mt, mc, mm);
43 smat.localize(eldofn, lsm); // localization of lsm matrix
44 }

Table 3.9: Setup and usage of FE interfaces.

integration point coordinates, ...) are known at compile time. Thus they can be defined
as constants allowing access by static methods. On the other hand, if some setting of FE
type is needed at runtime, e.g. order of numerical integration, a different representation of
interface procedures has to be used. Ordinary methods of class access data members with
the help of this pointer which refers to the given class instance for which the method
is being called. Pointer this is a hidden argument passed to the class’s methods which
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is an implementation detail of compilers, and therefore, the methods can only be called
within the scope of the class instance. It also implies that the pointer to the ordinary
method cannot be obtained.

A solution to that problem can be a general-purpose polymorphic function wrapper
represented by the class std::function, which is the part of the standard template
library (STL). It allows for the uniform handling of callable targets – functions (via point-
ers to that), lambda expressions, bind expressions, or other function objects, and pointers
to member functions. The modified FE interface class IElemDefM is captured in Ta-
ble 3.10. There are two key differences compared to the original class definition. The first

1 class IElemDefM {
2 public:
3 // template of constructor intializing interface
4 // from element type T
5 template<class T> IElemDefM(T& t) :
6 et{t.et},
7 get_ndofe{[&t]()->int {return t.get_ndofe();}},
8 stiff_matrix{[&t](matrix &sm, int id, gtop &g
9 top &mt, crsec &c, mat &m)->void

10 {return t.stiff_matrix(sm, id, g, mt, c, m);}},
11 int_forces{[&t](vector &ifor int id, gtop &g,
12 top &mt, crsec &c, mat &m)->void
13 {return t.int_forces(ifor, id, g, mt, c, m);}}
14 {}; // constructor body
15 // element type
16 elemtype et;
17
18 // returns the number of DOFs on element
19 std::function<int ()> get_ndofe;
20
21 // computes stiffness matrix
22 std::function<void (matrix &sm, int id, gtop &g,
23 top &t, crsec &c, mat &m)> stiff_matrix;
24
25 // computes internal force vector
26 std::function<void (vector &ifor, int id, gtop &g,
27 top &t, crsec &c, mat &m)> int_forces;
28 };

Table 3.10: Modified FE interfaces - std::function.

one consists in the changing type of interface data members get ndofe, stiff matrix
and int forces which represents computational procedures. They are now created by
instances of std::function template which are instantiated by the return type and
list of parameters, see lines 19, 22 and 26. The second key point is the initialization
of these data members at the constructor template, which starts at line 5. The con-
structor has one parameter t (line 5) of type T, i.e. instance of FE type class. This
instance is needed for calling its methods and must be somehow stored in the instance of
std::function class. Particular data members are initialized in the constructor initial-
izer list (lines 6–13) while the constructor body remains empty (line 14). Data members
get ndofe, stiff matrix and int forces are initialised with the help of lambda
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expressions which is a kind of in-place definition of short functions. The usage can be
demonstrated on data member stiff matrix where [&t](matrix &sm, ...)->
void represents start of definition of lambda expression which captures the object t
by reference from the actual scope, i.e. constructor. The captured outter variables can
be used in the lambda expression body as if they were defined in its scope. The part
(matrix &sm, ...) represents the list of parameters used in the lambda expression
call. Finally, ->void specifies the lambda expression return type to be void. The body
of the lambda expression consists just of the return statement where the appropriate func-
tion stiff matrix is being invoked for the given object t of the constructor parameter
(line 10).

The remaining parts of the interface can be defined in the same way as in Section 3.2
except FE type classes that may involve non-static data members. For example, class
LinBarElem might define ndofe to be ordinary member (Table 3.11, line 4) which can
be set later according to some specification of the 2D or 3D case of the bar element at
runtime.

1 class LinBarElem{
2 public:
3 static constexpr int ncomp = 1;
4 int ndofe;
5 static constexpr elemtype et = linbar;
6 LinBarElem : ndofe{0} {};
7 int get_ndofe() {return ndofe;};
8 void stiff_matrix (matrix &sm, int id, gtop &g,
9 mtop &t, mcrsec &c, mmat &m){

10 // code for the evaluation of \int_V BˆT D B dV
11 };
12 void int_forces (vector &ifor, int id, gtop &g,
13 mtop &t, mcrsec &c, mmat &m){
14 // code for the evaluation of \int_V BˆT \sigma dV
15 };
16 };

Table 3.11: Definition of modified class LinBarElem with ordinary member ndofe.

Setup of LinBarElem.ndofe at runtime is captured in Table 3.12, where the type
LinBarElem is passed to the std::get function which returns the given FE type
object from the tuple elobjs and thus its ndofe member can be accessed. The setup
of ndofe member is performed with respect to member probdim of probdesc class
which is determined according to data in the input file, see lines 9–12.

3.4 Comparison of particular approaches

Proposed approaches which involve advanced features of C++ were compared with tra-
ditional approaches based on procedural programming and OOP inheritance.
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1 // read input data from file referenced by in
2 // (problem description, mesh topology, cross-sections, materials)
3 mp.read(in);
4 mt.read(in, gt); // array of Element class is stored in mt
5 mc.read(in);
6 mm.read(in);
7 // ... other code
8
9 if (mp.probdim == 3) // 3D problem

10 std::get<LinBarElem>(elobjs).ndofe = 6;
11 else // 2D problem
12 std::get<LinBarElem>(elobjs).ndofe = 4;
13
14 // initialize element interface
15 for (i=0; i<mt.ne; i++){
16 // the same code as the original
17 }

Table 3.12: Setup and usage of modified FE interfaces.

3.4.1 The procedural approach

In the procedural approach, there are procedures with switch statements where the
appropriate procedure from FE type classes is called according to the FE type member
et of the general FE class Element. Tables 3.13, 3.15 and 3.15 summarizes the code of
interface functions get ndofe, stiff matrix and int forces.

1 int get_ndofe(elemtype et) {
2 switch (et){
3 case linbar:
4 return LinBarElem::ndofe;
5 case lintr:
6 return LinTrElem::ndofe;
7 case linquad:
8 return LinQuadElem::ndofe;
9 default:

10 fprintf(stderr, "Unknown type of element.\n");
11 exit(1);
12 }
13 return 0;
14 }

Table 3.13: The procedural approach - get ndofe interface function.

General FE class Element no more contains the interface member ifcdef, and the
usage is demonstrated in Table 3.16. Again, there is a loop for assembling the system
stiffness matrix at lines 26–34, which iterates over all elements. All interface functions need
as the first argument FE type alias for the given i-th element, and therefore it is retrieved
from the general element elem[i] of class mtop at line 27 and stored in the local variable
et. The number of element DOFs is obtained by the call of get ndofe function at line 27
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1 void stiff_matrix(elemtype et, matrix &sm, int id, gtop &g,
2 mtop &t, mcrsec &c, mmat &m){
3 switch (et){
4 case linbar:
5 return LinBarElem::stiff_matrix(sm, id, g, t, c, m);
6 case lintr:
7 return LinTrElem::stiff_matrix(sm, id, g, t, c, m);
8 case linquad:
9 return LinQuadElem::stiff_matrix(sm, id, g, t, c, m);

10 default:
11 fprintf(stderr, "\nUnknown type of element.\n");
12 exit(1);
13 }
14 return;
15 }

Table 3.14: The procedural approach - stiff matrix interface function.

1void int_forces(elemtype et, vector &ifor, int id, gtop &g,
2 mtop &t, mcrsec &c, mmat &m) {
3 switch (et){
4 case linbar:
5 return LinBarElem::int_forces(ifor, id, q, t, c, m);
6 case lintr:
7 return LinTrElem::int_forces(ifor, id, q, t, c, m);
8 case linquad:
9 return LinQuadElem::int_forces(ifor, id, q, t, c, m);

10 default:
11 fprintf(stderr, "\nUnknown type of element.\n");
12 exit(1);
13 }
14 return;
15 }

Table 3.15: The procedural approach - int forces interface function.

and i-the element stiffness matrix is computed by the call of stff matrix function at
line 32.

3.4.2 The OOP inheritance and polymorphism approach

The interface is defined in the base class, which represents the general FE type and
corresponds to the class Element. The base class defines required interface methods
as pure virtual methods while optional interface methods should also be virtual with a
default implementation. An example of the base class design can be seen in Table 3.17.
FE interface methods get ndofe(), stiff matrix(...) and int forces(...)
are defined to be pure virtual which is specified by the zero assignment after the method
declaration, see lines 10–12. A class with pure virtual methods is called an abstract
class and cannot be instantiated directly; only a pointer is allowed to that class. Classes
derived from the abstract base class must provide their own implementation of pure virtual
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1 // ... other code
2 // instances of main classes
3 mprobdesc mp;
4 gtop gt;
5 mtop mt;
6 mcrsec mc;
7 mmat mm;
8 // input file pointer
9 FILE *in;

10 // ... other code
11
12 // read input data from file referenced by in
13 // (problem description, mesh topology, cross-sections, materials)
14 mp.read(in);
15 mt.read(in, gt); // array of Element class is stored in mt
16 mc.read(in);
17 mm.read(in);
18 // ... other code
19
20 // Assembling of the system stiffness matrix
21 skyline smat(gt); // system stiffness matrix
22 matrix lsm; // element stiffness matrix
23 ivector eldofn; // vector of DOF numbers at one element
24
25 smat.null();
26 for (int i=0; i<mt.ne; i++){
27 elemtype et = mt.elems[i].et;
28 int ndofe = get_ndofe(et);
29 lsm.realloc(ndofe, ndofe); // memory alloc. of elem. stiff. mat.
30 eldofn.realloc(ndofe); // memory alloc. of DOF number array
31 gt.gelems[i].give_eldof(eldofn);
32 stiff_matrix(et, sm, i, gt, mt, mc, mm);
33 smat.localize(eldofn, lsm);
34 }

Table 3.16: Setup and usage of the procedural approach.

functions otherwise the compiler would report an error. An example of the implementation
of LinQuadElem class is given in Table 3.18. The class implements a quadrilateral
element with linear approximation functions. A public inheritance from the base class
Element is specified at line 1 while the specific implementations of interface methods
are declared at lines 6, 7 and 10. The other FE classes LinBarElem and LinTrElem
are defined similarly.

A computational code which uses the inheritance approach is given in Table 3.19,
which depicts a code excerpt for the assembling of the system stiffness matrix.
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1 struct Element{
2 public:
3 elemtype et;
4 int nn;
5 char aux[184];
6 Element() : et{elemtype(0)}, nn{0} {};
7 virtual void get_eldof(ivector &ed) {
8 // store element DOF in the argument ed
9 };

10 virtual int get_ndofe() const = 0;
11 virtual void stiff_matrix(matrix &sm) const = 0;
12 virtual void int_forces(vector &ifor) const = 0;
13 };

Table 3.17: OOP inheritance approach - base class of general FE.

1 class LinQuadElem : public Element{
2 public:
3 static constexpr int ncomp = 3;
4 static constexpr int ndofe = 8;
5 static constexpr elemtype et = linquad;
6 virtual int get_ndofe() const {return ndofe;};
7 virtual void stiffmat(matrix &sm) const{
8 // implementation of sm = BˆT. D. B
9 };

10 virtual void int_forces(vector &ifor) const{
11 // implementation of sm = BˆT. sigma
12 };
13 };

Table 3.18: OOP inheritance approach - derived class LinQuadElem.
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1
2 // reading number of elements ne
3
4 Element **elems = new (Element*)[ne];
5
6
7 for (i=0; i<ne; i++){
8 //
9 // reading of element type elems[i].et from file

10 //
11 switch (elems[i]->et){
12 case linbar:
13 elems[i] = new LinBarElem;
14 break;
15 case lintr:
16 elems[i] = new LinTrElem;
17 break;
18 case linquad:
19 elems[i] = new LinQuadElem;
20 break;
21 default:
22 return 1;
23 }
24 // reading of remaing element property
25 elems[i]->read(in);
26 }
27
28 // other code
29
30 // Assembling of the system stiffness matrix
31 skyline smat(gt); // system stiffness matrix
32 matrix lsm; // element stiffness matrix
33 ivector eldofn; // vector of DOF numbers at one element
34
35 smat.null();
36 for (int i=0; i<ne; i++){
37 int ndofe = elems[i]->get_ndofe();
38 sm.realloc(ndofe, ndofe);
39 eldofn.realloc(ndofe);
40 elems[i]->give_eldof(gt, eldofn);
41 elems[i]->stiff_matrix(lsm);
42 smat.localize(eldofn, lsm);
43 }

Table 3.19: Setup and usage of OOP interface procedures.
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3.4.3 Performance comparison

The performance of particular approaches was compared through the repeated of the
stiffness matrix assembling and computation of the internal force vector. The following
setups of particular approaches were tested:

1. procedural approach with switch statements

(a) set of 50,000 FE with randomly selected type from the set LinBarElem,
LinTrElem and LinQuadElem,

(b) set of 50,000 LinQuadElem elements with linear approximation.

2. OOP inheritance approach

(a) set of 50,000 FE with randomly selected type from the set LinBarElem,
LinTrElem and LinQuadElem,

(b) set of 50,000 LinQuadElem elements with linear approximation.

3. Interface metaprogramming - a direct approach

(a) set of 50,000 FE with randomly selected type from the set LinBarElem,
LinTrElem and LinQuadElem,

(b) set of 50,000 LinQuadElem elements with linear approximation.

4. Interface metaprogramming - function wrapper approach

(a) set of 50,000 FE with randomly selected type from the set LinBarElem,
LinTrElem and LinQuadElem,

(b) set of 50,000 LinQuadElem elements with linear approximation.

For all mentioned sets of finite elements, assembling the system stiffness matrix and
internal force vector was repeated 100 times to simulate some nonlinear analysis. For
the illustration, every local stiffness matrix was localized in the system stiffness matrix,
represented by a vector of 50·106 doubles simulating skyline storage. DOF numbers
were generated on particular elements to cover access to all skyline elements. The source
code of the main procedures of the benchmark tests can be found in Appendix A. Bench-
mark versions with random element type are listed in Tables A.6-A.9. The version for
LinQuadElem element type can be obtained simply by the modification of line 7, where
readarray[i] = linquad should substitute random element type generation.

The resulting averaged times, minimum, maximum and median times from 20 runs of
the different approaches are summarized in the Table 3.20. They were obtained on the
desktop computer with six-core Intel i5-9500 @ 3 GHz processor with 16 GB of RAM.
Elapsed times in Table 3.20 show that differences are not too significant; however, the
procedural approach performs best for both sets of elements, while the performance of
OOP inheritance was somewhat lower. The proposed approaches with interfaces gener-
ated by metaprogramming techniques had slightly better performance in most tests than
the OOP inheritance approach except for the test on the uniform set of LinQuadElem
elements. The differences in the performance stem from the following aspects of particular
approaches:



Using new C++ standard extensions in the finite element code design 41

Time Proc.
random

Proc.
LinQ

OOP
inherit.
random

OOP
inherit.
LinQ

Iface
direct
random

Iface
direct
LinQ

Iface
f. wrap.
random

Iface
f. wrap.
LinQ

[s] 1(a) 1(b) 2(a) 2(b) 3(a) 3(b) 4(a) 4(b)

Avg 4.05 7.91 4.48 8.80 4.39 8.73 4.08 8.97
Min 4.03 7.87 4.25 8.38 4.31 8.51 3.93 8.74
Max 4.09 8.14 5.01 9.49 4.88 9.30 4.56 9.52
Med 4.05 7.88 4.29 8.41 4.33 8.58 3.96 8.79

Table 3.20: Elapsed times in [s] for particular programming approaches.

� OOP inheritance approach requires the elements to be stored as an array of pointers
to the dynamically allocated objects. Thus the access requires dereferencing, and it
has a worse memory locality of the element data, which may result in higher cache
memory misses. The remaining approaches allow for the usual array of element
objects with better memory locality, requiring no dereferencing and therefore, there
is a better cache memory performance potentially.

� OOP inheritance and interface approaches have tables of pointers to the virtual/in-
terface functions. Therefore, there is a penalty due to dereferencing table pointer
and computation of the pointer to the given interface function. These approaches
are not also friendly to the branch prediction performed by the processors.

� Procedural approach uses switch statements which do not require dereferencing
of table pointer. However, the code for the appropriate calling function is also not
too friendly to the branch prediction of the processors.

It should be noted that elapsed times are influenced significantly by the actual data cache
hits/misses at the runtime, and keeping equal conditions for particular tests is difficult.
Elapsed times are similar and should be understood as a rough relative measure for the
comparison.

3.4.4 Conclusions

It can be concluded that the proposed function interface approach based template metapro-
gramming represents a reasonable alternative to the traditional approaches either based
on the switch statements or OOP inheritance. It allows for the good extensibility of
the code because a new type can be just placed in at the std::tuple object in one
header file. This is similar to the factory design pattern, which can be implemented with
the help of abstract classes and inheritance. It also preserves good performance because
objects with an interface can be stored in a usual array. There are also weak points that
are related, namely to template metaprogramming, which is an advanced programming
technique and requires more experienced programmers. Fortunately, the amount of such
code is limited, and ordinary users can be quite effectively spared from such code parts.
The other flaw is that the error/warning messages are more difficult to understand in the
case of compile time errors.
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Chapter 4

Example of problem solved

The program SIFEL was used to analyse several real-world engineering problems. The
first real-world problem solved by the code was a detailed THM and limit analysis of a
reactor vessel in the nuclear power plant in Hinkley (UK) in order to elongate its service
life. The vessel was composed of a cylindrical prestressed concrete structure reinforced by
a steel lining at the internal surface. Because of symmetry, only one eighth of the vessel
was taken into account. Figure 4.1 shows the mesh of the modelled segment. The hydro-
thermo-mechanical time-dependent analysis was performed. The creep of the concrete
vessel was modelled by Bazant’s B3 model Baweja and Bažant [1995]. In the selected
times, the nonlinear limit analyses using the damage model have been performed. Papers
describing the problem can be found in [Kruis et al., 2005].

Figure 4.1: Model of reactor vessel segment.

Distribution of damage in the containment wall of the nuclear power plant Temeĺın
(CR) was another complex problem solved by SIFEL. Figure 4.2 captures a cylindrical
segment from the containment wall. This problem was described by the coupled thermo-
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mechanical analysis. Results from the performed analyses were published in [Koudelka
et al., 2009] and [Krejč́ı et al., 2009].

Figure 4.2: Model of segment of containment in the nuclear power plant Temeĺın (Czech
Republic).

Rock slope stability is another problem solved by SIFEL. Figure 4.3 depicts the mesh
of the heterogeneous rock clif in Prague. The rock body consists of layered slates with
quartzite inlays. The rock body strata crop out of the slope at an angle of 45o–55o with
skew 0o–7o and exhibit polish on strata surfaces. There is a road built in the cut of the
slope partially, and part of the road is on a bridge. Several nonlinear limit analyses were
performed with the Mohr-Coulomb plasticity model. More details about the problem can
be found in [Koudelka and Koudelka, 2005] or [Koudelka and Koudelka, 2007].

Collaboration with Zakládáńı staveb a.s. within the CIDEAS research project led
authors of the program to the solution of impermeable concrete foundation slabs. That
was significant impulse for the code extension because a sequential casting procedure of
the foundation slabs and hydration heat generation were simulated, and damage evolution
in concrete was analysed. Figure 4.4 depicts a model of a foundation slab constructed at
two levels. The results from these analyses were published in [Krejč́ı et al., 2006], [Krejč́ı
et al., 2007] and [Koudelka et al., 2007] and Chapter 6 addressed this problem in detail.

The problem of simulation of the mechanical response of a church influenced by cli-
matic conditions was the aim of the research project No. 18-24867S, supported by the
Czech Science Foundation. It was the church of All Saints in Broumov (see Figure 4.5)
group of churches. Because the church has walls built from masonry (see Figure 4.6a, the
multi-scale modelling of mechanical properties was adopted in this case. The homogenized
tensile and compressive strengths were determined with the help of hybrid first-order ho-
mogenization techniques. Figure 4.6b captures the crack distribution of one specimen
loaded by increasing horizontal macro strain while preserving plane stress conditions, i.e.
zero macro stresses in the remaining directions.
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Figure 4.3: Mesh of heterogeneous rock slope in Prague (Czech Republic).

Figure 4.4: Model of the foundation slab in Prague-Těšnov (Czech Republic).

Figure 4.5: The church of All Saints in Broumov.
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(a) Sample of masonry wall (b) Final crack pattern

Figure 4.6: Modelling of church’s wall masonry.
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Part II

Modelling of construction phases in
engineering problems
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Chapter 5

Introduction

Construction phases have to be taken into account in the design of many structures. The
stress/strain states as well as deformation of structures may differ significantly at par-
ticular construction phases from the final state. Typical examples represent construction
phases of concrete or steel bridges, excavation of deep trenches in the soils or rocks and
building of tunnels.

This part is addressed on the implementation of construction phases in SIFEL code
with a special attention to the mechanical problems where the implementation is con-
nected with several issues. The first example consists of the simulation of casting proce-
dure of foundation slab with special attention to the crack evolution due to a non-uniform
hydration heat generation.

Several approaches will be demonstrated in connection with the gradual construction
of a box girder bridge built using the balanced cantilever construction method with cast-
in-place segments supported by form travellers. The aim was to determine the evolution of
the bridge deflection with respect to the concrete creep and relaxation of the prestressing
tendons.

The remaining techniques will be introduced in connection with the excavation prob-
lem of the deep trench, where the soil exhibits highly nonlinear behaviour. The hypoplastic
model for soils was used in this case which does not allow for the tensional stress states,
and special care had to be paid to the soil block removal.
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Chapter 6

Analysis of casting procedure of
thick foundation slab

The research project Centre for Integrated Design of Advanced Structures (CIDEAS) was
concerned with advanced materials, construction, energy, environment, extreme situations
and risk assessment in civil engineering. Three Czech civil engineering faculties (FCE CTU
in Prague, FCE Brno UT and FCE TU of Ostrava) collaborated with industrial partners
in this project. One of the topics was the analysis of the water impermeability of the
foundation slab, which was proposed by the industrial partner Zakládáńı staveb a.s. The
motivation for this research was the construction of the commercial building Diamond
Point in Prague near the Vltava river (Figures 6.1 and 6.2). The building was founded
on a slab 10 meters under the groundwater level, which led to the increased demands on
the water impermeability of the used concrete. The foundation slab also had a significant
thickness, and therefore the casting was divided into several phases in order to reduce
cracks due to hydration heat.

Figure 6.1: The commercial building Diamond Point.

The foundation of buildings in deep foundation pits is usually under the groundwater
level, which in this case, maybe be elevated significantly during floods because of near
river Vltava. The potential damage to the foundation slab is difficult to repair, and
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Figure 6.2: View of foundation pit at Těšnov

reconstructions are costly. The damage to the slab may be because of cracking arising
due to the combination of hydration processes in concrete and contact forces between the
foundation slab and the subsoil and may result in the loss of the slab impermeability.
Concrete watertightness is influenced by a variety of factors, especially:

• concrete mixture composition,

• degree and form of reinforcement,

• technology of casting procedure,

• arrangement of working gaps,

• proper curing of concrete during hydration.

Watertight concrete is often designed as high-performance, self or easy-compacting where,
except the basic material parameters such as water-cement ratio and particular aggre-
gates, an important role also play the admixtures such as superplastifiers and hardening
accelerators. These admixtures influence significantly evolution of hydration heat and
autogeneous shrinkage whose values are raised when compared to the usual concrete.

These factors are necessary to take into account in computer simulation of slab be-
havior. The computer simulation should represent

• used casting procedure by particular layers and shrinkage parts (the slab has to be
cast in several layers with thickness 300∼600 mm),

• curing of concrete (watering and protection against sun radiation),

• autogeneous shrinkage in early stages,

• drying shrinkage in late stages,

• increasing stiffness and strength of concrete in course of time,

• creep of concrete,

• possible damage of concrete.
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All these effects depend on time, temperature and humidity and thus the coupled thermo-
hydro-mechanical analysis was performed.

6.1 Governing equations of mechanical problem

Assuming the mechanical problem, the system of static equations which describes equi-
librium in the three dimensional domain Ω can be written as follows

∂Tσ + b = o, (6.1)

where σT = (σx, σy, σz, τyz, τzx, τxy) is the stress vector, b is the vector of body forces and
o is the zero vector and ∂T is the operator matrix defined as

∂ =



∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y
∂

∂z
0

∂

∂x
∂

∂y

∂

∂x
0



. (6.2)

Constitutive equations relate the stresses from Equation (6.1) with strains and they can
be written in the from

σ = D(ε)ε, (6.3)

whereD(ε) represents the stiffness matrix and ε is the strain vector. The relation between
strains ε and unknown displacements is given by the strain-displacement equations

ε = ∂u, (6.4)

where u is the displacement vector.
Equations (6.1), (6.3) and (6.4) must be supplemented by appropriate boundary con-

ditions,

u = ū on Γu, (6.5)

Sσ = t̄ on Γt, (6.6)

where ū is the vector of prescribed displacements on the boundary Γu and t̄ is the vector
of surface tractions on the boundary Γt. The following relations have to be satisfied for
the boundaries Γu and Γt

Γ = Γu ∪ Γt, (6.7)

Γu ∩ Γt = ∅, (6.8)
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where the symbol Γ stands for the total boundary of the domain Ω. These boundaries
are parts of the domain solved. The matrix S contains components of the unit normal
vector, n, to the boundary

S =

 nx 0 0 0 nz ny
0 ny 0 nz 0 nx
0 0 nz ny nx 0

 . (6.9)

These basic equations for problems in solid mechanics can be discretized using the
standard displacement version of the FEM [Zienkiewicz and Taylor, 2000], [Hughes, 1987],
[Bittnar and Šejnoha, 1996], where components of the displacement field are approximated
as linear combinations of given approximation (shape) functions Nk(x), k = 1, . . . , Nn,
where x represents the spatial coordinates. The domain considered is divided by elements
connecting Nn nodes where each of the node is associated with one shape function. Every
shape function has to met conditions that Nk(xk) = 1 in the given k-th node and Nk(xj) =
0, k 6= j for all remaining nodes. The displacement field can be then approximated as

ui(x) ≈
Nn∑
k=1

Nk(x)dki, i = 1, 2, 3 (6.10)

where dki are unknown nodal displacements. Equation (6.10) can also be written in the
matrix form as

u(x) ≈Nu(x)d, (6.11)

where Nu(x) is the matrix of approximation functions and d is the vector of unknown
nodal displacements.

Employing Equation (6.11) in (6.4) the following relationship is obtained

ε ≈ B(x)d, (6.12)

where B(x) is the strain-displacement matrix containing the appropriate derivatives of
the shape functions with respect to spatial coordinates.

Substitution of Equation (6.12) into the constitutive equations (6.3) yields the follow-
ing stress approximation

σ(x) ≈D(ε)B(x)d. (6.13)

The static equations (6.1) can be replaced by the principle of virtual work [Hughes,
1987] which results in the weak form of the equilibrium equations given by the equality∫

Ω

σTδε dΩ =

∫
Ω

bTδu dΩ +

∫
Γt

t̄
T
δu dΓt. (6.14)

The equality (6.1) must be valid for arbitrary virtual displacement field δu and virtual
strain field δε which satisfies the kinematic equation δε = ∂δu in Ω, and kinematic
boundary conditions δu = o on Γu. Assuming the same approximation of the virtual
displacement field

δu ≈Nuδd, (6.15)

yields the virtual strain field in the form

δε ≈ Bδd, (6.16)
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where δd is the vector of virtual displacement parameters. Moreover, similar approxi-
mations can be introduced for body forces and tractions given by equations (6.1) and
(6.6)

b ≈ N b(x)b̂, (6.17)

t̄ ≈ N t(x)t̂, (6.18)

where the vectors b̂ and t̂ represent nodal values of body forces and surface tractions,
respectively. Generally, the approximations of the body forces and tractions are realized
with the help of feasible shape functions whose values may be collected in matrices N b

and N t. Typically, the same type of the shape functions is used in the whole problem
assuming Nu = N b = N t.

Substitution of Equations (6.15) and (6.16) into the Equation (6.14), leads to the
following condition∫

Ω

dTBT(x)DT(x)B(x)δd dΩ =

∫
Ω

b̂
T
NT

b (x)Nu(x)δd dΩ +

∫
Γt

t̂
T
NT

t (x)Nu(x)δd dΓt.

(6.19)
The vectors δd and d may be taken out of integrals because they are not functions of

the spatial coordinates. The stiffness matrix can be then defined as

K =

∫
Ω

BT(x)D(x)B(x) dΩ, (6.20)

and the load vector as

f ext =

∫
Ω

NT
u (x)N b(x)b̂ dΩ +

∫
Γt

NT
u (x)N t(x)t̂ dΓt. (6.21)

Assuming the above definitions, Equation (6.19) can be rewritten the form

Kd = f ext, (6.22)

from which the unknown nodal displacements, d, can be determined.
For the linear elastic and homogeneous material, the coefficients of the stiffness matrix

D are constants and Equation (6.22) represents the system of linear algebraic equations.
In the case of nonlinear material behaviour, the stress-strain relation can be written with
the help of constitutive operator,σ̄, as

σ = σ̄(ε). (6.23)

Adopting the same approximation of the strain yields

σ(x,d) = σ̄(B(x)d). (6.24)

Substitution of the new stress definition in the weak form of the equilibrium equations
leads to the following form∫

Ω

σ̄T(B(x)d)B(x)δd dΩ =

∫
Ω

b̂
T
NT

b (x)Nu(x)δd dΩ +

∫
Γt

t̂
T
NT

t (x)Nu(x)δd dΓt

(6.25)
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which can be arranged to the final form representing the discretized equations of equilib-
rium

f int(d) = f ext. (6.26)

In Equation (6.26), f int(d) denotes the vector of internal forces that can be written as

f int(d) =

∫
Ω

BT(x)σ̄(B(x)d) dΩ. (6.27)

The resulting system of algebraic equation (6.26) is nonlinear, so it has to be solved
numerically. Typically, the Newton-Raphson iteration procedure is used for solving such
systems.

6.2 Mechanical material models

Concrete belongs to heterogeneous materials whose behaviour is very complex. There are
creep, shrinkage and thermal dilatancy, which represent time-dependent phenomenons
coupled with heat and moisture transfer. The mechanical phenomena are represented
by plasticity, damage or crack propagation, to name the most important ones. Usually,
capturing the most relevant phenomena requires a combination of several material models.
Several creep models can be found in [CEB, 2008], [Jirásek and Bazant, 2002], [Bazant
and Jirásek, 2018], crack and damage models are proposed in [de Borst, 1987], [Lemaitre
and Chaboche, 1994], [Papa and Taliercio, 1996] and models of plasticity can be found
in [Chen and Chen, 1975], [Jirásek and Bazant, 2002], [Ottosen and Ristinmaa, 2005]
or [Grassl et al., 2013]. This section is addressed to mechanical material models for the
concrete that were implemented in the SIFEL environment, and they were used in analyses
of concrete structures mentioned in this chapter.

Assuming small strains, the total strain can be additively decomposed into several
components

εtot = εe + εp + εd + εc + εsh + εag + εt, (6.28)

where εtot denotes the total strain, εe denotes the elastic strain, εp stands for the plastic
strain, εd stands for damage strain, εc is creep strain, εsh denotes part of strain caused by
shrinkage, εag stands for strain caused by ageing, εt is free thermal strain. The resulting
stress σ can be expressed from the Hook’s law in the form

σ = Deεe, (6.29)

where De is the elastic stiffness of material.

6.2.1 Analysis of structural shrinkage and creep in concrete

Under assumption of uniaxial stress σ [Bažant, 1988], the expression Equation (6.28) can
be arranged as follows

εtot(t) = εσ + ε0, (6.30)

where εσ is the strain depending on the stress state, ε0 is the strain due to other effects
that are not caused by the applied mechanical load.
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Experiments showed that stress-strain relation is almost linear (linear creep) under
service load levels, i.e. σ < 0.4fck, where fck is the compressive strength. In cases where
the Boltzmann principle of superposition can be applied and the stress σ varies in time,
the total strain at time t due to variation of stress in time is a sum of strain increments
caused by the particular constant stress increments ∆σi, applied at time τi

εtot = J(t, t0)σ(t0) +

∫ t

t0

J(t, τ)dσ(τ) + ε0. (6.31)

In Equation (6.31), J(t, τ) is the compliance function of linear viscoelastic materials which
yields the strain at time t due to unit stress σ = 1 applied at time τ . Definition of
the compliance function varies among the particular creep models. Bazant’s compliance
function, known as the B3 model, belongs to the most popular ones in the engineering
community. It originates from the set of experiments carried out since 1970 [Baweja and
Bažant, 1995].

Continuous model

The integral constitutive relation in Equation (6.31) can be solved with the help of the
continuous Kelvin chain model with an infinite number of units and retardation times
with infinite close spacing [Bažant and Xi, 1995]. In [Baweja and Bažant, 1995], this
approach was applied on the B3 compliance function with log-power law written in the
form

J(t, τ) = q1 + C(ξ), (6.32)

where ξ = t − τ , t represents the concrete age and creep compliance function C(ξ) is
defined as

C(ξ) = q3ln

[
1 +

(
ξ

λ0

)n]
. (6.33)

The compliance function, C(ξ), has parameters q3, λ0 = 1 and n. It can be approximated
in the continuous form

C(ξ) =

∫ ∞
0

L(τ)(1− e−ξ/τ )d(lnτ). (6.34)

where τ is the time of the load application, L(τ) denotes the continuous retardation
spectrum whose meaning in the logarithmic scale corresponds to the material compliance
of the Kelvin unit in the actual time scale. Derivation L(τ) from the known compliance
function of the material was proposed in [Tschoegl, 1971] and [Tschoegl, 1989].

Using Equation (6.34) and setting τ = 1/ζ with d(lnτ) = −d(lnζ), the creep compli-
ance function reads

C(ξ) =

∫ ∞
0

L(ζ−1)(1− e−ξζ)ζ−1dζ =

=

∫ ∞
0

L(ζ−1)ζ−1d(ζ)−
∫ ∞

0

L(ζ−1)e−ξζζ−1dζ. (6.35)



58 Analysis of casting procedure of thick foundation slab

Application of the Laplace transform on Equation (6.35) results in the form

C(ξ) = f(0)− f(ξ), (6.36)

f(ξ) =

∫ ∞
0

L(ζ−1)e−ξζζ−1dζ, (6.37)

where f(ξ) represents Laplace transform of the function L(ζ−1)ζ−1 with the transformed
variable ξ. The Laplace transform is inverted with the help of the inversion operator
proposed in [Widder, 1946]

Fk,ζ [f(ξ)] =
(−1)k

k!

(
k

ζ

)k+1

f (k)

(
k

ζ

)
(6.38)

which has the following property

lim
k→∞

Fk,ζ [f(ξ)] = lim
k→∞

[
(−1)k

k!

(
k

ζ

)k+1

f (k)

(
k

ζ

)]
= L(ζ−1)ζ−1. (6.39)

In Eq (6.39), f (k) is the k-th derivative of function f (f(0) is constant). For k ≥ 1,

L(τ) = − lim
k→∞

(−kτ)k

(k − 1)!
C(k)(kτ). (6.40)

The finite value of k yields the approximate spectrum of the k-th order. The transform
can be rewritten using Equations (6.33), (6.36) and (6.37) as

f(ξ) = q3ln(1 + ξn)−
∫ ∞

0

L(ζ−1)ζ−1dζ, (6.41)

Assuming k = 3 should be sufficient in practice, and for that value, Equation (6.40) yields
the approximation

L(τ) =

[−2n2(3τ)2n−3[n− 1− (3τ)n]

[1 + (3τ)n]3

]
(3τ)3

2
q3

+

[
n(n− 2)(3τ)n−3[n− 1− (3τ)n]− n2(3τ)2n−3

[1 + (3τ)n]2

]
(3τ)3

2
q3. (6.42)

In the numerical computation, the integral in (6.34) is approximated by the finite sum
and ln(τ) is subdivided into time intervals ∆ln(τ) = ln10∆(log(τµ))

C(ξ) =
M∑
µ=1

L(τµ)
[
1− e−ξ/τµ

]
ln10∆(log(τµ)), or C(ξ) =

M∑
µ=1

Bµ

[
1− e−ξ/τµ

]
, (6.43)

where

Bµ = L(τµ)ln10∆(log(τµ)). (6.44)

L(τµ) is given by Equation (6.42) and ∆(log(τµ) is equal to the time interval between two
adjacent Kelvin units in the logarithmic scale [Bažant and Xi, 1995].
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6.2.2 B3 creep model

One of the most popular creep models represents Bazant’s B3 model with logarithmic-
power law where compliance function J(t, τ) is given by

J(t, τ) = q1 + q2Q(t, τ) + q3ln

[
1 +

(
t− τ
λ0

)n]
+ q4ln

( t
τ

)
. (6.45)

Parameter q1 is the instantaneous strain due to unit stress, the coefficient q2 is the ageing
viscoelastic compliance, q3 represents non-ageing viscoelastic compliance, and q4 is the flow
compliance. The coefficient λ0 is considered to be almost 1.0, and Q(t, τ) is a binomial
integral. The more details about the coefficients can be found in [Baweja and Bažant,
1995] and Bazant and Jirásek [2018].

6.2.3 Moisture and temperature effects in the concrete model

Temperature and moisture changes in concrete influence namely three phenomena in
concrete creep (solidification theory model [Bazant et al., 2004]):

� The ageing of concrete, which causes a significant decrease of creep with the age at
loading. There are two types of ageing:

– Short-term chemical ageing, which ceases at room temperature after about a
year .

– Long-term non-chemical ageing, which is observed even many years after the
degree of hydration of cement ceased to grow.

� The drying creep effect, (the stress-induced shrinkage) which takes a place during
drying and it is manifested by larger apparent creep than the basic creep.

� The transitional creep, which represents a transient increase of creep after a tem-
perature change, both heating and cooling.

There are two effects of temperature on concrete creep [Bazant et al., 2004], generated
by two different mechanism:

� A temperature increase accelerates the bond breakages and restorations causing
creep, and thus increases the creep rate.

� The temperature rise accelerates the chemical process of cement hydration and thus
the ageing of concrete, which reduces the creep rate.

The effect of bond breakage usually prevails, and thus the temperature rise leads to
increased creep.

The effect of moisture changes in the ageing of concrete is described in [Bazant et al.,
2004]. A decrease in relative humidity, ϕ, is linked with a decrease in the rate of hydration
and creep. Levels of ϕ close to 0.3 results in an almost zero rate of ageing. The special
time quantities are introduced in the creep model:
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� Reduced time tr characterizing the changes in the rate of bond breakages and
restoration on the microstructural level

tr(t) =

∫ t

0

ψ(τ)dτ ≤ t, (6.46)

where

ψ(t) = ψT (t)ψϕ(t), (6.47)

ψT (t) = exp

{
Qv

R

(
1

T0

− 1

T

)}
, (6.48)

ψϕ(t) = αϕ + (1− αϕ)ϕ2(t). (6.49)

In the above equations, T is the absolute temperature, T0 is the reference temper-
ature, R is the gas constant, Qv is the activation energy for the viscous processes
and αϕ is a material parameter that has to be determined experimentally. From the
large set of experiments conducted by Bazant, the following values can be considered
T0 = 294 K, Qv/R = 5000 K and αϕ = 0.1.

� Equivalent time te, which characterizes the degree of hydration indirectly

te(t) =

∫ t

0

β(τ)dτ, te ≥ t (6.50)

where

β(t) = βT (t)βϕ(t), (6.51)

βT (t) = exp

{
Qh

R

(
1

T0

− 1

T

)}
, (6.52)

βϕ(t) = {1 + [aϕ − aϕϕ(t)]4}−1. (6.53)

In the above equation, Qh is the activation energy, Qh/R = 2700 K and aϕ = 5.
In the case of zero stress level, the effects of temperature and humidity changes (struc-

tural thermal expansion and shrinkage) can be defined in terms of strain rates as

� rate of the thermal expansion strain

ε̇t = αṪ , (6.54)

� rate of the drying shrinkage strain

ε̇sh = kϕ̇ (6.55)

where the incremental shrinkage coefficient vector, kT = (k11, k22, k33, k23, k31, k12), can be
expressed in terms of ϕ, T and te. α

T = (α11, α22, α33, α23, α31, α12) denotes the thermal
expansion coefficient vector.

Considering the shrinkage and thermal expansion to be stress independent, they can
be expressed as follows

k = ε0
shψm, α = α0m, (6.56)
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where (−ε0
sh) ranges in [0.0002; 0.001], α0 is an empirical constant, and (−ψ) = E(t0)/E(te)3ϕ

2

for 0.4 ≤ ϕ ≤ 0.98.
If the material is subjected to stresses, the linear functions of the stress vector [Bazant

and Chern, 1985] are considered for the approximation of the shrinkage and thermal
expansion coefficient vectors

k = ε0
shψ(m+ η̄σsign(Ḣ)), α = α0(m+ ζ̄σsign(Ḣ)), (6.57)

where Ḣ = ϕ̇ + cṪ (with constant c ≥ 0). Coefficients η̄ and ζ̄ are determined empir-
ically and their typical values are taken proportionally with respect to inverse value of
the tensile strength, ft, as η̄ ∈ [0.1/ft; 0.6/ft] (MPa−1) and ζ̄ ∈ [1/ft; 2/ft] (MPa−1).
Equations (6.57) may be simplified according to [Bažant, 1988] by considering c → 0 in
case of k, to get sign(Ḣ) = sign(ϕ̇), and by setting c → ∞ in case of α, thus yielding
sign(Ḣ) = sign(Ṫ ).

Generalization into 3D and including incremental form of shrinkage ∆εsh = k∆ϕ and
thermal dilatation ∆εt = α∆T , the incremental constitutive equation is obtained

∆σ = J−1(t, t0)D̂
(
∆ε− k∆ϕ−α∆T −∆εc −∆εd

)
, (6.58)

where D̂ may be defined with the help of Poisson’s ratio, ν, as

D̂ =
1

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 0.5− ν 0 0
0 0 0 0 0.5− ν 0
0 0 0 0 0 0.5− ν

 . (6.59)

6.2.4 Damage Model

The scalar isotropic damage model belongs to popular models of continuum damage me-
chanics. It can be successfully used for problems of bending. The model is described
in detail, e.g., in [Lemaitre and Chaboche, 1994] and [Skrzypek and Ganczarski, 1999].
Considering the one-dimensional case and the virgin state of the material, the area of the
cross-section of a bar element is denoted by A. If the bar element is subjected to increas-
ing uniaxial stress, defects start to evolve at a certain strain threshold. Let the area of
these defects be denoted by Ad. The undamaged area can then be defined as Ã = A−Ad.
The equivalence condition on the bar element between the nominal stress assumed on the
original cross-section area, A, and stress acting on the undamaged cross-section area Ã
can be written in the form

σA = σ̃Ã. (6.60)

A dimensionless damage parameter ω can then be defined as

ω =
Ad
A
. (6.61)

The stress-strain relation of the scalar isotropic material reads

σ = (1− ω)Eε̄, (6.62)
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where ε̄ represents the total strains decreased by the irreversible strain components

ε̄ = εtot − εp − εc − εag − εsh − εt. (6.63)

Equation (6.62) can be rewritten to the form

σ = E(ε̄− εd) = Eεe, (6.64)

where
εd = ωε̄, (6.65)

with the definition of ε̄ corresponding to Equation (6.63).
For the three-dimensional case, the stress-strain relation can be written similarly

σ = (1− ω)Deε̄. (6.66)

A suitable evolution law for the damage parameter, ω, has to be defined for the given
material type. In reference [Papa and Taliercio, 1996], the evolution law suitable for
concrete was proposed in the form

ω =

0 for κ̄ ≤ ε̄0

a(κ̄− ε̄0)b

1 + a(κ̄− ε̄0)b
for κ̄ > ε̄0,

(6.67)

where ε̄0 is the strain threshold which distinguishes elastic (κ̄ ≤ ε̄0) and inelastic be-
haviour (κ̄ > ε̄0) and κ̄ is the maximum attained strain ε̄ in the loading history. Material
parameters a and b control the peak stress value and slope of the softening branch.

Generally, the problem of mesh sensitivity arises in FEM for materials with softening
behaviour, e.g. [Lemaitre and Chaboche, 1994] and therefore it must be considered for
damage models as well. The problem is connected with the dissipated energy which
depends on the characteristic size of a damaged element and tends to zero with decreasing
characteristic size of the element. For these instances, the method of the variable softening
modulus was developed in [Pietruszczak and Mróz, 1981], which allows avoiding of the
spurious mesh dependency. In this method, the characteristic element length is involved
into the damage evolution law. In the one-dimensional case, the stress can be written in
the form

σ = ft exp

(
− wcr
wcr0

)
, (6.68)

where ft is the tensile strength in [Pa], wcr is the crack opening in [m] and wcr0 is the ma-
terial parameter controlling the initial slope of the softening branch in [m]. Consequently,
the crack opening is considered to be smeared over the element as follows

κ̄− εe =
wcr
h
, (6.69)

where h is the characteristic element length. Using Equations (6.62), (6.68) and (6.69)
yields the resulting nonlinear equation for the damage parameter ω

(1− ω)Eκ̄ = ft exp

(
−ωhκ̄
wcr0

)
. (6.70)
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The nonlinear equation can be solved, e.g., with the help of the Newton method.
For the two-dimensional or three-dimensional stress states, the strain κ̄ has to be

substituted by equivalent strain κeq. In the case of concrete modelling, the equivalent
strain, κeq, can be defined with the help of the Mazars’ norm [Mazars and Pijaudier-
Cabot, 1989]

κeq =
√
〈ε̄α〉〈ε̄α〉, (6.71)

where ε̄α denotes the principal values of the strain tensor ε̄ and the symbol 〈〉 denotes
selection of positive components (Macaulay brackets).

6.3 Coupled heat and moisture transfer model

The model for the coupled heat and moisture transport proposed by Künzel and Kiessl
[Künzel and Kiessl, 1996] is the phenomenological model developed for the description of
the coupled heat and moisture transfer in porous materials such as concrete and masonry.
The model is intended for the materials subjected to common climatic conditions, and
its formulation allows for the determination of the material parameters from relatively
simple laboratory measurements.

The model introduces two primary unknowns at the material - relative humidity ϕ
[-] and temperature T [K]. Simultaneous water and water vapour transport is described
by the relative humidity, ϕ, which is considered to be the only moisture potential for
both hygroscopic and over-hygroscopic regions. Moreover, the over-hygroscopic region
is divided into two subregions - capillary water region and supersaturated region, where
different conditions for water and water vapour transport are considered.

6.3.1 Transport equations

The proposed model considers that water vapour diffusion and liquid transport [Künzel
and Kiessl, 1996] are the only the moisture transport mechanisms relevant in the field of
building physics. Liquid transport is linked with the small capillaries, while the vapour
diffusion takes a place in large pores.

The liquid transport mechanism consists of liquid flow in the absorbed layer (surface
diffusion) and water filled capillaries (capillary transport). For the both sources of flow,
the driving potential may be considered to be either suction stress (capillary pressure) or
relative humidity ϕ. The flux of liquid water in terms of relative humidity can be written
as

Jw = −Dϕ∇ϕ, (6.72)

where the liquid conductivity Dϕ [kg m−1 s−1] is the product of the liquid diffusivity Dw

[m2 s−1] and the derivative of water retention function Dϕ = Dw × dw/dϕ.
The Fick’s law is used for the description of vapour diffusion. It relates the vapour

flux, Jv and the relative humidity gradient as follows

Jv = −δp∇(psat ϕ) = − δ
µ
∇(psat ϕ), (6.73)
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where δp [kg m s−1 Pa−1] is the vapour permeability of the porous material, (psat ϕ) denotes
vapour pressure [Pa], psat is the water vapour saturation pressure, δ [kg m s−1 Pa−1] is the
vapour diffusion coefficient in the air and µ is the vapour diffusion resistance.

The heat transfer is described by the Fourier’s law, which states that heat flux is
proportional to the temperature gradient with proportional factor called thermal conduc-
tivity. It can be written in the following form

q = −λ∇T, (6.74)

where λ [W m−1 K−1] is the thermal conductivity of the moist material. The enthalpy
flows through moisture movement and phase transition is taken into account in the form
of source terms in the heat balance equation.

6.3.2 Balance equations

Balance equations represent in the transfer processes some kind of conservation law. The
energy conservation law is linked with heat transfer, while the mass conservation law is
associated with moisture transfer. They are closely coupled because the moisture content
depends on the total enthalpy and thermal conductivity, while the moisture flow influences
the temperature.

Both laws can be described as a set of partial differential equations in terms of temper-
ature T and relative humidity ϕ. They can be expressed on the domain Ω in the following
form

∂w

∂ϕ

∂ϕ

∂t
= ∇T

(
Dϕ∇ϕ+ δp∇(ϕpsat)

)
, x ∈ Ω, (6.75)(

ρC +
∂Hw

∂T

)∂T
∂t

= ∇T
(
λ ∇T

)
+ hv∇T

(
δp∇(ϕpsat)

)
, x ∈ Ω, (6.76)

where Hw [J m−3] is the enthalpy of the material moisture, w [kg m−3] is the water content
of the material, hv [J kg−1] is the evaporation enthalpy of the water, psat [Pa] is the water
vapour saturation pressure, ρ [kg m−3] is the material density, C [J kg−1 K−1] is the
specific heat capacity and t [s] denotes time.

Boundary of the domain Ω is split into parts ΓT , Γϕ, ΓqpT , ΓJpϕ, ΓqcT and ΓJcϕ which
are disjoint and their union is the whole boundary Γ = ∂Ω = ΓT ∪ Γϕ ∪ ΓqpT ∪ ΓJpϕ ∪
ΓqcT ∪ ΓJcϕ.

6.3.3 Boundary conditions

The following types of boundary conditions can be given for the system of equations (6.75)
and (6.76):

� Dirichlet boundary conditions

T (x, t) = T (x, t), x ∈ ΓT (6.77)

ϕ(x, t) = ϕ(x, t), x ∈ Γϕ (6.78)
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� Neumann boundary conditions

−λdT

dn
= q(x, t) = q(x, t), x ∈ ΓqpT , (6.79)

−Dϕ
dϕ

dn
= J(x, t) = J(x, t), x ∈ ΓJpϕ, (6.80)

� Cauchy boundary conditions

q(x, t) = α(T (x, t)− TE(x, t)), x ∈ ΓqcT , (6.81)

J(x, t) = β(p(x, t)− pE(x, t)), x ∈ ΓJcϕ, (6.82)

where T (x, t) is the prescribed temperature, ϕ(x, t) is the prescribed relative humidity,
q(x, t) is the prescribed heat flux, J(x, t) is the prescribed moisture flux, α [W m−2

K−1] and β [kg s−1 Pa−1] are the heat and mass transfer coefficient, TE is the ambient
temperature and pE is the ambient water vapour pressure.

6.3.4 Discretization of the differential equations

The spatial discretization of the partial differential equations Equations (6.75) and (6.76)
is performed with the help of finite element method. The weighted residual statement
can be applied on both balance equation assuming δT = 0 on ΓT and δϕ = 0 on Γϕ which
lead to the form ∫

Ω

δϕ
(∂w
∂ϕ

∂ϕ

∂t
−∇T

(
Dϕ∇ϕ+ δp∇(ϕpsat)

))
dΩ = 0 (6.83)∫

Ω

δT

((
ρC +

∂Hw

∂T

)
∂T

∂t
−∇T (λ ∇T )− hv∇T (δp∇(ϕpsat))

)
dΩ = 0. (6.84)

Then the Green’s theorem can be applied on the weak formulation of the mass balance
equation which results in∫

Ω

δϕ
(∂w
∂ϕ

∂ϕ

∂t

)
dΩ +

∫
Ω

∇δϕ
(
Dw

dw

dϕ
+ δppsat

)
∇ϕdΩ +

∫
Ω

∇δϕ
(
δpϕ

dpsat

dT

)
∇TdΩ

−
∫

ΓJ

δϕ
(
Dw

dw

dϕ
+ δppsat

)∂ϕ
∂n

dΓ−
∫

Γq

δϕ
(
δpϕ

dpsat

dT

)∂T
∂n

dΓ = 0.

(6.85)

where ΓJ = ΓJcϕ ∪ ΓJpϕ and Γq = ΓqcT ∪ ΓqpT . The similar approach can be used for the
weak formulation for heat transfer which yields∫

Ω

δT
(
ρC +

∂Hw

∂T

)∂T
∂t

dΩ +

∫
Ω

∇δT
(
λ+ hvδpϕ

dpsat

dT

)
∇TdΩ+∫

Ω

∇δT
(
hvδppsat

)
∇ϕdΩ−

∫
ΓJ

δT
(
hvδppsat

)∂ϕ
∂n

dΓ

−
∫

Γq

δT
(
λ+ hvδpϕ

dpsat

dT

)∂T
∂n

dΓ = 0.

(6.86)
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The temperature field, T , and relative humidity filed, ϕ, may be approximated in the
form

T = NT (x)dT , ϕ = Nϕ(x)dϕ, (6.87)

whereNα(x) denotes the matrix of approximation functions of the α quantity, dT denotes
the vector of nodal temperatures and dϕ denotes the vector of nodal relative humidities.
A similar approximation may be used for gradients of temperature and relative humidity

∇T = B(x)dT , ∇ϕ = B(x)dϕ. (6.88)

whereB(x) is the matrix of derivatives of approximation functions. Using approximations
(6.87) and (6.88) in Equations (6.85) and (6.86) yields a set of the first order differential
equations in the matrix form(

Kϕϕ KϕT

KTϕ KTT

)(
dϕ
dT

)
+

(
Cϕϕ CϕT

CTϕ CTT

)(
ḋϕ
ḋT

)
=

(
fϕ
fT

)
. (6.89)

The matrices Kϕϕ, KϕT , KTϕ and KTT represent blocks of the conductivity matrix of
the problem and they are defined as

Kϕϕ =

∫
Ω

BTDϕϕBdΩ, KϕT =

∫
Ω

BTDϕTBdΩ, (6.90)

KTϕ =

∫
Ω

BTDTϕBdΩ, KTT =

∫
Ω

BTDTTBdΩ. (6.91)

where Dϕϕ, DϕT , DTϕ and DTT are the material conductivity matrices. These matrices
have the diagonal form where the diagonal entries are equal to appropriate conductivities

kϕϕ = Dw
dw

dϕ
+ δppsat, kϕT = δpϕ

dpsat

dT
, (6.92)

kTϕ = hvδppsat, kTT = λ+ hvδpϕ
dpsat

dT
. (6.93)

Similarly, the matrices Cϕϕ, CϕT , CTϕ and CTT represent blocks of the capacity matrix
of the problem and they can be expressed as

Cϕϕ =

∫
Ω

NT
ϕHϕϕNϕdΩ, CϕT =

∫
Ω

NT
ϕHϕTNTdΩ, (6.94)

CTϕ =

∫
Ω

NT
THTϕNϕdΩ, CTT =

∫
Ω

NT
THTTNTdΩ, (6.95)

where Hϕϕ, HϕT , HTϕ and HTT are the material capacity matrices which have diagonal
form too. In this case, diagonal entries are equal to appropriate capacities

cϕϕ =
∂w

∂ϕ
, cϕT = 0, (6.96)

cTϕ = 0, cTT = ρC +
∂Hw

∂T
. (6.97)
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Finally, prescribed nodal fluxes yields the right hand side vectors Jϕ and qT which can
be defined as follows

fϕ =

∫
ΓJ

NT
ϕ ĴϕdΓ, fT =

∫
Γq

NT
T q̂TdΓ , (6.98)

where Ĵϕ denotes the mass boundary fluxes and q̂T denotes the heat boundary fluxes at
nodes defined as follows

Ĵϕ = Nϕ J , q̂T = NT q. (6.99)

6.4 Coupling transfer and mechanical models

The spatial discretization of the balance equations is done by the finite element method
[Bittnar and Šejnoha, 1996] and a system of ordinary differential equations with time
variables is obtained. In the case of hydro-thermo-mechanical problem, the system may
have the form Cuu CuT Cuϕ

CTu CTT CTϕ

Cϕu CϕT Cϕϕ

 ḋu
ḋT
ḋϕ

+

 Kuu KuT Kuϕ

KTu KTT KTϕ

Kϕu KϕT Kϕϕ

 du
dT
dϕ

 =

=

 fu
fT
fϕ

 , (6.100)

where the subscript u denotes the displacements, the subscripts ϕ denotes the relative
humidity and the subscript T denotes the temperature. The vectors du, dT and dϕ denote
unknown nodal variables, the vectors fu, fT and fϕ denote prescribed nodal forces and
fluxes, the matrices K with subscripts denote the stiffness, conductivity and coupling
matrices and the matrices C with subscripts denote the capacity and coupling matrices.

The system of differential equations (6.100) can be written more compactly in the
form

C(d)ḋ+K(d)d = f , (6.101)

where the dependency of the stiffness, conductivity, capacity and coupling matrices on
the attained values of variables is explicitly denoted. d and ḋ denote nodal variables and
their time derivatives.

A staggered approach can be used in the solution of system (6.100) because the trans-
port processes are not considered to be influenced by the mechanical analysis. Thus the
coupling matrices CTu, Cϕu, KTu and Kϕu forms zero blocks. However, it should be
emphasized that the heat and moisture transfer are fully coupled.

The system of equations (6.101) has to be solved by an incremental method. Time
discretization is based on the v-form of the generalized trapezoidal method [Hughes, 1987]
defined by the relationships

dn+1 = dn + ∆tvn+α , (6.102)
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vn+α = (1− α)vn + αvn+1 , (6.103)

where v denotes the first derivatives of nodal values with respect to time. The subscript
n denotes the time step and it serves also as an index in the incremental method, called
the outer iteration loop. It is assumed that all variables are known at the time tn and
variables at the time tn+1 are searched.

Substitution of expressions defined in Equations (6.102) and (6.103) to the system of
differential equations (6.101) leads to relationship

(Cn + ∆tαKn)vn+1 = fn+1 −Kn (dn + ∆t(1− α)vn) , (6.104)

where Cn and Kn denote the capacity and stiffness/conductivity matrices evaluated with
the help of values dn. The system of algebraic equations (6.104) is generally nonlinear
and the Newton-Raphson method [Crisfield, 1991], [Bittnar and Šejnoha, 1996] has to be
used at each time step.

The trial solution vn+1,0 to the system of equations (6.104) is used for computation
of the trial nodal values dn+1,0 which are obtained from Equations (6.102) and (6.103).
Substitution of the trial solution back to the system of equations (6.104) with modified
matrices does not generally lead to equality. An iteration loop, called the inner iteration
loop, in every time step is based on residual which is computed from the relationship

rn,j+1 = fn+1 −Kn (dn + ∆t(1− α)vn) (6.105)

− (Cn,j + ∆tαKn,j)vn,j ,

where Cn,j and Kn,j denote the matrices evaluated for dn,j+1 and j is the index in the
inner loop. Correction of nodal time derivatives are computed from the equation

(Cn,j + ∆tαKn,j) ∆vn,j+1 = rn,j (6.106)

and new time derivatives are in the form

vn,j+1 = vn,j + ∆vn,j+1. (6.107)

It has to be noted that the permanent recalculation of matrices K and C with respect
to actual nodal values is very computationally demanding. In such a case, the matrix of
the system of equations C(d) + ∆tαK(d) has to be always factorized and it requires
additional computational time. The numerical examples show that the modified Newton
method, which changes the system matrix only at the beginning of a new time step is the
best choice.

6.5 Implementation of material models in SIFEL

In SIFEL, material models are connected with the integration points on elements. The
computation of actual stiffness, conductivity and capacity matrices, as well as actual stress
and flux computation proceeds at the level of integration points. The results from the
integration points are passed to the element level where the numerical quadrature is used
to obtain the resulting element matrices or vectors.
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The material model for the transport part is fully coupled. It is not easy to separate
such models into independent parts according to block scheme in (6.100) to be reused in
the other model formulation. It led to the implementation of the models for transport
processes as a single material model represented by a single class.

The different situation is in the case of mechanical models where advanced material
models can often be composed of the material models describing single effect. Moreover,
exploitation of the additive strain decomposition assumption is widely used. Therefore
each basic material model describing one effect or group of related effects is implemented
as a single class. Advanced models which take into account several effects are implemented
as an artificial material model which manages contributions from the basic ones. In the
case of mechanical material model for the simulation of concrete, there are class for
basic material models such as elastic isotropic model, thermal expansion model, creep
and shrinkage model and scalar isotropic damage model. Additionally, there is a class
for the material model which is combination of creep and damage models. All models
share the isotropic elastic models which can provide stiffness matrix for the actual elastic
modulus and Poisson’s ratio. Similarly, the strain passed to particular material models is
decremented by the thermal strain component calculated at the thermal expansion model.

Each finite element in the mesh has array of the material model types and other
similar array with identifiers of the instance of the given material model type with the
given values of material model parameters. The first material model type is considered
to be the master material model which knows the sequence of the basic material models
from which is composed and it controls the all computations at the integration point level.

This decomposition principle is advantageous because particular basic models in the
scope of advanced (master) material model can be changed simply at the runtime level
and it requires no or minimum changes at the source code level if the new basic material
model is added.

6.6 Modelling of the construction phases

Simulation of construction phases of concrete structures consists mainly of adding new
structural parts. Each newly added structural part is usually stress-free, meaning that
the deformed state at the interfaces between the current and new parts does not exert
stress on the newly added parts. It is common to assume zero values of primary unknowns,
i.e. the displacement vector components, in time-dependent mechanical problems because
it is not easy to determine initial displacements by in situ measurements, and thus the
zero values are usually a reasonable choice. Suppose added parts are in contact with the
current ones. In such case, it is necessary to determine initial values of strains εi = ε(t0)
at new elements on the interface, which must be subtracted from the total strains to
obtain stress-free state at the time t0 of insertion of new elements.

ε(t) = Bd(t), (6.108)

σ(t) = D(t) (ε(t)− εi) . (6.109)

There are several approaches how to attain a stress-free state on newly added parts of
the structure in the FE code implementation, but the following two are the most used
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� Lifetime function of elements and nodes - each element has time function controlling
element birth and death, similar function is defined for nodes which controls DOFs
defined at the given node.

� Time-changing material models - special master material model which allows for
the switching among the given material models.

6.6.1 Lifetime functions of elements

The problem is defined by the finite element mesh where each element has a defined
lifetime function controlling its birth and death, i.e. addition and removal. Similar
function can be defined for nodes or the node lifetime may be controlled by the time
functions of the adjacent elements. At the element birth, the displacement vector at
element nodes contains either zero (initial) values at new nodes or values attained from
the previous computation in the case of nodes on interface between old and new elements.
These nodal displacement values are collected in vector di and stored for further usage. In
the case of strain computation on that element, these stored displacements are considered
to be initial ones and computation of strains and stresses changes as follows

ε(t) = B (d(t)− di) , (6.110)

σ(t) = D(t) (ε(t)) . (6.111)

The storage of initial displacements is advantageous over the storage of initial strains
because strains are stored at the level of element integration points whose number may be
significantly greater than the number of element nodes. Also the number of displacement
vector components is usually lower than the ones of strains.

Moreover, the lifetime function is be involved in procedures assembling the stiffness
matrix and internal force vector where only the active (live) elements can be taken into
account. It results in significantly better computational performance because of the fewer
active DOFs, and calls of computational procedures on elements are also reduced.

A weak point of this strategy is that the implementation requires modification of
all procedures containing loops over elements where the conditional statements have to
be added for the loop to process only active elements. Also, initial displacements of
the newly added nodes are not known and thus set to zero usually which results in the
incorrect deformed shape of the added part of the structure. If the deformed shape is
not the objective of the analysis, this need not be a problem because the correct stress
state is preserved, and similarly, this flaw does not influence the determination of the
damage/crack pattern. The correct determination of the initial deformed shape of the
added part is dealt with in Section 7.

6.6.2 Time-changing material models

Another approach how to handle the construction phases is the modelling of the structure
as a whole where the parts which are not yet active have assigned an almost zero stiffness.
The stiffness cannot be true zero because this would lead to zero rows in the system
stiffness matrix. Usually, the elastic modulus is reduced significantly by a factor 10−4 ∼
10−6 but it may lead to the issues in the material models such as creep B3 model. More safe
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approach is the using simple elastic isotropic model with reduced stiffness for non-active
parts and at the moment of the part activation switch the material model to the desired
one while the attained strains at activation time are stored and subtracted according to
Equations (6.108)–(6.109).

The newly activated structure parts have automatically initial displacements at all
nodes but the deformed shape is not correct usually and it is influenced by the neighbour
non-active parts. It can be illustrated with the help of simple example of a beam gradual
construction starting from the two opposite supports. The beam is assumed to be loaded
by the dead weight load. The construction is divided into four phases and its progress is
depicted in Figure 6.3 where the stages at the left column were calculated with correctly
determined initial displacements and stages in the right column were calculated with the
help of time switched material models. Figure 6.4 captures a diagram of the vertical

Element lifetime functions with Switching of material models
proper initial displacements

Initial state - t = 0 days

Stage 1 - t = 1 day

Stage 2 - t = 21 days

Stage 3 - t = 31 days

Stage 4 - t = 41 days

Figure 6.3: Time evolution of deformed shape of the gradually constructed beam.

displacement evolution at top surface nodes located at the ends of particular construction
segments where the difference in vertical displacement of the final segment in the middle
of the beam can be clearly distinguished.

From the implementation point of view, construction phases modelled by the time-
changing material models require implementing a new material model, which usually
requires the modification of fewer source codes than the implementation of lifetime func-
tions. The performance is somewhat lower because the whole structure is always consid-
ered, and therefore the dimension of the system stiffness matrix is constant but at the
maximum.
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Figure 6.4: Time evolution of the vertical displacements. Solid lines denotes results from
element life functions, dashed lines denotes results from switching of material models.

6.7 Problem description and analysis results

The simulation of the casting procedure of the foundation slab was addressed to the
modelling of drying processes in young concrete. It demanded the choice of a physically
correct model describing transport processes, real material parameters for heat and mois-
ture transport (including the model of heat hydration evolution), a suitable damage model
for concrete, and a set of correct initial and boundary conditions (climatic conditions).

The slab was created from two parts which were mutually shifted 1.3 m. The thickness
of the slab was 1 m, and the spans were 15.0 and 15.8 m. On the boundaries were left
shrinkage bands whose width was 1.5 m. The scheme of the slab is depicted in Figure 6.5.
The slab was reinforced by 12 bars of reinforcement V25 per meter in longitudinal and
transversal directions. There were also ties made from reinforcement V16, whose density
was 9 pieces per square meter.

The slab was cast in three layers of a thickness of approximately 33 cm to avoid damage
due to the generated hydration heat. The cast sections were watered for three days, and
they were covered by polyethylene sheets after casting. The generation of hydration heat
during the first several hours and damage evolution due to shrinkage and thermal strains
were the reasons for the small time steps used at the beginning of the analysis. Damage
evolution caused the increase of the norm of the unbalanced force vector in the Newton-
Raphson method, and if the time step was not chosen carefully, convergence problems
arose.

The computer simulation began 1 hour after the casting of the first layer. In the
performed thermo-hydro-mechanical analysis, the Künzel-Kiessl’s model was used for the
modelling of transport processes, the B3 creep model and the scalar isotropic damage
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model were used for the description of the mechanical behaviour. These material models
were in SIFEL computer code complemented by a hydration heat model for concrete
and a model of climatic condition effect based on statistically processed data of climatic
conditions for the Prague region. Details about the climatic condition model can be found
in [Grunewald, 2000] and [Maděra and Černý, 2005].

The slab was supported by springs at the bottom. The stiffness of the springs near
the corners was increased to capture subsoil behaviour. A deadweight load was applied
on the whole slab. An important role was played by the thermal boundary conditions
used in the heat transfer analysis. In this case, thermal boundary conditions simulated
the average aerial daily temperatures in June in the region.

The given thermo-hydro-mechanical coupled problems had very high demands on com-
putational power. Because many material models were coupled together, extraordinarily
high numbers of internal variables were stored in each integration point. The stored in-
ternal variables and the large matrix of the system of algebraic equations led to extremely
high demands on computer memory. In this case, the memory space used for internal
variables was comparable to that used for the system matrix. Considering the memory
requirements, the 2D model of the problem was created even though the program can solve
3D problems, and the material models are derived for 3D too. Using 2D elements reduced
the number of internal variables and unknowns. The reduced number of unknowns was
also important for the factorisation speed of the equation system Equation (6.104). The
factorization had to be performed once or several times at each time step depending on
the results from the Newton-Raphson method that had to be used for the solution of the
system (6.100) due to nonlinearities involved in the scalar isotropic damage model.

Figure 6.5: Dimensions of the 2D model and finite element mesh.

The sizes of finite elements used were about 4 cm in both directions except of the thin
bottom and top layers where the mesh was twice finer in the transversal direction. The
necessity of the finer mesh was given by increased temperature and humidity gradients in
these layers and the consequent damage occurrence. Details of mesh decomposition were
captured in Figure 6.6. The generated mesh considered the sequential casting procedure
and the particular concrete layers were generated with different material properties. In
Figures 6.5 and 6.6, these layers were filled by various colours.

B3 model was used for the creep and shrinkage description, which involved evolution
of Young’s modulus with respect to age of concrete while the scalar isotropic damage
model assumed the material parameters to be constant. It was especially necessary to
introduce a time dependent evolution of the tensile strength. In this case, the strength
was assumed proportionally to the actual value of the elastic modulus

ft(t) = cE(t), (6.112)
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Figure 6.6: Detail of FE mesh near drop.

where c was the proportional factor and E(t) was the value of time-dependent elastic
modulus, which was calculated by the B3 model. The material parameters for concrete
class C35/45 were used in the B3 model and c was set to 10−4.

Two conclusions followed from the results of the coupled heat and moisture transfer
analysis and from the simultaneous mechanical analysis. The first was that the accu-
mulated hydration heat expired approximately after 7 days (Figure 6.7) simultaneously
with autogeneous shrinkage phase. The second conclusion was that during the process of
drying, the drop of moisture content and temperature occurred first in the surface layers
and much later in the core. The effect of the diffusion process of drying (shrinkage of
concrete) on the stress development and micro-cracks distribution was rather extensive
and smeared cracks could cause the initialization of main cracks.

The following figures depict the resulting course of the normal stresses σx (Fig. 6.8),
the shear stresses τxy (Fig. 6.9). The deformed shape of the structure (Figs. 6.10–6.12)
and the damage parameter ω (Figs. 6.13–6.15) were captured for particular construction
stages of the lower slab. The first two stages were captured shortly before the next layer
addition. Results at the third stage corresponded to the state at the time 15 hours after
the casting of the first layer. Detailed views of the damaged areas were captured in
Figures 6.16 and Fig. 6.17.

Results of the presented analysis showed that damage evolved in three zones. The
first zone was on the top of the slab, and it resulted from the drying processes. The
second zone was on the slab side. The shear stresses caused this damage, and it was also
observed in the realized structure. The third zone appeared at the bottom. It stemmed
from the non-uniform distribution of temperature across the slab due to the sequential
casting procedure. It should be noted that the computed analysis captured only the initial
stage of the construction process, and it did not consider the upper structure’s load. This
load may also cause propagation of damage and cracks.

The results also confirmed that the correct modelling of the sequential construction
influences the evolution of the damage parameter significantly. The distribution of nonzero
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Figure 6.7: Temperature history.

Figure 6.8: Distribution of stresses σx.

Figure 6.9: Distribution of stresses τxy.
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Figure 6.10: Deformed shape of the first layer of concrete.

Figure 6.11: Deformed shape of the second layer of concrete.

Figure 6.12: Deformed shape of the third layer of concrete.

values of the damage parameter could be seen on the bottom layer, which extended to
20 cm of its thickness. The maximum value of the damage parameter was 0.4. The
damage was caused by hydration heat generation of the top layer, which was delayed
when compared to the bottom layers. The peak of hydration heat generation in the top
layer caused the nonuniform distribution of thermal strains, and consequently, the slab
tended to deflect upward. In the middle of the slab, the influence of dead weight load
dominated, and it led to damage to the bottom layer. The resulting deformed shape of
the structure was captured in Figure 6.12.

The climate conditions are another factor causing damage. It can be observed in
Figure 6.16 that the whole top surface is damaged but only to a shallow depth. The
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Figure 6.13: Distribution of the damage parameter ω in the first layer of concrete.

Figure 6.14: Distribution of the damage parameter ω in the second layer of concrete.

Figure 6.15: Distribution of the damage parameter ω in the third layer of concrete.

damage was caused by drying shrinkage which was intensified by the applied climatic
conditions. The last area with significant damage evolution is at the top right corner of
the slab (see Figure 6.17). In this case, the damage was caused by shear stresses whose
concentration at the corner can be observed in Figure 6.9.
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Figure 6.16: Distribution of the damage parameter ω in the middle of the slab.

Figure 6.17: Distribution of the damage parameter ω in the right corner of the slab.
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Chapter 7

Creep analysis of the bridge in
Mělńık

Project TA01030733 of the Czech Technology Agency was focused on concrete bridges,
and it had the following objectives:

� Development of a methodology for the designing of new road bridges,

� monitoring existing bridge structures,

� predicting the behaviour of bridges showing excessive deflections due to creep and
relaxation.

The author’s team was involved in the last objective, where the creep behaviour of a
selected existing bridge structure should be analysed, and the result of the objective
should be a software tool allowing for the bridge analysis. The bridge model should be
three-dimensional, and a detailed creep model for the concrete and relaxation model of
the tendons should considered. At the beginning of the project solution, it was decided
to analyse the road bridge at Mělńık. It was a box girder bridge built at the beginning
of the 90s using the balanced cantilever construction method with cast-in-place segments
supported by form travellers. The bridge exhibited higher deflections than expected, and
thus the extension of the SIFEL code was focused on the simulation and prediction of
the bridge deflection. Non-mechanical effects such as temperature or moisture transfer
were neglected because they influence creep evolution in the early stage rather, while the
model was focused on long-term behaviour.

Structural models of the bridge structures used in common engineering practice are
frequently based on the beam theory assumption of the cross-section planarity after de-
formation, which cannot capture many important phenomena violating this assumption.
For example, it is known that there is a shear lag effect on box girder cross-sections which
is manifested by the section warping and non-uniform normal stress distribution. This
effect can be observed on the flanges (decks) of the box girder sections, and it is caused
by the shear strains in their plane. Similarly, the effect of a tendon anchorage may lead
to the warping of a cross-section.

The proposed tools were based on detailed creep and relaxation models whose calibra-
tion was considered with the help of measured data from the existing bridge structures
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that were reconstructed in the past. Modern optimization methods and stochastic sensi-
tivity analysis tools were used to calibrate and identify the parameters of the numerical
models.

The 3D model of the bridge was solved by the finite element method, where hexahedron
3D elements with linear approximation were used for the concrete body of the bridge.
Tendons were modelled by 3D bar elements with a linear approximation.

7.1 Mechanical material models

Prestressed concrete bridges with large spans and carrying huge loads represent struc-
tures, where the issue of permanent growth of deformations over time is highly relevant
in terms of serviceability, long-term reliability and durability. Experience shows that
there are often greater deflection values compared to the predicted/computed ones and
that they are increasing over time. These deflections are significantly influenced by the
prestressing losses due to creep and shrinkage. Another significant influence represents
tendon relaxation. Both these effects were taken into account in the proposed mechanical
model.

7.1.1 Creep model for concrete

The Bazant’s B3 creep model seemed the most plausible at that time and therefore it
was used in the performed analysis. Alternatively, the model proposed in ČSN EN was
considered. The B3 creep model was described in details in Section 6.2.1. The effects
of temperature and moisture transfer were not considered in the analysis and thus they
were assumed to be constant in time. This assumption led to the zero stress induced
contributions to the shrinkage and thermal strains and Equation (6.57) was transformed
into (6.56). The mean drying shrinkage was defined according to [Bazant and Chern,
1985] by the following empirical relations

εsh(t, t0) = −εsh∞ kh S(t− t0), (7.1)

where εsh∞ is the ultimate shrinkage, and kh is the factor of humidity dependence and
S(t) is the time curve which depends on the duration of the drying t− t0. The ultimate
shrinkage is given by the relation

εsh∞ = α1 α2

[
0.019 (wc cs)

2.1

(fc)
0.28 + 270.0

]
E(7 + 600)

E(t0 + τsh)
. (7.2)

In the above equation, α1 (–) is the coefficient of cement type, α2 (–) is the coefficient for
curing, wc represent water-cement ratio (–), cs is the cement content (kg/m3), fc is the
compressive strength of concrete (MPa) and t0 is the time when drying begins. In this
case, coefficients α1 = 1.05 and α2 = 1.2 were considered with respect to cement type
and normal curing conditions. Time dependent elastic modulus denoted by E(t) can be
obtained either as

E(t) = 1/J(t, τ), (7.3)
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or approximately with the help of ACI relation

E(t) = E(28)

√
t

4 + 0.85t
, (7.4)

where t is the concrete age in days. Quantity τsh is called shrinkage halftime and indicates
time when εsh attains a half of final value approximately. It can be defined as

τsh = kt (ksD)2 , (7.5)

where kt (d/m2) is the factor dependent on concrete diffusivity, ks () is the the cross-
sectional shape factor and D represents the effective cross-sectional thickness. The effec-
tive cross-section area can be defined with the help of ratio between structure volume VS
and the exposed structure surface SE as

D =
2VS
SE

. (7.6)

Factor kt can be estimated by the formula

kt =
0.085

t0.08 (fc)0.25
. (7.7)

Shape factor, ks, ranges in [1.0; 1.55] where the lowest value is considered for slabs and
the highest value for cubes. With respect to the box girder cross-section, ks = 1.0 was
applied in the analysis. The factor of humidity, kh, can be defined as

kh =


1− ϕ3 for ϕ ≤ 0.98

−0.2 for ϕ = 1 (swelling in water)

linear interpolation for 0.98 ≤ ϕ ≤ 1.

(7.8)

The time curve, S(t), is an increasing function which describes evolution of the nor-
malized shrinkage strain in a perfectly dry environment. The function is defined according
[Baweja and Bažant, 1995] as

S(t) = tanh

(√
t− t0
τsh

)
. (7.9)

It should be noted that time t is assumed in days in the above mentioned creep relations.
The compliance function is extended by the additional term due to drying, Jd, that can
be defined as

Jd(t, τ) = q5

√
exp(−g(t)− exp(−g(τ))), (7.10)

g(t) = 8 [1− (1− ϕ)S(t)] . (7.11)

and the resulting compliance function can be written as

J(t, τ) = q1 + q2Q(t, τ) + q3ln

[
1 +

(
t− τ
λ0

)n]
+ q4ln

( t
τ

)
+ Jd(t, τ). (7.12)
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7.1.2 Tendon relaxation model

The influence of prestressing losses on the stress state and deformation may be very
significant because the magnitude of the resulting internal forces due to the prestressing is
large and comparable with the magnitude of forces due to load. Therefore determination
of correct prestressing losses plays an important role. Two basic kinds of prestressing
losses can be distinguished:

� Technological (short-term) losses - change of the prestressing on post-tensioned
structures, which can be observed between the tensioning and jacking anchorage.
The losses due to tendon friction and anchorage slip represent the most significant
ones. Generally, they are influenced by the used tensioning system. These values
should be determined by either producer of the given tensioning system or/and mea-
surements of a tendon elongation during the tensioning. These losses are usually
well-defined.

� Long-term losses - these losses are manifested after the tendon anchorage until the
time under consideration or end of structure service life. These losses depend on
the rheological properties of the given materials – creep and shrinkage in the case
of concrete and steel relaxation.

Generally, the relaxation effect is manifested as a gradual decrease of stress in the specimen
subjected to constant strain. Magnitude and time evolution depend on the material
properties of used steel, the tendons’ production process and anchorage technology. There
is also a dependency of the relaxation on temperature, but this effect was not considered
in the analysis.

In this case, the model introduced in EN 1992-1-1 was adopted. The model allows for
determining the prestressing losses with respect to the tendon types and duration of the
relaxation process.

Prestressing losses, ∆σp,r for the normal relaxation of tendons can be defined as

∆σp,r = σp0 43.12 exp

(
6.7σp0
fpk

)(
t

1000

)0.75

1−
σp0
fpk


10−5, (7.13)

where σp0 is the initial presstresing, fpk is the characteristic strength of tendon material.
Similarly, prestressing losses for low relaxation tendons are given as

∆σp,r = σp0 1.65 exp

(
9.1σp0
fpk

)(
t

1000

)0.75

1−
σp0
fpk


10−5. (7.14)

Figure 7.1 captures a time evolution of the ratio of prestressing losses to the initial pre-
stressing for low relaxation tendons for different rations of the initial prestressing, σp0 and
tendon material strength fpk. The model was implemented in generalized form in terms
of coefficients ap, bp and cp

∆σp,r = σp0 ap exp (bp cp)

(
t

1000

)0.75(1−cp)

. (7.15)
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Figure 7.1: Time evolution of prestressing losses ratio ∆σp,r/σp0 for normal relaxation
(top) and low relaxation (bottom) tendons.
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Coefficients ap and bp can be set either according to an in-situ measurement or set to the
corresponding values that in Equations (7.13) and (7.14). Coefficient cp represents a ratio
between initial prestressing and tendon material strength. It should be noted that time,
t, should be considered in hours in Equations (7.13)-(7.15).

The resulting stress-strain relation for the tendon relaxation model in a 1D stress-
strain state can be written as

σ = σp0 −∆σp,r + Epε, (7.16)

where Ep is the elastic modulus of the tendon material.

7.2 Modelling of tendons

A direct approach to tendon modelling, where bar elements are directly connected to
the 3D element nodes, would lead to a very high FE mesh density and, thus, to high
computational demands. It stems from the fact that tendons are placed close to each
other in section webs and flanges. For this reason, the hanging node concept was adopted
to model tendons.

Generally, displacements can be approximated in arbitrary points of a hexahedron
element by the following relation

u(xn) = Nu(xn)de, (7.17)

Nu(xn) = (Nu1(xn),Nu2(xn),Nu3(xn), . . . ,Nu8(xn)) (7.18)

Nui(xn) =

 Ni(xn) 0 0
0 Ni(xn) 0
0 0 Ni(xn)

 (7.19)

(7.20)

where xn = (ξ, η, ζ) stands for natural coordinates of the given point, Nu is the matrix
of shape functions, and de is the nodal displacement vector of the given element. Ni

represents the shape functions of the i-th element node, which can be defined as

Ni(xn) =
1

8
(1 + ξi ξ)(1 + ηi η)(1 + ζi ζ). (7.21)

In the hanging node concept, nodes of rebar or tendon elements are not defined directly
with the help of standalone nodes that constitute independent DOFs. However, these
nodes can be defined arbitrarily in the domain of surrounding 3D elements. Their dis-
placements can be expressed in terms of element nodal displacements, where the given
node lays, according to Equation (7.17). Thus the rebar node is ’hung’ on nodes of its
master element.

Equation (7.17) requires the natural coordinates, xn of the given hanging node to be
determined. Let the hanging node be defined in the global coordinate system, and then
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the same approximation for that spatial coordinates may be used

xg = fgx(xn) =
8∑
i=1

Ni(xn)xe,i, (7.22)

yg = fgy(xn) =
8∑
i=1

Ni(xn)ye,i, (7.23)

zg = fgz(xn) =
8∑
i=1

Ni(xn)ze,i, (7.24)

where xg are known coordinates of the hanging in the global coordinate system and xe are
known global nodal coordinates of the master element. The unknown natural coordinates
xn can be determined from the inverse relation, which leads to the system of 3 nonlinear
equations, see definition of Ni. The system can be solved with the help of the Newton-
Raphson method, whose k + 1-th step can be expressed as

x(k+1)
n = x(k)

n +
(
J (k)

)−1

xr
k, (7.25)

where J is the Jacobi’s matrix defined as follows

J =



∂fgx
∂ξ

(
x

(k)
n

) ∂fgx
∂η

(
x

(k)
n

) ∂fgx
∂ζ

(
x

(k)
n

)
∂fgy
∂ξ

(
x

(k)
n

) ∂fgy
∂η

(
x

(k)
n

) ∂fgy
∂ζ

(
x

(k)
n

)
∂fgz
∂ξ

(
x

(k)
n

) ∂fgz
∂η

(
x

(k)
n

) ∂fgz
∂ζ

(
x

(k)
n

)


, (7.26)

and xr is the residual vector defined as

xr = xg − f g
(
x(k)
n

)
, (7.27)

xT
g = (xg, yg, zg), (7.28)

fT
g

(
x(k)
n

)
=

(
fgx
(
x(k)
n

)
, fgy

(
x(k)
n

)
, fgz

(
x(k)
n

))
. (7.29)

For user convenience, the tendons are defined by the minimum points needed for
capturing the tendon’s geometrical shape. There is a tool MIDAS [Svoboda, 2012] for an
automatic discretization of tendons with respect to their intersections with elements of
a 3D mesh of the bridge concrete body. The input for this tool represents the 3D mesh
of the bridge and the coarse geometry of tendons. A new fine mesh of 3D bar elements
is generated, whose end nodes are represented by the calculated intersections. For each
node of the new fine mesh, the corresponding 3D element is determined together with the
natural coordinates of the node on the detected element, and thus the new nodes can be
defined as hanging nodes.

7.3 Gradual construction process of the girder beam

bridge

The balanced cantilever construction method with cast-in-place segments supported by
form travellers represents a very complex problem from the numerical analysis point of
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view. The static scheme at particular construction stages changes along the casting proce-
dure and the tendon prestressing process. The construction process significantly influences
the resulting deflections, and therefore, it must be considered. Contrary to the simulation
of the casting procedure of foundation slab in Těšnov, the resulting displacements play a
significant role, and thus the correct determination of initial displacements is the crucial
point.

Each new cast segment of the bridge represents a set of finite elements in the mesh,
and initial displacements at their nodes have to be determined. Some new elements may
be connected with the current ones by shared nodes on the interface between the current
and new segments. If such interface nodes exist, their attained displacements are stored as
initial ones as proposed in Section 6. Initial values of displacements of the remaining nodes
on the new segment can be calculated by the solution to the substructure consisting of the
new segment where the Dirichlet boundary conditions are applied in the form of attained
displacements at the interface nodes. The elements in the new active substructure can be
identified with the help of element life functions. Let the life function of the i-th element
be denoted by li then it can be defined as follows

li(t) =

{
1 if i-th element is active

0 if i-th element is not active.
(7.30)

Table 7.1 summarizes the algorithm of initial displacement calculation at the beginning
of new time step at time t+ ∆t. In Table 7.1, i-th element of the whole domain solved Ω
is denoted by ei while the i-th node of the domain Ω is denoted by the ni.

The progress of balanced cantilever construction method is accompanied by the de-
flections of cast segments that increase gradually toward the free ends. These deflections
can be avoided or mitigated either by increase of tendon prestressing or by deck elevation
of new segment which is realized via traveller tilting. The deck elevation is another effect
which should be taken into account in the construction process modelling.

Bridge deck elevation can be simulated by the setting of initial displacements of the new
bridge segment where the initial displacement calculation is enhanced by the application
of vertical displacements at set of nodes on the bridge deck denoted by Γθ. Their values
are determined from the given axis of tilting and the tilt angle θ where axis is given by
two nodes A and B on the interface between current and new segment. Rotation of the
node N about the axis AB form its original position to the rotated one denoted by Nθ

is depicted in Figure 7.2. Calculation of the initial displacements at one selected node of
the new segment deck is summarized in Table 7.2 where a · b denotes the inner product
of vectors a and b, ‖.‖ denotes the Euclidean norm and a× b denotes the vector product
of a and b.

Complete algorithm of the initial displacement determination is summarized in Ta-
ble 7.3. The influence of the initial displacement determination can be demonstrated
on a simple example of gradual construction process inspired by the balanced cantilever
method. Figure 7.3 captures FE whole mesh of the problem. The structure is divided into
segments denoted by indices 1–8. The construction process starts at the starter segment
1 and proceeds by the building of segments simultaneously on the left and right from the
starter in particular stages of the construction process. Initial displacements of segments
2–4 were were calculated according to the algorithm in Table 7.1 with no tilting. Initial
displacements of segments 5–7 were calculated according to the algorithm in Table 7.3
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1 Identify set of new elements, ΩN

ΩN = {ei ∈ Ω | li(t+ ∆t) > 0 ∧ li(t) = 0}
2 Identify set of current elements, Ωo

Ωo = {ei ∈ Ω | li(t+ ∆t) > 0 ∧ li(t) > 0}
3 Identify set of nodes on interface between current elements and new elements, ΓI

ΓI = {ni ∈ Ω | ni ∈ {ei ∈ Ωo} ∧ ni ∈ {ei ∈ ΩN}}
4 Save initial displacements at nodes ni ∈ ΓI

5 Generate DOF numbers for all nodes ni ∈ {ei ∈ ΩN} ∧ ni /∈ ΓI

6 Assemble vector of prescribed initial displacements on ΩN , dT
i =

(
dz, d̄i

)
,

where d̄i is the vector of saved initial displacements at ΓI , dz = 0,
dz ∈ Rnd where nd is the maximum DOF number on the domain Ωn.

7 Initialize material models on ΩN .

8 Compute right hand side vector f i = −
∫

ΩN
BTσidΩN , where

σi = Di εi, εi = Bdi and Di is the initial material stiffness matrix.

9 Assemble stiffness matrix of the reduced problem, Kn =
∫

ΩN
BTDiBdΩn

10 Solve problem Kn d0 = f i for unknown vector d0

11 Save initial displacements from vectors d0 and d̄i on elements of ΩN .

Table 7.1: Algorithm of initial displacement calculation.

zl

Nθ

A

B

ylxl

N
ulθ,z

ulθ,y

θ
C

Figure 7.2: Scheme of the tilting of the node N .
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1 Calculate origin of the local coordinate system, C, for the rotation of node N

C =

−→
AB · −−→AN∥∥∥−→AB∥∥∥2

−→
AB + A

2 Assemble transformation matrix T θ

lx =

−→
AB∥∥∥−→AB∥∥∥ , ly =

−−→
CN∥∥∥−−→CN∥∥∥ , lz =

lx × ly
‖lx × ly‖

T T
θ = (lx, ly, lz)

3 Calculate initial displacements due to rotation in the local coordinate system

uT
lθ =

(
0, (cos θ − 1)

∥∥∥−−→CN∥∥∥ , sin θ
∥∥∥−−→CN∥∥∥)

4 Transformation of the initial displacement vector, ulθ,
to the global coordinate system ugθ = T T

θ ulθ
5 Add linear approximation of the initial displacements uA and uB at the interface

nodes A and B to ugθ =⇒ resulting initial displacement vector,ui, at node N

ui = ugθ + (uB − uA)
(
lx ·
−→
AC
) 1∥∥∥−→AB∥∥∥ + uA

Table 7.2: Algorithm of initial displacement calculation due to the traveller tilting at one
node N .

Figure 7.3: Simpilfied example of the balanced cantilever method - FE mesh with segment
description.

with gradually increased tilting angle θ. A dead weight load was applied on particular
segments but its application time was delayed one step after the given segment birth
in order to visualize the effect of tilting. Table 7.4 summarizes particular stages of the
construction process.

For the simplification, a linear elastic material model was assumed on all segments.
Elastic modulus was considered to be 30 GPa and Poisson’s ratio was 0.3. Dead weight
load was calculated considering value 25 kN/m3. The resulting deflections of the structure
can be seen in Figure 7.4. Results from the stage 3L clearly shows that the deflections
of the right segments were decreased due to traveller tilting. The maximum value of
deflection attained value 6.04 mm on the left end while the maximum deflection on the
right end was 4.2 mm.
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1 Identify set of new elements, ΩN

ΩN = {ei ∈ Ω | li(t+ ∆t) > 0 ∧ li(t) = 0}
2 Identify set of current elements, Ωo

Ωo = {ei ∈ Ω | li(t+ ∆t) > 0 ∧ li(t) > 0}
3 Identify set of nodes on interface between current elements and new elements, ΓI

ΓI = {ni ∈ Ω | ni ∈ {ei ∈ Ωo} ∧ ni ∈ {ei ∈ ΩN}}
4 Save initial displacements at nodes ni ∈ ΓI

5 Generate DOF numbers for all nodes ni ∈ {ei ∈ ΩN} ∧ ni /∈ ΓI

6 Determine initial displacements due to tilting, d̄θ at all nodes of set Γθ
according to algorithm in Table 7.2

7 Assemble vector of prescribed initial displacements on ΩN , dT
i =

(
dz, d̄θ, d̄i

)
,

where d̄i is the vector of saved initial displacements at ΓI , dz = 0,
dz ∈ Rnd where nd is the maximum DOF number on the domain Ωn.

8 Initialize material models on ΩN .

9 Compute right hand side vector f i = −
∫

ΩN
BTσidΩn, where

σi = Di εi, εi = Bdi and Di is the initial material stiffness matrix.

10 Assemble stiffness matrix of the reduced problem, Kn =
∫

ΩN
BTDiBdΩn

11 Solve problem Kn d0 = f i for unknown vector d0

12 Save initial displacements from vectors d0, d̄θ, and d̄i on elements of ΩN .

Table 7.3: Algorithm of initial displacement calculation with the traveller tilting.

Stage Indices of new segments Indices of loaded segments
and tilting angle θ

0 1, θ = NA 1
1 2, θ = NA 1

5, θ = 1 · 10−5

1L 1, 2, 5
2 3, θ = NA 1, 2, 5

6, θ = 1 · 10−4

2L 1, 2, 3, 5, 6
3 4, θ = NA 1, 2, 3, 5, 6

7, θ = 2 · 10−4

3L 1, 2, 3, 4, 5, 6, 7

Table 7.4: Description of construction stages for the simple example of balanced cantilever
method.
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Stage 0:

Stage 1:

Stage 1L:

Stage 2:

Stage 2L:

Stage 3:

Stage 3L:

Figure 7.4: Simpilfied example of the balanced cantilever method - resulting deflections.
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Figure 7.5: Location of the bridge in Mělńık city.

7.4 Analysis of the girder beam bridge in Mělńık

The developed tools were tested on the real bridge structure which is located at the
Mělńık city on road I/16, see map in Figure 7.5. The structure is central part of the
bridge system which traverse Labe river and industrial railway on the exit road I/16. It is
a three-span bridge where the main span traverse the river and one side span traverse the
railroad lines, see Figure 7.6 and 7.7. The length of the main span is 146.2 m, side spans

Figure 7.6: Side views on the bridge from the right Labe bank, industrial railway is located
on the right side.
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Figure 7.7: Side views on the bridge from the left Labe bank, industrial railway is located
on the right side.

have equal length 72.05 m. The bridge represents prestressed concrete structure that was
constructed by the cantilever casting method. The construction started in January 1991
and finished in October 1992, the tendon prestressing finished in June 1993. Particular
stages are depicted in Figure 7.8.

Figure 7.8: Side view on the bridge with FE mesh and concrete segment numbering.
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Figure 7.9: Set of cross-sections used for the 3D mesh generation - only halves were
considered because of symmetry along the vertical axis.

Time schedule of the casting and prestressing procedures is given in Tables 7.5 and 7.6.
The bridge has variable cross-section because of stiffeners in cross-sections at piers and

parabolic haunches at spans. Therefore, the 2D mesh for the beginning and final cross-
sections of particular segments were created and finally 3D structured mesh was generated
by extrusion of 2D mesh between beginning and final cross-sections of the segments. A
special set of automatic generators for 2D cross-section meshes and 3D bridge mesh was
created, see BRIDGEN tool [Fiedler and Koudelka, 2011]. Particular cross-sections are
depicted in Figure 7.9. The bridge was considered to be symmetric along the plane defined
by longitudinal and vertical axes and therefore, this assumption was exploited in order
to reduce the mesh size. The resulting mesh contained 73,765 nodes, 48,896 hexahedral
elements and 10,448 3D bar elements. Resulting 3D mesh of finite elements is captured
in Figures 7.10 The bridge contains 94 groups of tendons which were gradually activate
in 40 stages. Positions of particular tendons are captured in Figure 7.11.

Unfortunately, data from the construction process regarding the traveller tilting were
not known. Therefore, the deflections during the construction process were only partially
mitigated by adjustment of the tendon pre-stressing. The calculation of the initial dis-
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Segment Series of section numbers Segment Time of activation from the
used for the mesh generation length [m] construction beginning [days]

Construction of the starter segments of the first saddle
1 4–3–2–2–3–4 15 7
2 1–1 2.65 66

Construction of segments from the first starter segment
3 5–4 3.125 97
4 4–5 3.125 97
5 6–5 3.125 111
6 5–6 3.125 111
7 7–6 4 127
8 6–7 4 127
9 8–7 4 141
10 7–8 4 141
11 9–8 5 158
12 8–9 5 158
13 10–9 5 172
14 11–10 5 188
15 9–10 5 188
16 12–11 5 202
17 10–11 5 202
18 13–12 5 219
19 11–12 5 219

Construction of the starter segment of the second saddle
20 4–3–2–2–3–4 15 219

Construction of segments of the first saddle continued
21 14–13 5 233
22 12–13 5 233
23 15–14 5 250
24 13–14 5 250
25 16–15 5 264
26 14–15 5 264
27 17–16 5 280
27 15–16 5 280
28 1–17 3.5 294
29 16–18 5 294
30 18–19 5 310

Table 7.5: Time schedule of concrete segment construction, segment lengths and cross-
section definition for segments - part I.
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Segment Series of section numbers Segment Time of activation from the
used for the mesh generation length [m] construction beginning [days]

Construction of segments of the second saddle
31 5–4 3.125 432
32 4–5 3.125 432

Construction of the starter segment for the second saddle
33 1–1 2.65 432

Construction of segments of the second saddle
34 6–5 3.125 446
35 5–6 3.125 446
36 7–6 4 463
37 6–7 4 463
38 8–7 4 477
39 7–8 4 477
40 9–8 5 493
41 8–9 5 493
42 9–10 5 507
43 10–9 5 524
44 10–11 5 524
45 11–10 5 538
46 11–12 5 538
47 12–11 5 554
48 12–13 5 554
49 13–12 5 568
50 13–14 5 568
51 14–13 5 585
51 14–15 5 585
52 15–14 5 599
53 15–16 5 599
54 16–15 5 616
55 16–17 5 616
56 18–16 5 630
57 17–1 3.5 630

Connection of saddles
58 19–19–18 5.4 646

Table 7.6: Time schedule of concrete segment construction, segment lengths and cross-
section definition for segments - part II.
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(a) Isometric view on the whole bridge.

(b) Detailed isometric view on the stiffener at pier’s section.

(c) Top view on the bridge deck.

Figure 7.10: 3D bridge mesh.

placements of the new segments was therefore performed according to the algorithm in
Table 7.1. Another issue was connected with the conditions under which the deflection
measurement was performed. Mostly, the measurements were performed at the same
temperatures, but there were also exceptions. Exact initial values of tendon pre-stressing
were also unknown, only their range was known to be 1,200–1,500 MPa. Initial values of
pre-stressing were therefore involved as an additional parameter for the model calibration.

Because of unknown tilting and initial pre-stressing values, the calibration of the model
parameters could not be performed on the total deflection. However, the parameters were
fitted concerning deflection increment counted after 1,000 days.

Parameters of B3 and relaxation model were fitted to capture long-term deflection in
the midspan. Assessment of the influence of particular model parameters was performed
in terms of global sensitivity analysis. Individual parameters were varied within the
estimated bounds, and their combinations formed the so-called Design of Experiments
(DoE); see, e.g. [Myšáková and Lepš, 2012] for more details. The resulting DoE was
composed of 3,000 combinations where the evaluation of one combination took 4 hours
of CPU time on average. The grid computing in MetaCentrum on a Linux platform was
used to reduce the time demands; see [Koudelka et al., 2014] for further details. Resulting
set of model parameters and used range of parameter values are summarized in Table 7.7.
The given set of parameters represents the best fit of the midspan and side span deflection
on the Mělńık side.
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(a) Side view on the bridge - top tendons in the vicinity of the pier.

(b) Side view on the bridge - bottom tendons in the midspan.

(c) Top view on the bridge deck with tendons.

(d) Top view on the bridge deck with tendons - left support.

(e) Top view on the bridge deck with tendons - midspan.

Figure 7.11: 3D bridge mesh - views on tendons.

Parameter q1 q2 q3 q4 q5 σp0 ap bp
Parameter 14.504 43.511 0.435 7.252 0.0 1200 1.65 9.1
value range 29.008 188.549 4.351 18.855 1450.377 1500 6.7 44
Units 10−6/MPa MPa – –

Fitted values 28.079 78.162 1.809 18.507 918.274 1267 40.5 8.707

Table 7.7: Fitted parameters of B3 and relaxation models.
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Distribution of the resulting normal stresses, σx, is depicted in Figures 7.12–7.15.
The x ordinate is oriented along the horizontal bridge axis. The first picture series in
Figure 7.12 captures stress states after 7, 66 and 127 days from the beginning of the
bridge construction. It starts by the building of the starter segments at days 7 and 66
and the last state shows three segments added symmetrically to the starter one and thus
creating a saddle. Stress concentrations due to tendon anchorage can be observed on the
bridge deck.

The series of pictures in Figure 7.13 captures the intermediate state in the construction
of the first saddle (day 219) and the connection of the first saddle with the starter segment
on the Mělńık bank after 294 days. Consequently, the construction process moved to the
second saddle, which is captured after 432 days, where the first segments are connected
to the starter one, and the starter segment on the Slaný bank was built. Again, there can
be distinguished stress concentrations due to tendon anchorage on the deck of the first
saddle.

The third picture series in Figure 7.14 captures states just before the connection of both
saddles (day 630), after the building of the last segment (day 646) and the end of the bridge
construction phase when the remaining continuous tendons were activated (day 660). The
last picture series in Figure 7.15 captures two stress states. Figure 7.15a captures the stress
state after 6003 days, representing the end of the period where deflection measurements
were available. Figure 7.15b shows the stress distribution from the last time step (day
8400) of the performed analysis.
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(a) Stress state after 7 days.

(b) Stress state after 66 days.

(c) Stress state after 127 days.

Figure 7.12: 3D bridge mesh - evolution of the normal stress, σx, after 7, 66 and 127 days.
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(a) Stress state after 219 days.

(b) Stress state after 294 days.

(c) Stress state after 432 days.

Figure 7.13: 3D bridge mesh - evolution of the normal stress, σx, after 219, 294 and 432
days.
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(a) Stress state after 630 days.

(b) Stress state after 646 days.

(c) Stress state after 660 days.

Figure 7.14: 3D bridge mesh - evolution of the normal stress, σx, after 630, 646 and 660
days.
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(a) Stress state after 6003 days.

(b) Stress state after 8400 days.

Figure 7.15: 3D bridge mesh - evolution of the normal stress, σx, after 6003 and 8400
days.
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Distribution of the resulting deflections is depicted in Figures 7.16–7.19. The deflection
represents vertical component, w, of the displacement vector. The positive values of the
deflection are considered in the direction of positive z-axis, i.e. downward. The first
picture series in Figure 7.16 captures distribution of the vertical displacement, w, after 7,
66 and 127 days from the beginning of the bridge construction. It starts by the building
of the starter segments at days 7 and 66 and the last state shows three segments added
symmetrically to the starter one and thus creating a saddle. Negative deflections at the
saddle ends are caused by the tendon pre-stressing.

The series of pictures in Figure 7.17 captures the intermediate state in the construction
of the first saddle (day 219) and the connection of the first saddle with the starter segment
on the Mělńık bank after 294 days. Consequently, the construction process moved to the
second saddle, which is captured after 432 days, where the first segments are connected to
the starter one, and the starter segment on the Slaný bank was built. At the same time
the temporary support of the first saddle was removed, and thus the positive deflection
appeared on the midspan end.

The third picture series in Figure 7.18 captures states just before the connection of
both saddles (day 630), after the building of the last segment (day 646) and the end
of the bridge construction phase when the remaining continuous tendons were activated
(day 660). The last picture series in Figure 7.19 captures two distributions of the vertical
displacement. Figure 7.19a captures the state after 6,003 days, representing the end of the
period where deflection measurements were available. Figure 7.19b shows the deflection
distribution from the last time step (day 8400) of the performed analysis.
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(a) Distribution of the deflection, w, after 7 days.

(b) Distribution of the deflection, w, after 66 days.

(c) Distribution of the deflection, w, after 127 days.

Figure 7.16: 3D bridge mesh - vertical deflection evolution after 7, 66 and 127 days.
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(a) Distribution of the deflection, w, after 219 days.

(b) Distribution of the deflection, w, after 294 days.

(c) Distribution of the deflection, w, after 432 days.

Figure 7.17: 3D bridge mesh - vertical deflection evolution after 219, 294 and 432 days.
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(a) Distribution of the deflection, w, after 630 days.

(b) Distribution of the deflection, w, after 646 days.

(c) Distribution of the deflection, w, after 660 days.

Figure 7.18: 3D bridge mesh - vertical deflection evolution after 630, 646 and 660 days.
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(a) Distribution of the deflection, w, after 6003 days.

(b) Distribution of the deflection, w, after 8400 days.

Figure 7.19: 3D bridge mesh - vertical deflection evolution after 6003 and 8400 days.
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The fitted deflection curve can be found in diagram in Figure 7.20. It can be concluded
that the model parameters collected in Table 7.7 yielded a good agreement of the deflection
evolution for the left side span (Mělńık direction) and for the midspan, while the the
deflection evolution for the right side span differs. The difference between ranged from
−20 to +20 %. It should be noted that there is a jump in the deflection measurement at
the end of measurement period. The jump was caused by the increased temperature at
the time of the measurement when deflections were mostly measured at the beginning of
autumn while in this case, the measurement proceeded in July. More details about the
processing of deflection measurements can be found in [Vrábĺık et al., 2008].
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Figure 7.20: Diagram of the midspan deflection - comparison of measurement and numer-
ical analysis.

7.5 Conclusions

A set of software tools was created for the advanced creep analysis of the girder box
bridges. The development started with the generator BRIDGEN which significantly sim-
plified the definition of 3D FE mesh. The 3D mesh had to involve tendons modelled as
3D bar elements. Software tool MIDAS was created to discretize coarse tendon geometry
according to the resulting 3D mesh obtained from the BRIDGEN generator. The concept
of hanging nodes was exploited both in MIDAS and SIFEL for the connection between
concrete elements and tendon bars.

Additionally, the SIFEL code was extended by the proper determination of the initial
displacements, which allows for the simulation of bridge construction phases in the case
of casting by the cantilever method. The functionality of the proposed algorithms was
demonstrated in the simple example as well as in the real bridge construction in Mělńık.
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Another extension of the SIFEL code was concerned with the tendon relaxation model
based on the generalized model from EN 1992-1-1. The creep model was based on Bazant’s
B3 model implemented in SIFEL, which was adjusted for the isothermal conditions. The
model parameters were determined with the help of the last link of the software tool chain
CONVECTOR.

Further investigation of the real bridge construction process revealed that there were
bridge deck level adjustments. They were attained either by increasing tendon pre-
stressing or tilting of the casting traveller. Tendon pre-stressing level can be adjusted
with the help of the relaxation model parameters, but the tilting of the traveller required
modification of the proposed algorithm for the correct initial displacement determination.

The performance of the developed tools was demonstrated in the creep analysis of
the Mělńık bridge. Even though there were missing data about the pre-stressing level
and traveller tilting, the model was able to capture the development of the deflection
increments quite well.
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Chapter 8

Modelling of expansive clays

Expansive clays are known for their large swelling/shrinkage capacity which is influenced
by the water content namely. The most expansive clays are bentonites that are composed
from montmorillonite and some additional elements (K, Na, Al, Ca, Mg). The swelling
or shrinkage may lead to excessive increase or decrease in pressures on the retaining
structures or differential settlement which can cause severe damage in superstructure as
well as substructure. Bentonites are also known for their very low permeability which is
expressed by the permeability coefficient with magnitude ranging typically from 10−12 to
10−14 m.s−1 according to void ratio [Villar and Lloret, 2007]. Swelling accompanied with
low permeability comprises selfsealing properties of bentonites that are exploited in the
sealing of dams for example.

Actually, the bentonites are also assumed to be a part of engineering barrier at deep
geological repositories in high level radioactive waste disposals which is produced in the
nuclear power plants namely. These repositories are complex engineering structures with
very high demands on the safety and reliability and they are equipped by the multi-
level barrier system. They should be placed in the stable rock host environment which
represents natural barrier providing protection against disruptive natural events, water
flow, human intrusion and the radionuclides migration. In the rock host environment, the
system of galleries with chambers should be created for placement of radioactive waste
surrounded by so called engineering barrier. The engineering barrier is composed from the
special containers for spent nuclear fuel sealed by the bentonite layer which should able
to stop the radionuclides migration in the case of container failure. Obviously, it is crucial
for the design of engineering barrier to use the proper model of bentonite behaviour.

There are two distinguished groups of models for the clayey soils. One large (older)
group of models is based on theory of elasto-plasticity [Simo and Hughes, 2000], [Jirásek
and Bazant, 2002] or [Neto et al., 2008] where the model is described by the stress-strain
relation in the form

σ = De : (ε− εp), (8.1)

where σ is the second-order stress tensor, De is the fourth-order elastic stiffness tensor, ε
is the second-order total strain tensor and εp is the second-order plastic strain tensor. Note
that operator ( : ) represents a double contraction. The plastic strains εp represent an
irreversible part of the total strains ε which can be defined by the associated plastic flow
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rule given by

ε̇p = γ̇
∂f(σ,η)

∂σ
, (8.2)

where f(σ,η) represents selected yield function, η is the vector of hardening parameters
and γ is the consistency parameter. Cam-Clay model [Roscoe and Burland, 1968] belongs
to most popular models for clays based on elasto-plasticity. The Cam-Clay model involves
pressure dependent modulus for loading and associated flow rule with isotropic harden-
ing. It was intended for the fully saturated soils originally but there are extensions of the
model for the partially saturated states proposed in [Alonso et al., 2011], [Gens et al.,
2011], [Gallipoli et al., 2003], [Borja, 2004]. In these extensions, there is additional hard-
ening parameter depending on the suction pressure which shifts the yield surface along
the hydrostatic axis. Advantages of the mentioned elasto-plastic models is the pressure
dependent loading, direct incorporation of the state boundary surface and, in the case of
extended model, taking into account the influence of suction pressure. But they have also
important shortcoming related to the elastic unloading which is not in agreement with
the observed soil behaviour.

To avoid of this shortcoming, a relatively new group of hypoplastic models was de-
veloped by Kolymbas [Kolymbas, 1991], Gudehus [Gudehus, 1996], Bauer [Bauer, 1996],
Niemunis [Niemunis, 2002] and Herle [Herle and Kolymbas, 2004]. They introduced dif-
ferent loading/unloading moduli directly in the rate form of stress-strain relation

σ̇ = M(σ, ε̇,κ) : ε̇, (8.3)

where M is the fourth-order generalized stiffness tensor which depends on the actual
stresses, σ, strain rate, ε̇, and other state variables denoted by the vector κ. The rate
form of stress-strain relation of the hypoplastic models thus constitutes the system of
ordinary differential equations. The total stress needed at the equilibrium conditions
have to be obtained by the integration of (8.3) in time. Additionally, the state variables
are also given in the rate form and, therefore, they have to be integrated too.

There is a promising model for the description of expansive partially saturated clays
proposed in [Maš́ın, 2013] and [Maš́ın, 2017]. The model is composed from mechanical
part based on hypoplasticity which is coupled with the hydraulic part. This model should
be accompanied by the water flow description in the porous medium where the model
proposed in [Lewis and Schrefler, 1998] originally and simplified in [Krejč́ı et al., 2014]
can exploited. This chapter deals with the time integration of the Maš́ın model and
implementation of the coupled hydro-mechanical model to the finite element (FE) pack-
age SIFEL [SIFEL, 2022]. Additionally, the excavation problem is addressed where an
extension of the algorithms from chapter 7 due to excavation stages has to be established.

The structure of the chapter is as follows. Section 8.1 deals with the brief description
of the hypoplastic model while the model of water flow is being described in Section
8.2. Coupling of the hypoplastic model with water flow is described in Section 8.3. The
numerical methods based on the Runge-Kutta-Fehlberg approach and their application
to time integration of the rate form of hypoplastic model are described in Section 8.4.
There is also performance evaluation of these methods on several benchmark examples.
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8.1 Hypoplastic model for expansive clays

In the field of soil mechanics, recent rapid development of hypoplastic models resulted in
many popular models for cohesionless soils [Herle and Kolymbas, 2004], [Niemunis, 2002]
as well as for cohesive soils (see e.g. [Maš́ın, 2012]). The advanced hydro-mechanical model
based on hypoplasticity was proposed in [Maš́ın, 2013] and [Maš́ın, 2017]. The model takes
into account the double structure of the aggregated clayey soils (see [Miao et al., 2007]) and
it exploits separated formulation of behaviour on macro and micro level according to well
established models [Alonso et al., 2011], [Sánchez et al., 2005] and [Romero et al., 2011]
but there is added dependence of water retention on volumetric deformation. Coupling
between macro and microstructure levels depends on size of macropores (interaggregate
pores), the shear strength of soil is assumed to depend on the macrostructure and it is
given by effective stress measure independent on microstructural quantities. Hydraulic
equilibrium is assumed between both structure levels. The model is quite complex and
comprehensive and therefore only brief summary of the model is given in Subsection 8.1.1
while the remaining definitions are given in Appendix B.

8.1.1 Brief description of hypoplastic model

This subsection is addressed to the brief description of the hydro-mechanical model based
on hypoplasticity proposed in [Maš́ın, 2013] and [Maš́ın, 2017], and the following notation
is used in further text. The second-order tensors or matrices are denoted by bold italic
font (e.g. σ, N ), while the fourth-order tensors are written in capital calligraphic bold
font (e.g. M, I). There is also used symbol “:” between tensors of various orders for the
double contraction. Additionally, I is the second-order identity tensor and ‖σ‖ denotes
the Euclidean norm of tensor.

In the model, the particular quantities related to the macro-structural behaviour are
denoted by superscript index M while superscript index m denotes quantities related with
the micro-structural level. The dot (̇) denotes the time derivative. The model assumes
additive decomposition of the total strain rate ε̇ in the form

ε̇ = ε̇M + fmε̇
m, 0 ≤ fm ≤ 1, (8.4)

where fm stands for the factor that quantifies the level of occlusion of macro-porosity by
aggregates ranging from 0 to 1. The void ratios for particular structural levels are defined
by

e = (V m
p + V M

p )/Vs, (8.5)

em = V m
p /Vs, (8.6)

eMp = V M
p /VA, (8.7)

(8.8)

where e is the total void ratio, em is the microstructural void ratio, eM is the macrostruc-
tural void ration, V m

p is the micropore volume, V M
p is the macropore volume, Vs is the

total solid volume and VA is the volume of aggregates.
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The consistent definitions of the total void ratio together with other porosity measures
for particular structural levels are defined by

e = eM + em + eMem, (8.9)
ė

1 + e
= ε̇V , (8.10)

ėM

1 + eM
= ε̇MV + (fm − 1)ε̇mV , (8.11)

ėm

1 + em
= ε̇mV . (8.12)

In Eqs. (8.9)-(8.12), the volumetric strains for macro and micro levels are denoted by εMV
and εmV respectively while the total volumetric strain is denoted by εV (εV = tr(ε)). The
total degree of saturation Sr of the two pore system can be described in terms of degree
of saturation of macro and micro structures by

Sr = SMr +
em

e
(Smr − SMr ). (8.13)

Two different mechanical models for macro and microstructure level are defined in
the model. Assuming local hydraulic equilibrium sm = sM and σnetM = σnetm and the
Bishop’s effective stresses concept [Bishop, 1959], the following terms for the effective
stresses at macro and micro levels are given

σM = σnet − IsχM , (8.14)

σm = σnet − Isχm, (8.15)

where I is the second-order identity tensor, χ is being the effective stress parameter and
the net stress σnet and suction s are defined as follows

σnet = σ + ua, (8.16)

s = ua − uw. (8.17)

In Eqs. (8.16) and (8.17), σ is the total stress while ua and uw are the air and water
pressures respectively. It should be noted that ua and uw are assumed to be positive in
compression. The water retention models for macro level reads

χM = SMr = χ =

{
1, s < se(se
s

)γ
, s ≥ se,

(8.18)

where se is the water retention model variable defined by the following expression

se = sen(ae + asc − ae asc), (8.19)

and parameter γ represents the slope of macrostructural water retention curve which
is usually assumed by the value 0.55. In the above equation, ae stands for the model
parameter and the state variable asc is given as

asc(s) =


0 if s ≤ sW
s− sW
sD − sW

if sW < s < sD,

1 if s ≥ sD

(8.20)
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where sD is the suction at the main drying curve corresponding to the actual SMr which
is defined as

sD =
sen
se
s, (8.21)

and sW = aesD is the suction at the main wetting curve. The quantity sen is defined by

sen = se0
eM0
eM

, (8.22)

where se0 and eM0 are model parameters. The rate equation for asc reads

ȧsc =

 0, s ≤ sW or s ≥ sD,
1

sD − sW
ṡ otherwise.

(8.23)

On the micro level, the model is being defined by

χm = Smr = 1, (8.24)

and thus the fully saturated state in the micropore system is being assumed.
The rate form of the macrostructural microstructural effective stresses defined by

Eqs. (8.14) and (8.15) reads

σ̇M = σ̇net + IχM
[
−ṡ+ γ s

ėM

eM

]
, (8.25)

σ̇m = σ̇net + I ṡ. (8.26)

The macrostructure effective stress rate is governed by the hypoplastic model given
by

σ̇M = fs
(
L : ε̇M + fdN‖ε̇M‖

)
+ fuH , (8.27)

where fs is the barotropy factor, L is the hypoelastic fourth-order tensor, fd is the py-
knotropy factor, N is the second-order tensor introducing the failure condition, fu and H
are factor and second-order tensor introducing the wetting-induced collapse. Definition
these quantities can be found in Appendix B.

The microstructure effective stress rate is given by the following relation

σ̇m = I
pm

κm
ε̇mV , (8.28)

where pm denotes the mean stress at micro level and κm is the model parameter. There
is an explicit formulation of void ratio on the micro structural level given by term

em = exp

[
κm ln

sr
pm

+ ln(1 + emr )

]
− 1, (8.29)

where emr and sr are the material parameters representing an arbitrary reference value of
void ration at micro level for the reference value of suction.

For the convenience, state variables of the model may be collected in vector κT =
{e, Sr, eM , em, SMr , asc, re} where all components of state variable vector are defined in the
rate form similarly to the stress-strain relation.
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Originally, the model was implemented D. Maš́ın in the rate form and used for the
simulations on the material point level. His implementation was transformed to the finite
element code SIFEL and extended by the integration schemes proposed in Subsection 8.1.2
for better performance.

Solution to the involved hypoplastic model defined by Equation (8.27) is not straight-
forward for the loading input obtained from a finite element code where ε̇ and ṡ are
provided usually. Difficulties are associated with the fact that the total stress rate ap-
pears both in the formulation of ε̇m and in the formulation of σ̇M , thus on both the right-
and left-hand side of Equation (8.27) (see (8.12), (8.29), (8.15) and (8.16)). A numerical
iterative procedure was proposed to solve this equation in [Maš́ın, 2017] but it leads to the
problems with the material stiffness matrix formulation. In this model, only the ’elastic’
stiffness L is assumed for the mechanical part of the generalized stiffness matrix while
the coupling blocks with water transport are calculated numerically by the perturbation
of model input values.

8.1.2 Modification of hypoplastic model formulation

The original definition of the asc state variable as a non-smooth function can lead to nu-
merical difficulties with the time integration of the model and therefore approximation by
a smooth function can be useful. Many approximation formulae are based on logarithmic-
exponential approximation functions. An approximation formula of canonical piecewise
linear function into smooth representation can be found in [Jimenez-Fernandez et al.,
2016]. Generally, every piecewise linear function can be rewritten in the following canon-
ical form

y(x) = a+ b x+
δ−1∑
i=1

ci|x− βi|, (8.30)

where b = 0.5 (j1 + jδ), ci = 0.5 (ji+1 − ji) and a = y(0)−∑δ−1
i=1 ci|βi|. In Eq. (8.30), index

i denotes the i-th segment of the original function while its slope is denoted by ji and
δ stands for the number of segments. Particular segments are connected in break-points
with x coordinates equal to βi. The logarithmic-exponential approximation, ŷ(x), of the
function y(x) can be written in the form

ŷ(x) = a+ b x+
δ−1∑
i=1

ci (x− βi) +
2

cα

δ−1∑
i=1

ln
(
1 + e−cα(x−βi)

)
, (8.31)

where the parameter cα controls the smoothness of the function approximation in the
break-point vicinity. Application of the formula to the definition of asc yields

j1 = 0, j2 = (sD − sW )−1, j3 = 0, (8.32)

b = 0.5(j1 + j3), (8.33)

c1 = 0.5(j2 − j1), c2 = 0.5(j3 − j2), (8.34)

a = 0− c1|sW | − c2|sD|, (8.35)

âsc = a+ bs− c1(s− sW )− c2(s− sD) +
2

cα

[
ln
(
1 + ecα(s−sW )

)
+ ln

(
1 + ecα(s−sD)

)]
. (8.36)
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The meaning of particular coefficients and parameters used in the approximation can be
seen in Figure 8.1. The approximation of the rate of asc can be obtained by the time
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Figure 8.1: Diagram of asc state variable evolution with respect to the suction s - full
view (left) and detailed view in the vicinity of the sD point (right).

differentiation of (8.36) in the following form

˙̂asc = b− c1 − c2 +

2

[
c1

ecα(s−sW )

1 + ecα(s−sW )
+ c2

ecα(s−sD)

1 + ecα(s−sD)

]
ṡ. (8.37)

8.2 Model of water flow in deforming porous medium

For the preliminary investigations, the water flow is assumed to be the only driving
mechanism of moisture transfer (see [Krejč́ı et al., 2001]) and the flow process is considered
to be at the isothermal conditions. In this case, the assumption of isothermal one-phase
flow is adopted for the model based on Lewis and Schrefler‘s approach [Lewis and Schrefler,
1998]. Vector of mass flux density of moisture Jw (kg.m−2.s−1) is given by generalized
Darcy’s law [Lewis and Schrefler, 1998] in the form

Jw = ρwnSr (vw − u̇) = ρw
krwksat

µw
(−grad pw + ρwg) , (8.38)

where the term vw − u̇ is the mass averaged relative velocity with the water velocity vw.
Additionally, krw ∈ [0; 1] stands for the relative permeability which is a function of degree
of saturation krw = krw(Sr) and g is the gravity acceleration vector. ksat [m2] is the
intrinsic permeability matrix, µw is the dynamic viscosity [kg m−1s−1] and pw = −uw is
the pore pressure. The intrinsic mass density ρw is related to the volume averaged mass
density ρw according to the following relation

ρw = nSr ρ
w, (8.39)

where n is the porosity defined as n = e/(1 + e).
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The constitutive equation has to be accompanied with the mass balance equations for
particular phase which can be defined as follows

∂(nSr ρ
w)

∂t
+ div (nSr ρ

w vw) = ±ṁ for liquid phase, (8.40)

∂ ((1− n) ρs)

∂t
+ div ((1− n) ρs u̇) = 0 for solid phase, (8.41)

where ṁ is the mass rate of evaporation. Equation (8.41) can be rewritten to express the

term
∂n

∂t
and by neglecting the gradient ∇ [(1− n)ρs] to the form

∂n

∂t
=

1− n
ρs

∂ρs

∂t
+ (1− n)div u̇. (8.42)

Substitution of Equation (8.42) to (8.40) and neglecting the term ∇(nSrρ
w) results in

continuity equation for fluid phase

1− n
ρs

∂ρs

∂t
+

n

ρw
∂ρw

∂t
+ (1− n)div u̇+

n

Sr

∂Sr
∂t

+ ndivvw = ± ṁ

Sr ρw
(8.43)

The continuity equation can be rewritten with assumptions of small strains, small displace-
ments, isothermal conditions and mass conservation law by introduction of the following
terms for densities ρs and ρw

1

ρw
∂ρw

∂t
=

1

Kw

∂pw
∂t

, (8.44)

1

ρs
∂ρs

∂t
=

1

1− n

(
(α− n)

1

Kg

∂Sr pw
∂t

− (1− α)div u̇

)
, (8.45)

where Kw is the bulk modulus of water [Pa], Kg is the bulk modulus of the grains [Pa]

and α = 1− Ks

Kg

is the Biot’s constant, where Ks is the bulk modulus of the solid skeleton

[Pa]. The continuity condition then reads(
α− n
Kg

S2
r +

nSr
Kw

+
α− n
Kg

Sr pw
∂Sr
∂pw

+ n
∂Sr
∂pw

)
∂pw
∂t

+

+αSr div u̇+
1

ρw
div (nSrρ

w (vw − u̇)) = ± ṁ
ρw
, (8.46)

where the dependency of the degree of saturation on the pore water pressure
∂Sr
∂t

=

∂Sr
∂pw

∂pw
∂t

was used. If there is no exchange of water vapour the term of the right hand

side of Equation (8.46) becomes zero. Substitution of the Darcy’s law (8.38) into Equa-
tion (8.46) results in continuity equation for one-phase (liquid water) flow in deforming
medium (

α− n
Kg

S2
r +

nSr
Kw

+
α− n
Kg

Sr pw
∂Sr
∂pw

+ n
∂Sr
∂pw

)
∂pw
∂t

+

+ αSr div u̇+
1

ρw
div

(
ρw
krwksat
µw

(−grad pw + ρw g)

)
= 0.

(8.47)
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8.3 Numerical solution to coupled hydromechanical

model

The coupled hydromechanical model is defined on domain Ω ⊂ Rd, where d is the space
dimension. The boundary of the domain Ω is split with respect to transport processes to
parts Γp and ΓN , where pore pressure, p̄w is prescribed on the part Γp while water flux
vector, J̄w is prescribed on the part ΓN . The following relationships Γp ∪ ΓN = Γ and
Γp ∩ ΓN = ∅ have to be satisfied. Boundary conditions can be written in the form

pw = p̄w ∀x ∈ Γp, (8.48)

Jw = J̄w ∀x ∈ ΓN . (8.49)

The boundary of the domain Ω is split with respect to mechanical problem to parts
Γu and Γt, where displacement, u, is prescribed on the part Γu while surface traction, t̄,
is prescribed on the part Γt. Similarly to the previous decomposition, the relationships
Γu∪Γt = Γ and Γu∩Γt = ∅ have to be satisfied. Boundary conditions can be summarized
as

u̇ = ˙̄u ∀x ∈ Γu, (8.50)

Sσ̇ = ˙̄t ∀x ∈ Γt, (8.51)

where S is the matrix defined in (6.9).
From now on, stresses and strains are stored in vectors and stiffness tensor is trans-

formed to matrix. The total stress σ which is defined by equations (8.4), (8.14), (8.15),
(8.16), (8.27) and (8.28) can be expressed in the form of vector function

σ = g(ε(u), pw), (8.52)

where ε = ∂u is the strain vector. Time derivative of the stress vector has the form

σ̇ =
∂g

∂ε
ε̇+

∂g

∂pw
ṗw = Dε̇+ hṗw, (8.53)

where the new matrix D and new vector h were defined. The rate of change of the total
stress has to satisfy the equilibrium equation in the form

∂T (Dε̇+ hṗw) + ḃ = 0 ∀x ∈ Ω, (8.54)

where ḃ is the time derivative of the body force vector. Finally, the initial conditions are
in the form

pw(x, t = 0) = pw,0(x) ∀x ∈ Ω, (8.55)

u(x, t = 0) = u0(x) ∀x ∈ Ω, (8.56)

where pw,0(x) and u0(x) are given functions.
The unknown functions u and pw are approximated in the classical form

u = Nud, (8.57)

pw = N pp, (8.58)
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where d and p are vectors of the appropriate nodal values and Nu and N p are matrices
of shape functions. Two additional matrices will be needed

Bu = ∂Nu, (8.59)

Bp = ∇N p. (8.60)

Applying Galerkin’s method, the Gauss theorem and using the spatial discretization,
the system of discretized equations for the hydro-mechanical problem (cf. [Lewis and
Schrefler, 1998], [Bittnar and Šejnoha, 1996]) is obtained in the form(

Kuu Cup

Cpu Cpp

)(
ḋu
ḋp

)
+

(
0 0
0 Kpp

)(
du
dp

)
=

(
ḟu
f p

)
, (8.61)

where Kuu is the stiffness matrix in the form

Kuu =

∫
Ω

BT
uDBu dΩ, (8.62)

Kpp is the permeability matrix

Kpp =

∫
Ω

BT
p

krw

µw
ksatBp dΩ, (8.63)

Cpp is the compressibility matrix

Cpp =

∫
Ω

NT
p

(
α− n
Kg

Sr

(
Sr +

∂Sr
∂pw

pw

)
+ n

(
∂Sr
∂pw

+
Sr
Kw

))
N p dΩ, (8.64)

and Cup and Cpu are the coupling matrices

Cup =

∫
Ω

BT
uhN p dΩ, (8.65)

(8.66)

Cpu = −
∫
Ω

NT
p αSrm

TBu dΩ, (8.67)

where mT = (1, 1, 1, 0, 0, 0). ḟu is the time derivative of the load vector

ḟu =

∫
Ω

NT
u ḃ dΩ +

∫
Γt

NT
u

˙̄t dΓ, (8.68)

f p is the flux vector

f p =

∫
Ω

BT
p

krwksat

µw
ρg dΩ −

∫
ΓN

NT
p

nTJ̄w
ρw

dΓ. (8.69)

For the sake of consistency, it is convenient to approximate the strains ε and the pore
water pressure pw by polynomials of the same degree. Strain-displacement equations then
imply that the displacements should be approximated by a polynomial one order higher
than the pore pressure ([Bathe, 1996], [Krejč́ı et al., 2014] and [Koudelka et al., 2011]). The
system of differential equations (8.61) has to be integrated numerically. Time discretiza-
tion is based on the v-form of the generalised trapezoidal method [Hughes, 1987]. The re-
sulting system of algebraic equations is non-linear and the Newton-Raphson method [Bit-
tnar and Šejnoha, 1996] has to be used at each time step. The hydro-mechanical model
was implemented in SIFEL (source files can be found on the web page [SIFEL, 2022]) and
the implementation details are described in [Koudelka et al., 2011].
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8.4 Time integration of hypoplastic model

The time integration of (8.3) in hypoplastic models was investigated in papers [Tamagnini
et al., 2000], [Tamagnini et al., 2013] which contain performance evaluation of different
integration methods including simple forward Euler method, Crank-Nicolson scheme and
Runge-Kutta-Fehlberg (RKF) methods with substepping. Authors concluded that the
performance of the low-order methods was generally unsatisfactory and suggested the
usage of the RKF method of suitable order with substepping. In [Janda, 2013], Runge-
Kutta-Fehlberg methods with substepping of various orders was used for integration of
models for clays and their performance was evaluated. There is also detailed comparison
of time integration methods in [Ding et al., 2015] including implicit backward Euler and
Crank-Nicholson scheme and explicit high order RKF Dormand-Prince scheme with sub-
stepping which was performed with the hypoplastic model proposed in [Gudehus, 1996]
and [Bauer, 1996]. Authors of [Ding et al., 2015] observed generally unsatisfactory per-
formance of low-order methods again both in terms of accuracy and efficiency and the
source of difficulties was identified in barotropy factor, fd, which causes high nonlinear-
ity of the model. Implicit integration methods were considered in [Heeres and de Borst,
2000] but generally, there are difficulties with the expression of residual Jacobian for the
Newton-Raphson iterative method.

Recall that in hypoplastic model described in Section 8.1, Equation (8.14), (8.16) and
(8.27) define the total stress rate σ̇. Additionally, the hypoplastic model involves state
variables given in the vector κ that can be also formulated in the rate form and thus the
generalized stress rate, τT = (σ,κ), can be defined by

τ̇ = Mε̇ = Ψ (τ (t),∆ε(t)) , (8.70)

where M represents the generalized stiffness matrix, ε is the generalized strain vector
εT = (ε, s) and Ψ represents the model response function on the given input of strain
increment, ∆ε, of the actual time step and attained stress level, τ .

With respect to the experiences and conclusions in papers [Tamagnini et al., 2000],
[Janda, 2013] and [Ding et al., 2015], the explicit integration RKF algorithm with sub-
stepping was selected and implemented in open source code SIFEL ([Koudelka et al.,
2011], [SIFEL, 2022]). Equation (8.70) represents initial value problem given by the set
of ordinary differential equations. These equations can be written in generic substep k of
RKF at time interval [tn; tn+1] formally as follows

τ k+1 = τ k + ∆tk

s∑
i=1

bi ki (τ k,∆ε(tn+1),∆tk) , (8.71)

where subscript n stands for the index of particular load steps, bi is the RKF weight
coefficient and ∆tk ∈ (0; 1] is the dimensionless step length defined as follows

∆tk =
tk+1 − tk
tn+1 − tn

. (8.72)

Additionally, ki (τ k,∆ε(tn+1),∆tk) represents the function Ψ evaluated for the given
strain increment of the actual time step ∆ε(tn+1) = ε(tn+1) − ε(tn) and attained stress
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0 0 0 · · · 0 0
c̃2 ã2,1 0 · · · 0 0
...

...
. . . . . .

...
...

c̃s−1 ãs−1,1 ãs−1,2 · · · 0 0
c̃s ãs,1 ãs,2 · · · ãs,s−1 0

b̃1 b̃2 · · · b̃s−1 b̃s
b̄1 b̄2 · · · b̄s−1 b̄s

Table 8.1: General form of Butcher table for Runge-Kutta-Fehlberg method with sub-
stepping.

levels at the prescribed points of time interval.

ki (τ k,∆ε(tn+1),∆tk) = Ψ

(
τ k + ∆tk

i−1∑
j=1

ãi,jkj,∆ε(tn+1)

)
. (8.73)

The RKF matrix coefficients ãi,j and weight coefficients bi are selected so that the method
provides the numerical approximation of the solution of order r and r+1. These coefficient
may be summarized in the form of the Butcher table [Butcher, 2016] whose generalized
example is given in Tab.(8.1). Generally, the Butcher table also contains nodal coefficients
c̃i which would be used in the case that the function Ψ would depend on time directly.

In the Runge-Kutta-Fehlberg method, the step length ∆tk is constructed according to
the difference between solutions to two embedded Runge-Kutta algorithms

τ̄ k+1 = τ k + ∆tk

s∑
i=1

b̄i ki (τ k,∆ε(tn+1),∆tk) , (8.74)

τ̃ k+1 = τ k + ∆tk

s∑
i=1

b̃i ki (τ k,∆ε(tn+1),∆tk) , (8.75)

where weight coefficents b̄i and b̃i provide order r and r + 1 of the solution accuracy,
respectively. Generally, the substep k + 1 is accepted if the relative error measure Rk+1

of two solutions τ̄ k+1 and τ̃ k+1 is less than the given tolerance ϑ. In this case, the
selective error measures σR and κR have to be introduced because of different magnitude
of particular quantities in the vector τ

σRk+1 =
‖σ̃k+1 − σ̄k+1‖
‖σ̃k+1‖

, (8.76)

κRk+1 =
‖κ̃k+1 − κ̄k+1‖
‖κ̃k+1‖

, (8.77)

Rk+1 =
√

σR2
k+1 + κR2

k+1 ≤ ϑ. (8.78)

It should be noted that error measure vRk+1 may be calculated as a norm from the
complete vector κ because all variables are dimensionless, they have the same order with
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0 0
1/2 1/2 1/2 1/2

1 -1 2 3/4 0 3/4
1/6 2/3 1/6 2/9 1/3 4/9
0 1 0 7/24 1/4 1/3 1/8

Table 8.2: Butcher table for RKF-32 (left) and RKF-32bs Bogacki-Shampine (right).

0
1/4 1/4
4/9 4/81 32/81
6/7 57/98 -432/343 1,053/686

1 1/6 0 27/52 49/156
43/288 0 243/416 343/1,872 1/12

1/6 0 27/52 49/156 0

Table 8.3: Butcher table for RKF-43.

values ranging in [0;1] or [0;2] for reasonable model input. If working ranges of the state
variables varied more, it would be possible to use another approach described in [Fellin
et al., 2009]. In practice, dominant influence on the total error had σRk+1 and error of
degree of saturation component of vector κ.

If the value of a state variable evolves to zero, the absolute error measure should be
used in order to avoid numerical difficulties. In this case, the absolute error measure
was used in the case that denominator in (8.77) was less than prescribed treshold value
(typically 10−4). The more sophisticated approach with continuous transition between
relative and absolute error measure can be found in [Fellin et al., 2009].

The optimum length of the next substep can be estimated by the following term

∆tk+1 = min

{
0.9

(
ϑ

Rk+1

)r+1

, 1−∆tk

}
. (8.79)

Several time integration RKF schemes were implemented for the time integration of
equation (8.70). Their description in the form of Butcher’s tables is given in Tabs.(8.2),
(8.3) and (8.4). It should be noted that the algorithm RKF-32bs is the Bogacki-Shampine
coefficient pairs proposed in [Bogacki and Shampine, 1989] and the advantage of the
method is that it provides the better estimate of error with the minimum cost. In the
second order formula, the vector k4 is needed which is evaluated at Ψ(τ̃ k) and thus it
can be used as k1 in the next step if the tolerance condition is met (First Same As Last
concept - FSAL).

8.4.1 Performance of integration schemes on benchmarks

The implemented hypoplastic model was tested on simple benchmarks with axisymmetric
specimen 1x1 m subjected to various loading paths:
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0
1/4 1/4
3/8 3/32 9/32

12/13 1,932/2,197 -7,200/2,197 7,296/2,197
1 439/216 -8 3,680/513 -845/4,104

1/2 -8/27 2 -3,544/2,565 1,859/4,104 -11/40
16/135 0 6,656/12,825 28,561/56,430 -9/50 2/55
25/216 0 1,408/2,565 2,197/4,101 -1/5 0

Table 8.4: Butcher table for RKF-54.

1. Triaxial drained test with constant confining pressure and axial load generated by
gradually increasing vertical prescribed displacement ranging from zero at pseudo-
time 0.0 to 0.02 m at pseudo-time 2,000, initial stress -200 kPa, constant suction
-1.9 MPa.

2. Triaxial drained test with constant volume increment generated by vertical pre-
scribed displacement ranging from zero at pseudo-time 0.0 to 0.2 m at pseudo-time
20,000 and lateral prescribed displacements ranging from zero at pseudo-time 0.0
to 0.1 m at pseudo-time 20,000, initial stress -200 kPa, constant suction -1.9 MPa.

3. Triaxial test with constant pressure and variable suction growing from -1.9 MPa at
pseudo-time 0 to -5.0 MPa at pseudo-time 3,000 and then the suction is decreased
to -1.0 MPa at pseudo-time 7,100.

All benchmarks were tested with the set of model parameters given in Table 8.5 and initial
values of state varibales given by e=0.6 and asc=0.5. Resulting diagrams from the first

ϕc N λ∗ κ∗ ns ls emr
27◦ 1.05 0.08 0.008 0.025 0.0 0.38

sr r m κm se0 eM0 ae
-2,400 kPa 0.4 2.0 0.04 -200.0 kPa 0.18 0.25

Table 8.5: Set of model parameters used in benchmark examples

benchmark can be seen in Figure (8.2) and from the second benchmark in Figure (8.3),
where evolution of the axial stresses (a) or the degree of saturation (b) versus evolution
of the axial strains can be observed. For the third benchmark, only evolution of degree
of saturation is depicted in Figure (8.4) because the stress value is kept constant during
whole benchmark example.

In benchmark 1, all mentioned integration schemes were used with two pseudo-time
step lengths 20 and 100 and tolerance, ϑ, for RKF integration ranging from 10−7 to 10−3.
Results were compared with the reference solution obtained from RKF54 scheme with
pseudo-time step length 1. In this benchmark example, three error indicators were used
for the comparison of performance of particular integration schemes:
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Figure 8.2: Benchmark 1 - (a) axial stress, σax, vs. axial strain, εax, (b) evolution of
degree of saturation, Sr, according to axial strain, εax.
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Figure 8.3: Benchmark 2 - (a) axial stress, σax, vs. axial strain, εax, (b) evolution of
degree of saturation, Sr, according to axial strain, εax.
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Figure 8.4: Benchmark 3 - evolution of degree of saturation, Sr, according to axial strain,
εax.
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- ξf relative error of peak axial stress value, σaxf , in Figure (8.2a),

ξf =
σϑaxf − σrefaxf

σrefaxf

(8.80)

- ξr relative error of residual stress value, σaxr, in Figure (8.2a),

ξr =
σϑaxr − σrefaxr

σrefaxr

(8.81)

- ξW relative error of stress path integral, W , of the diagram Figure (8.2a),

ξW =

∫
σϑaxε̇

ϑ
axdt−

∫
σrefax ε̇

ref
ax dt∫

σrefax ε̇
ref
ax dt

. (8.82)

In the error indicator definitions, superscripts ϑ and ref denote solution obtained from
RKF with tolerance ϑ and reference solution, respectively.

The total number of model evaluation nev was monitored together with elapsed com-
putational time of whole problem solution tc. The results are summarized in Tab. 8.6 and
8.7.

In order to test the integration scheme, a specimen with highly nonlinear behaviour
was used in benchmark 1 (see Figure 8.2a) and therefore relatively large number of sub-
steps was necessary in all of them (see nev values). Tests revealed that all integration
schemes attained similar orders of error and their magnitudes were sufficient for engi-
neering problems in all cases. It can be observed that the higher order methods do not
attain significantly better results than the low order ones and more important point is the
selection of the pseudo-time step length which influences the selected error measures more
significantly. From the viewpoint of computational time, the most reasonable choice rep-
resented RKF-32bs scheme where the lowest numbers of model evaluation were attained
as well as the total computational times.

In benchmark 2, all mentioned integration schemes were used with two pseudo-time
step lengths 100 and 1,000 and tolerances for RKF integration ranging from 10−7 to 10−3.
Results were compared with the reference solution obtained by step length 1 and RKF-54
scheme. In this benchmark, only error indicators ξf and ξW were used for the performance
comparison which is summarized in Tab. 8.8 and 8.9.

In benchmark 2, the integration schemes were tested on nonlinear behaviour of the
specimen where all DOFs were controlled directly which led to relatively low numbers
of substeps. Similarly to example 1, all integration schemes attained errors that were
acceptable for engineering problems. For large pseudo-time step length, the high order
methods led to higher errors for most values of tolerances than the low ones while in the
case of low pseudo-time step length, the error orders were comparable for all schemes.
From the viewpoint of computational time, the most reasonable choice is represented by
RKF-32bs scheme, where the lowest numbers of model evaluation were attained in most
cases as well as the total computational times.

All mentioned integration schemes were tested in benchmark 3 with two pseudo-time
step lengths 10 and 100 and tolerances of RKF integration ranging from 10−7 to 10−3. In
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ϑ Error RKF-32 RKF-32bs RKF-43 RKF-54
measure
type

10−7 ξf 1.0780·10−2 1.0780·10−2 1.0780·10−2 1.0872·10−2

ξr 1.2754·10−3 1.2758·10−3 1.2750·10−3 1.2756·10−3

ξW 4.0021·10−3 4.0020·10−3 4.0020·10−3 3.9972·10−3

nev 9,672,960 5,062,512 6,638,370 18,692,256
tc [s] 121.44 65.35 72.66 234.77

10−6 ξf 1.0780·10−2 1.0782·10−2 1.0780·10−2 1.1057·10−2

ξr 1.2759·10−3 1.2769·10−3 1.2748·10−3 1.2700·10−3

ξW 4.0020·10−3 4.0016·10−3 4.0019·10−3 3.9882·10−3

nev 4,265,280 2,314,400 3,225,920 6,617,088
tc [s] 56.54 34.05 35.69 83.29

10−5 ξf 1.0781·10−2 1.0801·10−2 1.0777·10−2 1.1568·10−2

ξr 1.3351·10−3 2.5810·10−3 1.3310·10−3 3.1754·10−3

ξW 2.1396·10−3 3.6643·10−3 2.1398·10−3 3.8722·10−3

nev 2,092,704 1,340,224 1,738,400 2,532,192
tc [s] 25.09 16.38 18.31 30.90

10−4 ξf 1.0805·10−2 1.1064·10−2 1.0692·10−2 1.2399·10−2

ξr 4.5567·10−3 1.9902·10−3 1.3333·10−3 1.4202·10−3

ξW 4.0003·10−3 2.2976·10−3 4.0070·10−3 2.0429·10−3

nev 1,024,128 829,136 814,800 841,728
tc [s] 13.39 9.32 11.80 10.90

10−3 ξf 1.0905·10−2 1.1826·10−2 1.0522·10−2 1.3743·10−2

ξr 1.5118·10−3 2.2620·10−3 6.1085·10−4 4.1522·10−3

ξW 3.9983·10−3 3.9095·10−3 4.0415·10−3 2.4129·10−3

nev 475,488 298,384 486,000 578,880
tc [s] 6.87 4.77 6.74 7.37

Table 8.6: Performance comparison of RKF schemes for benchmark 1 and step length
100.
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ϑ Error RKF-32 RKF-32bs RKF-43 RKF-54
measure
type

10−7 ξf 3.0361·10−3 3.0360·10−3 3.0354·10−3 3.1202·10−3

ξr 4.4944·10−4 5.8079·10−4 5.7955·10−4 5.9941·10−4

ξW 2.5149·10−4 2.9683·10−4 2.9688·10−4 2.9487·10−4

nev 7,843,824 3,722,352 4,297,920 13,085,400
tc [s] 114.31 50.48 52.96 169.84

10−6 ξf 3.0347·10−3 3.0375·10−3 3.0306·10−3 3.2732·10−3

ξr 5.4006·10−4 5.8280·10−4 5.7929·10−4 6.2511·10−4

ξW 2.9676·10−4 2.9677·10−4 2.9685·10−4 2.9143·10−4

nev 2,586,960 1,495,376 1,705,520 4,509,408
tc [s] 34.13 19.65 22.85 63.33

10−5 ξf 3.0248·10−3 2.2873·10−3 1.7388·10−3 3.1159·10−3

ξr 5.8107·10−4 3.5279·10−4 6.3580·10−5 6.2763·10−4

ξW 2.9691·10−4 1.7255·10−4 8.9412·10−5 2.8055·10−4

nev 1,316,976 970,896 107,390,000 1,261,536
tc [s] 17.79 15.99 2106.05 20.2

10−4 ξf 2.2874·10−3 3.1482·10−3 2.0848·10−3 3.1482·10−3

ξr 3.5025·10−4 6.8376·10−4 4.2193·10−4 6.8376·10−4

ξW 1.7286·10−4 2.8738·10−4 1.1459·10−4 2.8738·10−4

nev 843,168 378,800 465,479,760 448,896
tc [s] 14.27 6.97 9979.09 7.68

10−3 ξf 3.2799·10−3 3.2714·10−3 3.1474·10−3 3.2714·10−3

ξr 6.9036·10−4 6.8332·10−4 5.8743·10−4 6.8332·10−4

ξW 2.8732·10−4 2.8930·10−4 2.9549·10−4 2.8930·10−4

nev 321,024 298,816 373,680 448,896
tc [s] 6.44 5.92 6.85 7.86

Table 8.7: Performance comparison of RKF schemes for benchmark 1 and step length 20.
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ϑ Error RKF-32 RKF-32bs RKF-43 RKF-54
measure
type

10−7 ξf 6.1594·10−6 6.0511·10−6 6.1509·10−6 9.3072·10−5

ξW 6.3023·10−5 1.4820·10−5 1.4799·10−5 4.4048·10−4

nev 34,896 18,208 17,760 119,862
tc [s] 0.52 0.29 0.27 1.76

10−6 ξf 6.0729·10−6 5.6872·10−6 6.1620·10−6 1.0468·10−4

ξW 1.4786·10−5 1.4666·10−5 1.4812·10−5 4.1186·10−4

nev 15,648 8,368 8,400 41,376
tc [s] 0.26 0.15 0.20 0.61

10−5 ξf 5.6926·10−6 4.6421·10−6 6.1697·10−6 1.3709·10−4

ξW 1.4454·10−5 1.3311·10−5 1.5625·10−5 3.3540·10−4

nev 7,536 4,528 5,280 14,496
tc [s] 0.14 0.09 0.10 0.24

10−4 ξf 6.3561·10−6 1.2246·10−5 6.1603·10−6 1.9919·10−4

ξW 1.4210·10−5 7.2751·10−6 1.2791·10−5 1.9088·10−4

nev 3,840 2,656 3,440 6,144
tc [s] 0.09 0.06 0.08 0.12

10−3 ξf 1.2796·10−6 3.5550·10−4 5.9340·10−6 2.4109·10−4

ξW 7.9662·10−6 6.7320·10−5 1.5685·10−5 1.3272·10−4

nev 2,160 1,792 2,240 3,360
tc [s] 0.06 0.06 0.06 0.08

Table 8.8: Performance comparison of RKF schemes for benchmark 2 and step length
1,000.
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ϑ Error RKF-32 RKF-32bs RKF-43 RKF-54
measure
type

10−7 ξf 9.0659·10−6 9.0820·10−6 9.0811·10−6 1.1202·10−5

ξW 1.1800·10−5 1.1800·10−5 1.1812·10−5 9.8569·10−6

nev 67,200 39,040 45,600 242,088
tc [s] 1.26 0.82 0.90 3.78

10−6 ξf 9.0819·10−6 9.0816·10−6 9.0810·10−6 1.5101·10−5

ξW 1.1805·10−5 1.1839·10−5 1.1767·10−5 6.5142·10−6

nev 34,896 22,048 29,520 86,778
tc [s] 0.76 0.55 0.66 1.63

10−5 ξf 9.0792·10−6 9.0442·10−6 9.0812·10−6 9.0804·10−6

ξW 1.1889·10−5 1.1900·10−5 1.2077·10−5 1.1951·10−5

nev 19,152 14,128 19,680 19,104
tc [s] 0.52 0.44 0.53 0.51

10−4 ξf 9.0596·10−6 9.0044·10−6 9.0811·10−6 9.0804·10−6

ξW 1.2016·10−5 1.1306·10−5 1.1748·10−5 1.1951·10−5

nev 12,528 12,736 15,920 19,104
tc [s] 0.45 0.41 0.48 0.49

10−3 ξf 9.0078·10−6 9.0044·10−6 9.0811·10−6 9.0804·10−6

ξW 1.1678·10−5 1.1306·10−5 1.1748·10−5 1.1951·10−5

nev 9,552 12,736 15,920 19,104
tc [s] 0.41 0.44 0.45 0.49

Table 8.9: Performance comparison of RKF schemes for benchmark 2 and step length
100.
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this benchmark example, another two error indicators were estimated for the comparison
of performance of particular integration schemes with respect to different test conditions
(constant stresses and suction variation):

- ξEi relative error of stress path integral of the given tolerance and reference solutions

ξEi =

∫
σϑ : ε̇ϑ dt−

∫
σref : ε̇ref dt∫

σref : ε̇ref dt
,

- ξSr relative error of degree of saturation for the given tolerance and reference solu-
tions

ξSr =

∫
Ṡr

ϑ
dt−

∫
Ṡr

ref
dt∫

Ṡr
ref

dt
.

Performed analyses revealed numerical problems connected with the definition of hydraulic
part of the hypoplastic model. Therefore the results were compared with the reference
solution obtained by step length 0.1 and integration with the help of simple forward Euler
scheme.

The source of difficulties in the hydraulic part of the model is the definition of state
variable asc in the form of piecewise linear function. The state variable controls the
evolution of SMr which is the main source of the stress rates in the hypoplastic part of
the model in this benchmark and it also causes the nonlinear behaviour. The rates of
state variables κ̇ connected with the hydraulic part of the model are therefore given as
increments, ∆κ, for the given time increment ∆t.

In the RKF method, the function Ψ should be differentiable, and special treatment
must be given if the condition is not met. For example, the quality of the solution for a
conventional elastoplastic model by RKF depends on the accurate detection of the point
of yielding from which starts the evolution of plastic strains given by (8.2) (see [Sloan,
1987], [Büttner and Simeon, 2002], [Hiley and Rouainia, 2008]).

In the case of the hydraulic part of the model, two possible solutions to numerical
problems were proposed. In the first investigations, a smooth approximation of piecewise
linear function were considered. Tests of approximation described by (8.36) for artificial
ramp function showed that error of the approximation can be simply controlled by the
parameter cα, for the higher value of parameter, the better approximation in vicinity of
singular points of original function can be attained. Problems raised with the allowed
range of argument values in exponential function. For the double precision type (64
bit), the maximum value of exp function argument is about 710 in the C++ standard
library.

The problem can be overcome partially in the linear part if the normalized suction
values would be used (sr = s/se) but the maximum value of suction cannot be determined
generally and thus the problem is not fixed for constant values asc = 1 and higher values
of suction. Unfortunately, the model response is very sensitive to the asc value and dif-
ferences in magnitude 10−4 still lead to a significant error of SMr . The problem with exp
argument range can be resolved partially by adoption of long double precision type
whose working range is extended to 80 bit on many compilers and platforms but unfor-
tunately, the most used Windows compiler MS Visual C++ does not support extended
precision for long double and therefore this code modification is not fully portable.
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The extended data type precision can be combined with the constant limit values of asc if
asc /∈ [10−7; 0.9999999] which provides reasonable values of time derivatives with respect
to RKF.

Another solution to difficulties with the hydraulic part of the model represents selective
integration scheme for asc state variable in the vicinity of its limit values. The point is
that the RKF method is substituted by simple forward Euler scheme just in the vicinity
of singular points and if the constant value of asc is attained, the computation proceeds
with the original RKF scheme. Decision which integration scheme should be applied can
be made according to the condition

āsc = τk,ia + k1,ia ∆tk (8.83)

if(1− āsc < 10−7 ∧ 1− τk,ia > 10−7) ∨
(āsc < 10−7 ∧ τk,ia > 10−7)

apply forward Euler scheme (8.84)

else

apply original RKF scheme

where τk,ia and k1,ia are components of vectors defined in (8.71) and (8.73), index k denotes
generic substep of RKF used and index ia is the index of the vector component which
corresponds to the asc state variable.

The performance comparison is summarized in Tab. 8.10 and 8.11. For low pseudo-
time step length, the high order methods RKF-54 led to high error for degree of saturation
in the case of more strict tolerances than the low ones. In the case of larger pseudo-time
step length, the errors of degree of saturation in RKF32 were high for most of tolerances.
The most reasonable choice is represented by RKF-32bs scheme, where the reasonable
numbers of model evaluation were attained in most cases as well as the total computational
times and the solution errors were acceptable in all cases. It can be concluded that the
hydraulic part of the model with hysteretic behaviour caused numerical problems in many
cases. Required tolerance and suitable integration scheme should be selected carefully
because the more strict tolerance need not to lead to the better results and similarly, the
higher order of the integration scheme does not provided better results in many cases.

8.4.2 Performance of integration schemes on the strip footing
problem

Integration schemes were also tested on a problem of strip footing settlement. In this case,
the 2D block 20x10 m of soil was assumed with flexible strip footing of the width 4 m
placed on the surface. Uniform loading, f , was applied on the whole width of the strip
and its magnitude was increased gradually from 0.0 to 400 kPa. The suction pressure was
kept constant and the Dirichlet boundary conditions were applied on the block bottom
and lateral edges. Because of problem symmetry along the vertical axis, only one half of
the problem can be solved and thus the bottom was fixed fully while the left and right
edges were fixed in horizontal direction only. The problem was discretized by structured
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ϑ Error RKF-32 RKF-32bs RKF-43 RKF-54
measure
type

10−7 ξEi 5.7806·10−3 5.9820·10−3 5.9912·10−3 3.2441·10−2

ξSr 4.2915·10−2 5.0229·10−4 5.0490·10−4 4.7744·10−4

nev 428,418 29,841,584 100,376,560 7,016,160
tc [s] 9.75 661.62 2189.50 156.18

10−6 ξEi 5.9610·10−3 5.8488·10−3 5.9914·10−3 1.9919·10−2

ξSr 2.3876·10−2 4.6884·10−4 5.0437·10−4 5.0297·10−4

nev 233,157 3,003,776 10,075,120 1,308,096
tc [s] 5.58 66.40 220.72 23.62

10−5 ξEi 5.9963·10−3 5.4144·10−3 6.0136·10−3 3.4408·10−4

ξSr 8.7505·10−3 1.7924·10−4 5.0365·10−4 4.9881·10−4

nev 70,176 319,072 103,360 442,560
tc [s] 1.78 7.27 23.63 9.29

10−4 ξEi 5.6551·10−3 1.4363·10−2 5.9507·10−3 5.3134·10−3

ξSr 4.3929·10−3 2.9762·10−4 4.3212·10−4 4.2241·10−4

nev 41,712 65,184 138,080 93,216
tc [s] 1.15 1.72 3.29 2.31

10−3 ξEi 7.2703·10−3 2.1362·10−2 7.0266·10−3 6.4422·10−3

ξSr 9.7935·10−4 3.7122·10−3 3.1784·10−4 3.7816·10−4

nev 32,352 38,624 51,760 51,264
tc [s] 0.95 1.09 1.39 1.36

Table 8.10: Performance comparison of RKF schemes for benchmark 3 and step length
100.
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ϑ Error RKF-32 RKF-32bs RKF-43 RKF-54
measure
type

10−7 ξEi 5.9483·10−3 5.9413·10−3 5.9520·10−3 2.0944·10−2

ξSr 4.8772·10−4 4.9594·10−4 4.9712·10−4 2.9649·10−2

nev 301,440 24,157,264 81,114,080 12,944,160
tc [s] 8.87 513.27 1701.82 276.37

10−6 ξEi 5.9976·10−3 5.9720·10−3 5.9524·10−3 8.3811·10−3

ξSr 4.9794·10−4 4.8491·10−4 4.9667·10−4 1.1223·10−2

nev 215,664 2,515,392 8,266,880 889,248
tc [s] 6.97 55.85 176.75 21.34

10−5 ξEi 5.9608·10−3 5.8803·10−3 5.9560·10−3 6.1040·10−3

ξSr 4.9758·10−4 3.7839·10−4 4.9084·10−4 1.5820·10−4

nev 373,968 332,064 969,520 418,272
tc [s] 11.52 9.47 22.89 11.40

10−4 ξEi 6.0627·10−3 7.7612·10−3 4.6247·10−3 5.4960·10−3

ξSr 4.9394·10−4 4.6384·10−6 3.3411·10−4 2.6177·10−4

nev 193,680 259,664 321,520 377,088
tc [s] 6.54 7.94 9.25 10.66

10−3 ξEi 5.5285·10−3 5.9941·10−3 4.0815·10−3 6.0154·10−3

ξSr 4.5472·10−4 4.9827·10−4 3.0691·10−4 4.9691·10−4

nev 187,872 249,536 311,600 374,112
tc [s] 6.44 7.71 9.04 10.37

Table 8.11: Performance comparison of RKF schemes for benchmark 3 and step length
10.
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FE mesh with linear quadrilateral plane-strain elements, where the mesh density was
decreased according to the increasing distance from the footing in three steps. The mesh
and loading of the strip are depicted in Figure 8.5.

Figure 8.5: FE mesh and loading of footing strip problem.

There were 2,279 nodes and 2,184 elements in the FE mesh which results in 4,368
number of degrees of freedom. Resulting distribution of vertical displacement is depicted
in Figure 8.6a while the vertical stress components, σy, is being captured in Figure 8.6b,
respectively. Figure 8.7 represents diagram of evolution of vertical nodal displacement at

(a) (b)

Figure 8.6: Distribution of the vertical displacement, w, on the deformed mesh (a) and,
σy, component (b).

the middle of the footing strip.
Settlement problem was tested with all implemented integration schemes and toler-

ances for RKF integration ranging from 10−7 to 10−3. The pseudo-time step length was
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Figure 8.7: Diagram of settlement in dependence on applied loading pressure.

controlled automatically in the Newton-Raphson iteration solver. Results were compared
with the reference solution obtained by RKF-54 scheme for ϑ = 10−7 and the error indi-
cator ξw was established by the difference between settlement curves as follows

ξw =

√√√√ tns∑
i=1

(wϑi − wrefi )2

(wrefi )2
, (8.85)

where subscript i denotes the loading step and tns denotes the total number of the loading
steps. The performance comparison is summarized in Tab. 8.12.

In the footing problem test, all integration schemes provide good results whose errors
were acceptable in common engineering practice. Differences in the computational times
were not so high because most of the nonlinear behaviour of the material was exhibited
in the vicinity of the footing load area while the stress state changes in the remaining
part of domain were moderate and therefore minimum number of substeps was required
in RKF method used. The comparison of attained errors implies that the both low order
schemes RKF-32 and RKF-32bs provide good results with reasonable numbers of model
evaluation and computational times.
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ϑ Error RKF-32 RKF-32bs RKF-43 RKF-54
measure
type

10−7 ξw 3.1161·10−4 1.1464·10−4 1.1510·10−4 0.0
nev 232,923 308,760 385,350 465,510
tc [s] 894 888 940 1063

10−6 ξw 2.3368·10−4 1.1230·10−4 1.1486·10−4 4.5370·10−5

nev 231,756 307,737 384,435 461,418
tc [s] 753 829 971 1085

10−5 ξw 1.5320·10−4 1.0164·10−4 1.1370·10−4 1.4320·10−5

nev 231,531 307,182 383,855 461,874
tc [s] 1024 1177 1289 1481

10−4 ξw 4.5732·10−4 6.2021·10−5 1.0920·10−4 1.1393·10−4

nev 231,639 307,029 383,765 459,564
tc [s] 989 1152 1300 1492

10−3 ξw 2.3570·10−4 4.4557·10−4 6.9615·10−4 4.9381·10−4

nev 230,268 305,898 819,140 393,186
tc [s] 972 1094 1721 1411

Table 8.12: Performance comparison of RKF schemes for strip footing problem.
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8.5 Simulation of excavation contruction phases

The problem of construction phases is often solved in the geotechnical field. It may take
the form of building an embankment or, conversely, trench excavation. In the case of an
embankment or dam, the simulation of the gradual construction process is similar to the
one of the bridge building, and the algorithm in Table 7.1 for the determination of the
initial displacements can be used.

The different case represents the excavation problem where the groups of elements
are removed to simulate excavation. The initial displacements need not be determined,
but the problem of forces due to removed elements arises on the interface between the
removed part and the current one. These forces originate from the internal forces at
interface nodes, which were in equilibrium before element removal. After the element
block removal, there are missing contributions due to removed elements if the internal
force vector is calculated with the original displacement vector, see Figure 8.8.

Let the group of elements Ωr be removed at time t+ ∆t. The vector of forces due to
element removal can be simply defined as

f r = f ir (d(t))− f er(t), (8.86)

where f er(t) is the vector of prescribed forces on the domain Ωr assembled in the time step
before element removal and internal force vector, f ir, is given on the removed domain,
Ωr, as

f ir =

∫
Ωr

BTσ (d(t)) dV. (8.87)

The force vector, f r, may have significant magnitude, and it can cause the failure
of the iteration process in the global Newton-Raphson procedure. This problem is more
pronounced in the highly nonlinear behaviour of the given material, such as soil. Usu-
ally, tension states are not allowed in the soil models, and thus the model requires slow
evolution of load increments in order to avoid the tensional stress states.

In a typical Newton-Raphson load step, the magnitude of the prescribed load is depen-
dent on the actual time, and if the iteration process fails, the time increment is reduced,
which leads to a decrease in load magnitude. However, this strategy cannot be used in
the case of element removal because the element life function, le(t), has a stepwise charac-
ter, which results in the sudden application of the force f r that any time step reduction
cannot mitigate.

Theoretically, the magnitude of the forces due to element removal can be controlled
by the size of the removed domain, Ωr, but it is impractical and may not help in certain
cases. In the common cases, the vector f r is considered to be time-dependent virtually,
and it is added to the right-hand side with the decreasing magnitude in the specific period
(time steps) after the element removal. The magnitude ranges from the initial value of 1
to the zero value, and its value is decreased in the given range of time steps. Hence, the
residual force vector in the global Newton-Raphson iteration contains contributions due
to f r and if the iteration fails, the time increment is reduced, which results in a decrease
of the f r magnitude.

A modified approach was implemented in SIFEL where an independent new Newton-
Raphson procedure is spawned in the time step of element removal. At the new procedure,
the constant right-hand side vector f c represents the load vector assembled at the time
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Ωo

Ωn

Ωr

Ωn

Ωr

t̄ t̄

t̄

−f r

f r

Figure 8.8: Original domain, Ωo at time t (top left), new domain, Ωn, and domain removed,
Ωr, at time t + ∆t (top right) and split domains with forces due to domain removed f r
(bottom).

t and the proportional part of the right-hand side, f pr = −f r. The whole algorithm
is summarized in Table 8.13. In the Newton-Raphson procedure, the load coefficient,
λN , is gradually increased from the zero value until the value one is attained, at which
the process finishes. The size of λN increments and the solution error tolerance are the
required inputs of the procedure together with vectors f c and f pr. At the end of the
procedure, the displacement vector, d, contains contribution due to element removal, ∆d,
and computation proceeds in the main time-stepping loop.

This approach allows for better control of the iteration of the load vector due to ele-
ment removal, which can be set independently of the global Newton-Raphson procedure.
Moreover, if the iteration fails, the user can be clearly informed that the failure was caused
by element removal and not by some other load.
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1 Identify set of elements on new domain configuration, Ωn

Ωn = {ei ∈ Ω | li(t+ ∆t) > 0}.
2 Identify set of removed elements, Ωr

Ωr = {ei ∈ Ω | li(t+ ∆t) = 0 ∧ li(t) > 0}.
3 Generate new code number for nodes on the domain Ωn,

all vectors of the global problem f r, f ir, f er, f c, f pr ∈ Rnd,
where nd is the maximum DOF number on the domain Ωn.

4 Assemble the load vector, f l, on domain Ωn at time t, load vector,
f er, on domain Ωr and vector of internal forces due to removed elements,
f ir, on domain Ωr.

5 Assemble the vector due to removed elements, f r, vector of constant load,
f c = f l − f r, and proportional load vector, f pr = f r.

6 Solve the problem K∆d = f ext − f int = f c + λNf pr − f int
Newton-Raphson method on the domain Ωn for λN ∈ [0; 1].

7 Add displacement increment ∆d to the attained displacement vector d.

Table 8.13: Algorithm of handling with the vector of forces due to element removal.

8.6 Excavtion problem with hypoplastic model for

unsaturated expansive soils

The algorithm proposed in Section 8.5 was tested on the excavation problem where the
soil behaviour was described with the implemented hypoplastic model. There is a block
of soil with dimensions 75 × 40 m where a trench is excavated with a side slope 10:17
and 10 m depth. The pit is created in 10 phases, where each stage consists of removing
the soil layer with a thick 1 m. Nodes at the block bottom were fixed completely, while
the nodes on the left and right sides were supported in the horizontal direction only. The
FE mesh of the problem is depicted in Figure 8.9, where different colours distinguish
particular soil layers for removal. A dead weight load was assumed in the problem by
the value γs = 20 kNm−3. The list of used material parameters is given in Table 8.14.
The fully saturated state was considered in the problem, i.e. s = 0. After each stage,

ϕc N λ∗ κ∗ ns ls emr
25◦ 1.56 0.08 0.01 0.0 0.0 0.0

sr r m κm se0 eM0 ae
-140 kPa 0.4 10.0 0.0 -200.0 kPa 0.5 0.5

Table 8.14: Set of model parameters used in the excavation problem.

the force vector due to removed elements was decreased gradually according to algorithm
in Table 8.13. The increment of the load coefficient λN was considered to be 0.1 and
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Figure 8.9: FE mesh of the excavation problem at the initial stage.

the solution error tolerance was set to 0.001. Note that the high nonlinearity of the
hypoplastic model caused that the problem cannot be solved without proper treatment
of the forces due to element removal.

Results from the analysis are captured in Figures 8.10–8.13.

(a) Initial stage.

(b) Removal of soil layer 1.

Figure 8.10: Evolution of the vertical displacement component [m] (left) and vertical
stress component, σy, [kPa] (right) at initial stage and after removal of layer 1.
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(a) Stage after the removal of soil layer 2.

(b) Stage after the removal of soil layer 3.

(c) Stage after the removal of soil layer 4.

(d) Removal of soil layer 5 - vertical displacement [m] (left) and stress σy [kPa] (right).

Figure 8.11: Evolution of vertical displacement component [m] (left) and vertical stress
component, σy, [kPa] (right) at removal stages 2–5.



Modelling of expansive clays 143

(a) Stage after the removal of soil layer 6.

(b) Stage after the removal of soil layer 7.

(c) Stage after the removal of soil layer 8.

(d) Removal of soil layer 9 - vertical displacement [m] (left) and stress σy [kPa] (right).

Figure 8.12: Evolution of vertical displacement component [m] (left) and vertical stress
component, σy, [kPa] (right) at removal stages 6–9.
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(a) Removal of soil layer 10 - vertical displacement [m] (left) and stress σy [kPa] (right).

Figure 8.13: Evolution of vertical displacement (left) and vertical stress component, σy,
(right) at final stages after the removal of soil layer 10.

The vertical displacement evolution shows gradual elevation of the pit bottom with
a maximum value of 277.6 mm. Figure 8.13 captures the final stage, where the vertical
displacement field is depicted on the deformed shape of the domain together with the
outline of the original mesh for a better comparison.

8.7 Conclusion

Hypoplastic model for unsaturated expansive soils was implemented in open source FE
code SIFEL. The model was defined in the rate form and therefore integration in time
had to be provided. Several RKF schemes were implemented and their performance was
compared in the time integration of the model. All implemented schemes provided good
results form the viewpoint of the attained error in tests with constant suction level and
thus the number of model evaluation or elapsed computational time should be decisive for
the scheme selection. In this case, the RKF-32bs or RKF-32 schemes performed better
than the high order schemes.

Test with variable suction path revealed numerical difficulties connected with the def-
inition of hydraulic part of the model which is very sensitive to the asc state variable.
Because of piecewise linear nature of the asc variable which is not smooth function, the
RKF methods failed to integrate the model response. Two approaches were proposed
for the improvement of the model integration, the first one consist in approximation of
the asc definition with logarithmic-exponential function and the second approach intro-
duces selective integration of asc state variable with simple forward Euler scheme. The
approximation suffers by the limitation of computer arithmetic of the standard double
type, because of too high value of exponential function argument and therefore selective
integration was used in the tests with variable suction path. Performed test showed that
high order method RKF-54 did not provide reliable results of stresses/strains for large
pseudo-time step length and low values of tolerance ϑ and similarly RKF32 method did
not provide good results of the degree of saturation for large pseudo-time steps and low
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values of tolerance ϑ. For shorter pseudo-time steps and low tolerance values, problems
occurred with the degree of saturation values in high order RKF-54 scheme.

It can be concluded that integration scheme based on RKF-32bs or RKF-32 are suitable
for the considered hydro-mechanical hypoplastic model, where RKF-32bs scheme proposed
by Bogacki-Shampine performed better than standard RKF-32 in most of cases and can
be considered as a good alternative integration scheme for the proposed hydro-mechanical
model.

Simulation of removing structural parts in the FE computation requires special treat-
ment in the case of nonlinear material models. The forces due to element removal may
cause computation failure because they may have a significant magnitude, and they can
lead to convergence problems. The algorithm of gradually diminishing these forces was
successfully tested on the excavation problem with a highly nonlinear material model.
The problem could not be solved reasonably without that algorithm, and the simulation
proved the algorithm’s correct performance.
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Chapter 9

Conclusions

Experiences with developing the large engineering open source software SIFEL resulted
in the code based on C++ language. However, concepts of OOP were used cautiously
concerning the clarity of the code for new users and portability to the various platforms
and compilers. The actual implementation is certainly one of many possibilities, but it is
robust, intelligible and extensible. The code was proven on many real-world engineering
problems, and authors believe that it will be able to cover more complicated problems in
the future and remain exploitable for starting students or co-workers. There were also
showed some alternative approaches that exploit new features of C++ established at the
C++11 standard. They were designed to preserve the high performance of the procedural
style design while improving the source code’s maintenance level close to the OOP style
with polymorphism and inheritance.

Similar views were expressed in the interview with Alexander Stepanov [Stepanov and
Russo, 2008], the author of STL, whose quotation follows:
“I find OOP methodologically wrong. It starts with classes. It is as if mathematicians
would start with axioms. You do not start with axioms - you start with proofs. Only
when you have found a bunch of related proofs, can you come up with axioms. You end
with axioms. The same thing is true in programming: you have to start with interesting
algorithms. Only when you understand them well, can you come up with an interface that
will let them work.”

Since its beginning in 2001, the software has been successfully used many times for
solving real-world engineering problems. Among the most demanding problems belong
simulation of the gradual construction processes, where the structure exhibits nonlinear
behaviour. It requires a special treatment and algorithm to properly determine the initial
displacements, strains and stresses.

The problem of the casting procedure of a thick concrete foundation slab under ground-
water level represented the first attempt to handle gradual construction phases in the sim-
ulation. The objective of the analysis was to determine crack propagation in the period
of the first 30 days from the beginning of casting. The slab behaviour was considered a
complex coupled thermo-hydro-mechanical problem, where several phenomena were con-
sidered, such as hydration heat generation, climatic conditions, shrinkage, drying, creep
and damage. The concept of element life functions was established in the code, which
provided some performance benefits. Because the crack pattern and stress distribution
were the point of interest, determining initial displacements was not needed in this case.
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Creep analysis of the bridge constructed with the help of the cantilever method was
another case, where the proper simulation of the gradual construction played a significant
role. In this case, the code was extended by automatically detecting newly added parts
and determining their initial displacement. The real construction procedure contained
elevation of the bridge deck level either by the change of pre-tensioning or tilting of the
form traveller. Therefore the code was extended by a special procedure for the tilting of
the newly added. The implemented procedures were tested on the bridge in Mělńık, where
the parameters of the creep model (B3) were determined by the optimization techniques.
Because of the lack of complete data on construction phases, the model parameters were
determined to fit the deflection increments after the final stage of the bridge construction.

The last code extension dealing with the construction phases was implemented in
connection with a highly nonlinear hypoplastic model for expansive clays. The model was
formulated in the rate form, and thus the integration with the help of the Runge-Kutta-
Fehlberg’s methods had to be proposed. Tests revealed convergence problems due to
the non-smooth formulation of the hydro-mechanical coupling. The retention curve was
therefore smoothed, which improved the model integration performance. Alternatively,
the selective integration procedure could be involved in the vicinity of the problematic
points of the hydraulic part of the model. Concerning the area of the model application,
it was necessary to tackle the problem of the gradual removal of structural parts, which
can be observed in trench excavation problems. Removal of structural parts results in the
sudden evolution of forces due to removed elements that may cause convergence problems,
especially for highly nonlinear material models. Therefore the code was extended by
the procedure, where the vector of forces due to removed elements is gradually applied
within the scope of the individual Newton-Raphson procedure. The functionality of the
implemented solution was successfully tested on the example of trench excavation.

It can be concluded that the implemented code extensions allow for advanced simula-
tion of construction phases that can be faced in engineering practice. Most of them were
tested successfully on complex real-world problems hardly solvable in commercial soft-
ware, but the availability of input data for the proper problem setting is still challenging.
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Appendix A

Source codes for benchmarks

A.1 General classes for vector/matrix algebra

1 class ivector{
2 public :
3 int n, capacity;
4 bool dealloc;
5 int *a;
6 ivector() : n{0}, a{nullptr}, dealloc{false}, capacity{0} {};
7 ivector(int in, int *ptr) : n{in}, a{ptr},
8 capacity{in}, dealloc{false} {
9 memset(a, 0, sizeof(*a)*n);

10 };
11 ivector(int in) : n{in}, dealloc{true}, capacity{in} {
12 a = new int[capacity];
13 memset(a, 0, sizeof(*a)*capacity);
14 }
15 ˜ivector() {if (dealloc) delete [] a; };
16 int &operator ()(int i) const {return a[i];};
17 int &operator ()(int i) {return a[i];};
18 void realloc(int in) {
19 int newcap = in;
20 if (newcap > capacity){
21 capacity = newcap;
22 if (dealloc) delete [] a;
23 n = capacity; a = new int[capacity]; dealloc = true;
24 memset(a, 0, sizeof(*a)*capacity);
25 }
26 else {n = in; memset(a, 0, sizeof(*a)*newcap); }
27 };
28 void realloc(int in, int *mem){
29 if (dealloc) delete [] a;
30 n = in; capacity = n; a = mem; dealloc = false;
31 memset(a, 0, sizeof(*a)*n);
32 };
33 };

Table A.1: Class for vector with integer components.
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1 class matrix{
2 public :
3 int m, n, capacity;
4 bool dealloc;
5 double *a;
6 matrix() : m{0},n{0},capacity{0},dealloc{false},a{nullptr} {};
7 matrix(int im, int in, double *ptr) :
8 m{im}, n{in}, capacity{im*in}, dealloc{false}, a{ptr}
9 { memset(a, 0, sizeof(*a)*m*n); };

10 matrix(int im, int in) :
11 m{im}, n{in}, dealloc{true}, capacity{im*in} {
12 a = new double[capacity];
13 memset(a, 0, sizeof(*a)*capacity); };
14 ˜matrix() {if (dealloc) delete [] a; };
15 double &operator ()(int i, int j) const {return a[i*n+j];};
16 double &operator ()(int i, int j) {return a[i*n+j];};
17 void realloc(int im, int in){
18 const int newcap = im*in;
19 if (newcap > capacity){
20 capacity = newcap;
21 if (dealloc) delete [] a;
22 a = new double[capacity]; dealloc = true;
23 memset(a, 0, sizeof(*a)*capacity);
24 m = im; n = in;
25 }
26 else {m = im; n = in; memset(a, 0, sizeof(*a)*newcap);}
27 };
28 void realloc(int im, int in, double *mem){
29 if (dealloc) delete [] a;
30 m = im; n = in; capacity = m*n; dealloc = false;
31 a = mem; memset(a, 0, sizeof(*a)*capacity);
32 };
33 void zero(){memset(a, 0, sizeof(*a)*m*n);};
34 void addm(matrix &b){
35 assert((m == b.m) && (n == b.n));
36 const int ncomp = m*n;
37 for(int i=0; i<ncomp; i++) a[i] += b.a[i];
38 }
39 void scale(double c){
40 const int ncomp = m*n;
41 for (int i=0; i<ncomp; i++) a[i] *= c; };
42 void localize(const matrix &lm, const ivector &dofnum){
43 int idof, jdof;
44 assert((lm.m == dofnum.n) && (lm.n == dofnum.n));
45 int n = lm.m;
46 for(int i=0; i<n; i++){
47 idof = dofnum(i);
48 if (idof > 0){
49 for(int j=0; j<n; j++){
50 jdof = dofnum(j);
51 if (jdof > 0) this->operator()(idof-1, jdof-1)+=lm(i,j);
52 } } } } };

Table A.2: Class for matrix with the real components.
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1 class vector{
2 public :
3 int n, capacity;
4 bool dealloc;
5 double *a;
6 vector() : n{0}, capacity{0}, dealloc{false}, a{nullptr} {};
7 vector(int in, double *ptr) :
8 n{in}, capacity{in}, dealloc{false}, a{ptr} {
9 memset(a, 0, sizeof(*a)*n);

10 };
11 vector(int in) : n{in}, capacity{in}, dealloc{true}{
12 a = new double[capacity];
13 memset(a, 0, sizeof(*a)*capacity);
14 };
15 ˜vector() {if (dealloc) delete [] a; };
16 double &operator ()(int i) {return a[i];};
17 double &operator ()(int i) const {return a[i];};
18 void realloc(int in){
19 int newcap = in;
20 if (newcap > capacity){
21 capacity = newcap;
22 if (dealloc) delete [] a;
23 n = capacity; a = new double[capacity]; dealloc = true;
24 memset(a, 0, sizeof(*a)*capacity);
25 }
26 else{
27 n = in;
28 memset(a, 0, sizeof(*a)*newcap);
29 }
30 };
31 void realloc(int in, double *mem){
32 if (dealloc) delete [] a;
33 n = in; capacity = n; a = mem; dealloc = false;
34 memset(a, 0, sizeof(*a)*n);
35 }
36 void scale(double c){
37 for (int i=0; i<n; i++) a[i] *= c;
38 };
39 void zero(){memset(a, 0, sizeof(*a)*n);};
40 void addv(vector &v){
41 for (int i=0; i<n; i++) a[i] += v(i);
42 };
43 void fill(double c){
44 for(int i=0; i<n; i++) a[i] = c;
45 };
46 void localize(const vector &lv, const ivector &dofnum){
47 assert(lv.n == dofnum.n);
48 int idof, n = lv.n;
49 for(int i=0; i<n; i++)
50 { idof = dofnum(i); if (idof > 0) a[idof-1] += lv(i); }
51 };
52 };

Table A.3: Class for vector with the real components.
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A.2 Procedures for the assembling of element stiff-

ness matrix and internal force vector

1 void stiff_matrix(matrix &sm, int eid,
2 const vector &x, const vector &y){
3 matrix d(ncomp, ncomp);
4 matrix b(ncomp,ndofe), aux(ndofe, ncomp), lsm(ndofe, ndofe);
5 double jac;
6 // natural coordinates of integration points
7 double xi[nip] = {-0.57735, -0.57735, 0.57735, 0.57735};
8 double eta[nip] = {-0.57735, 0.57735, -0.57735, 0.57735};
9 // ip weights

10 double w[nip] = {1.0, 1.0, 1.0, 1.0};
11 // stiffness matrix of material mm->matstiff(d, eid, mt);
12 double e = 2.0e9, nu=0.25;
13 double c = e/(1.0+nu)/(1.0-2.0*nu);
14 // thickness mc->give_area(eid, a);
15 double thick = 0.1;
16 for(int i = 0; i<nip; i++){ // loop over integration points
17 jac = geom_matrix(b, x, y, xi[i], eta[i]);
18 d(0,0) = c*(1.0-nu); d(0,1) = c*nu; d(0,2) = 0.0;
19 d(1,0) = c*nu; d(1,1) = c*(1.0-nu); d(1,2) = 0.0;
20 d(2,0) = 0.0; d(2,1) = 0.0; d(2,2) = e/2.0/(1.0+nu);
21 // sm = BˆT. D. B
22 mtxm(b, d, aux);
23 mxm(aux, b, lsm);
24 lsm.scale(jac*thick*w[i]); // ip weight
25 sm.addm(lsm);
26 }
27 };

Table A.4: Procedure for the assembling of the stiffness matrix for the linear quadrilateral
element.
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1 void int_forces(vector &ifor, int eid,
2 const vector &x, const vector &y){
3 vector sig(ncomp), eps(ncomp), contr(ndofe);
4 matrix d(ncomp, ncomp), b(ncomp,ndofe);
5 double jac;
6 // natural coordinates of integration points
7 double xi[nip] = {-0.57735, -0.57735, 0.57735, 0.57735};
8 double eta[nip] = {-0.57735, 0.57735, -0.57735, 0.57735};
9 // ip wieghts

10 double w[nip] = {1.0, 1.0, 1.0, 1.0};
11 // stiffness matrix of material mm->matstiff(d, eid, mt);
12 double e = 2.0e9, nu=0.25;
13 double c = e/(1.0+nu)/(1.0-2.0*nu);
14 // thickness mc->give_area(eid, a);
15 double thick = 0.1;
16 for(int i = 0; i<ncomp; i++) // simulation of D.eps
17 mxv(d, eps, sig);
18 for(int i = 0; i<nip; i++){ // loop over integration points
19 mtxv(b, sig, contr); // BˆT sig
20 ifor.scale(jac*thick*w[i]); // ip weight
21 ifor.addv(contr);
22 }
23 };

Table A.5: Procedure for the assembling of the stiffness matrix for the linear quadrilateral
element.
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A.3 Procedural approach

1 const int ne = 50000;
2 Element *elems = new Element[ne];
3 elemtype *readarray = new elemtype[ne];
4 srand(1);
5 vector sky(51*1000*1000);
6 for(int i=0; i<ne; i++){
7 elems[i].et = elemtype(rand()%3+1);
8 int ndofe = get_ndofe(elems[i].et);
9 for (int j = 0, k=ndofe/2; j<ndofe/2; j++, k++){

10 elems[i].cn[j] = i*1000+j;
11 elems[i].cn[k] = i*1000+1000+j;
12 }
13 }
14 matrix sm;
15 vector x(4), y(4);
16 x(0) = 0.0; y(0) = 0.0; x(1) = 1.0; y(1) = 0.0;
17 x(2) = 1.0; y(2) = 1.0; x(3) = 0.0; y(3) = 1.0;
18 for (int j=0; j<100; j++){
19 for (int i=0; i<ne; i++){
20 int ndofe = get_ndofe(elems[i].et);
21 sm.realloc(ndofe, ndofe);
22 stiff_matrix(elems[i].et, sm, i, x, y);
23 ivector edof;
24 edof.realloc(ndofe, elems[i].cn);
25 for (int k=0; k<ndofe; k++){
26 vector tmp;
27 tmp.realloc(ndofe, &sm(k,0));
28 sky.localize(tmp, edof);
29 }
30 }
31 vector ifor;
32 for (int i=0; i<ne; i++){
33 int ndofe = get_ndofe(elems[i].et);
34 ifor.realloc(ndofe);
35 int_forces(elems[i].et, ifor, i, x, y);
36 ivector edof;
37 edof.realloc(ndofe, elems[i].cn);
38 sky.localize(ifor, edof);
39 }
40 }

Table A.6: Procedure main of the procedural approach.
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A.4 OOP inheritance approach

1 const int ne = 50000;
2 Element **elems = new Element*[ne];
3 elemtype *readarray = new elemtype[ne];
4 srand(1);
5 vector sky(51*1000*1000);
6 for(int i=0; i<ne; i++){
7 readarray[i] = elemtype(rand()%3+1);
8 }
9 for (int i=0; i<ne; i++){

10 if (readarray[i] == linbar) elems[i] = new LinBarElem;
11 if (readarray[i] == lintr) elems[i] = new LinTrElem;
12 if (readarray[i] == linquad) elems[i] = new LinQuadElem;
13 int ndofe = elems[i]->get_ndofe();
14 for (int j = 0, k=ndofe/2; j<ndofe/2; j++, k++){
15 elems[i]->cn[j] = i*1000+j;
16 elems[i]->cn[k] = i*1000+1000+j;
17 }
18 }
19 matrix sm;
20 vector x(4), y(4), ifor;
21 x(0) = 0.0; y(0) = 0.0; x(1) = 1.0; y(1) = 0.0;
22 x(2) = 1.0; y(2) = 1.0; x(3) = 0.0; y(3) = 1.0;
23 for (int j=0; j<100; j++){
24 for (int i=0; i<ne; i++){
25 int ndofe = elems[i]->get_ndofe();
26 sm.realloc(ndofe, ndofe);
27 elems[i]->stiff_matrix(sm, i, x, y);
28 ivector edof;
29 edof.realloc(ndofe, elems[i]->cn);
30 for (int k=0; k<ndofe; k++){
31 vector tmp;
32 tmp.realloc(ndofe, &sm(k,0));
33 sky.localize(tmp, edof);
34 }
35 }
36 for (int i=0; i<ne; i++){
37 int ndofe = elems[i]->get_ndofe();
38 ifor.realloc(ndofe);
39 elems[i]->int_forces(ifor, i, x, y);
40 ivector edof;
41 edof.realloc(ndofe, elems[i]->cn);
42 sky.localize(ifor, edof);
43 }
44 }

Table A.7: Procedure main of the OOP inheritance approach.
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A.5 Interface approach - direct

1 const int ne = 50000;
2 Element *elems = new Element[ne];
3 elemtype *readarray = new elemtype[ne];
4 srand(1);
5 int i, j;
6 vector sky(51*1000*1000);
7 for(i=0; i<ne; i++) readarray[i] = elemtype(rand()%3+1);
8 for (i=0; i<ne; i++){
9 std::size_t j = std::find(eldefifcarray.begin(),

10 eldefifcarray.end(),
11 readarray[i]) - eldefifcarray.begin();
12 assert(j<nelemt);
13 elems[i].init(readarray[i], &eldefifcarray[j]);
14 int ndofe = elems[i].defifc->get_ndofe();
15 for (int j = 0, k=ndofe/2; j<ndofe/2; j++, k++){
16 elems[i].cn[j] = i*1000+j;
17 elems[i].cn[k] = i*1000+1000+j;
18 }
19 }
20 matrix sm;
21 vector x(4), y(4), ifor;
22 x(0) = 0.0; y(0) = 0.0; x(1) = 1.0; y(1) = 0.0;
23 x(2) = 1.0; y(2) = 1.0; x(3) = 0.0; y(3) = 1.0;
24 for (int j=0; j<100; j++){
25 for (int i=0; i<ne; i++){
26 int ndofe = elems[i].defifc->get_ndofe();
27 sm.realloc(ndofe, ndofe);
28 elems[i].defifc->stiff_matrix(sm, i, x, y);
29 ivector edof;
30 edof.realloc(ndofe, elems[i].cn);
31 for (int k=0; k<ndofe; k++){
32 vector tmp;
33 tmp.realloc(ndofe, &sm(k,0));
34 sky.localize(tmp, edof);
35 }
36 }
37 for (int i=0; i<ne; i++){
38 int ndofe = elems[i].defifc->get_ndofe();
39 ifor.realloc(ndofe);
40 elems[i].defifc->int_forces(ifor, i, x, y);
41 ivector edof;
42 edof.realloc(ndofe, elems[i].cn);
43 sky.localize(ifor, edof);
44 }
45 }

Table A.8: Procedure main of the interface approach – direct.
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A.6 Interface approach - std::function

1 const int ne = 50000;
2 Element *elems = new Element[ne];
3 elemtype *readarray = new elemtype[ne];
4 srand(1);
5 vector sky(51*1000*1000);
6 for(int i=0; i<ne; i++){
7 readarray[i] = elemtype(rand()%3+1);
8 if (readarray[i] == linbar)
9 std::get<LinBarElem>(elemobjs).ndofe = 4;

10 }
11 for(int i=0; i<ne; i++){
12 std::size_t j = std::find(eldefifcarray.begin(),
13 eldefifcarray.end(),
14 readarray[i]) - eldefifcarray.begin();
15 assert(j<nelemt);
16 elems[i].init(readarray[i], &eldefifcarray[j]);
17 int ndofe = elems[i].defifc->get_ndofe();
18 for (int j = 0, k=ndofe/2; j<ndofe/2; j++){
19 elems[i].cn[j] = i*1000+j;
20 elems[i].cn[k] = i*1000+1000+j;
21 }
22 }
23 matrix sm;
24 vector x(4), y(4), ifor;
25 x(0) = 0.0; y(0) = 0.0; x(1) = 1.0; y(1) = 0.0;
26 x(2) = 1.0; y(2) = 1.0; x(3) = 0.0; y(3) = 1.0;
27 for (int j=0; j<100; j++){
28 for (int i=0; i<ne; i++){
29 int ndofe = elems[i].defifc->get_ndofe();
30 sm.realloc(ndofe, ndofe);
31 elems[i].defifc->stiff_matrix(sm, i, x, y);
32 ivector edof;
33 edof.realloc(ndofe, elems[i].cn);
34 for (int k=0; k<ndofe; k++){
35 vector tmp;
36 tmp.realloc(ndofe, &sm(k,0));
37 sky.localize(tmp, edof);
38 }
39 }
40 for (int i=0; i<ne; i++){
41 int ndofe = elems[i].defifc->get_ndofe();
42 ifor.realloc(ndofe);
43 elems[i].defifc->int_forces(ifor, i, x, y);
44 ivector edof;
45 edof.realloc(ndofe, elems[i].cn);
46 sky.localize(ifor, edof);
47 }
48 }

Table A.9: Procedure main of the interface approach – std::function.
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Appendix B

Definition of macrostructure effective
stresses for the hypoplastic model

This chapter summarises the definition of the selected parts of the hypoplastic model
connected with the macrostructure effective stress. A full description of the model can be
found in Maš́ın [2013] and Maš́ın [2017].

In the following text, the second-order tensors or matrices are denoted by bold italic
font (e.g. σ, N ) while the fourth-order tensors are written in capital calligraphic bold
font (e.g. M, I). There are also used symbols “·” and “:” between tensors of various
orders for the single and double contraction, respectively, while the symbol ”⊗” indicates
a dyadic product of two tensors. Additionally, I is the second-order identity tensor, ‖σ‖
denotes the Euclidean norm of tensor and symbol tr is defined as tensor trace tr(σ) = σii.
The symbol det(σ) represents the determinant of the second-order tensor, and the dot (̇)
denotes the time derivative.

Recall that the macrostructure effective stress rate is governed by the hypoplastic
model given according to Equation (8.27) as

σ̇M = fs
(
L : ε̇M + fdN‖ε̇M‖

)
+ fuH . (B.1)

The symbol L is the hypoelastic fourth-order tensor defined by

L = 3
(
c1I + c2 a

2 σ̂M ⊗ σ̂M
)
. (B.2)

In Equation (B.1), σ̂M represents dimensionless stress tensor given by σ̂M =
σM

tr(σM)
, c1,

c2 and a are scalar factors defined as:

c1 =
2
(
3 + a2 − 2α a

√
3
)

9 r
, (B.3)

c2 = 1 + (1− c1)
3

a2
, (B.4)

a =

√
3(3− sinφc)

2
√

2 sinφc
, (B.5)

where r is a material parameter and α is the function of material parameters φc, λ
∗ and

κ∗

α =
1

ln 2
ln

[
λ∗ − κ∗
λ∗ + κ∗

(
3 + a2

a
√

3

)]
(B.6)
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The second-order tensor N can be defined according to failure condition in the form

N = L
(
Y
m̂

‖m̂‖

)
, (B.7)

where Y represents the failure criterion in the from

Y =

( √
3 a

3 + a2
− 1

)
(I1I2 + 9I3)

(
1− sin2 φc

)
8I3 sin2 φc

+

√
3 a

3 + a2
, (B.8)

where I1, I2 and I3 stands for the first, second and third stress invariants defined as follows

I1 = tr
(
σM
)
, I2 =

1

2

(
σM : σM − tr

(
σM
))
, I3 = det

(
σM
)
. (B.9)

Direction of ’hypoplastic flow’ is given by the second order tensor m̂

m̂ = − a
F

[
σ̂M + dev

(
σ̂M
)
− σ̂

M

3

(
6 σ̂M : σ̂M − 1

(F/a)2 + σ̂M : σ̂M

)]
, (B.10)

where dev
(
σ̂M
)

= σ̂M − Itr
(
σ̂M
)
/3 and factor F defined by

F =

√
1

8
tan2 ψh +

2− tan2 ψh

2 +
√

2 tanψh cos 3θ
− 1

2
√

2
tanψh, (B.11)

where

tanψh =
√

3‖dev(σ̂M)‖, cos 3θ = −
√

6
tr
(
σ̂M · σ̂M · σ̂M

)[
dev(σ̂M) : dev

(
σ̂M
)]3/2 . (B.12)

The barotropy factor fs introduces the pressure dependency of the model response ac-
cording to the mean stress level attained

fs =
3 pM

λ∗(s)

(
3 + a2 − 2α a

√
3
)−1

, (B.13)

while the pyknotropy factor fd is rather connected with specific volume influence

fd =

(
2pM

pe

)α
, pe = pr exp

[
N(s)− ln(1 + e)

λ∗(s)

]
, (B.14)

where pM is the mean stress at macro level and pr is the reference pressure.

The model adopts a similar concept of the normal compression line similar to the
one in Cam-Clay model where the compression line is being defined with the influence of
suction pressure s as

ln(1 + e) = N(s)− λ∗(s) ln

(
pM

pr

)
, (B.15)



Definition of macrostructure effective stresses for the hypoplastic model 161

with the slope of normal consolidation line λ∗ and position of the normal consolidation
line N(s) defined by

N(s) = N + ns

〈
ln
s

se

〉
, (B.16)

λ∗(s) = λ∗ + ls

〈
ln
s

se

〉
, (B.17)

se = s(SMr )(1/γ), (B.18)

where N , ns and ls are model parameters.
The second order tensor H and factor fu introduce the wetting-induced collapse of

the clay and they are given by terms

H = −ci
σ̂m

s λ∗(s)

(
ns − ls ln

pe
pr

)
〈−ṡ〉 for s > sexp and Sr < 1, (B.19)

H = 0 otherwise, (B.20)

fu =

(
fd
fSBSd

)m/α
, (B.21)

where sexp is the suction at air expulsion value, fSBSd is the value of pyknotropy factor
for stress states at the state boundary surface, m is a model parameter and factor ci is
defined as follows

ci =
3 + a2 − fd a

√
3

3 + a2 − fSBSd a
√

3
. (B.22)

The pyknotropy factor fd is defined by term

fSBSd = ‖fsA : N−1‖, (B.23)

where the fourth-order tensor A is given by

A = fsL +
1

λ∗(s)
σM ⊗ 1. (B.24)

On the microstructure level, the reversible behaviour linear in ln pm vs. ln(1 + em)
plot is adopted and the stresses are defined as follows

σ̇m = I
pm

κm
ε̇mV , (B.25)

where pm denotes the mean stress at micro level and κm is the model parameter. There
is an explicit formulation of void ratio on the micro structural level given by term

em = exp

[
κm ln

sr
pm

+ ln(1 + emr )

]
− 1, (B.26)

where emr and sr are the material parameters representing an arbitrary reference value of
void ration at micro level for the reference value of suction. The coupling factor fm is
defined as follows

fm = 1− (re)
m, (B.27)
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where re is the relative void ratio

re =
e− ed
ei − ed

, (B.28)

with
ei = exp

[
N(s)− λ∗(s) ln pM

]
− 1, ed = em. (B.29)

The summary of the model parameters follows:

ϕc: Critical state friction angle.

N : Position of the isotropic normal compression line.

λ∗: Slope of normal compression lines of a saturated soil in the ln(pM/pr) vs ln(1 + e)
plane.

κ∗: Slope of the macrostructural isotropic unloading line.

ns: Parameter controlling the position of isotropic normal compression line with respect
to suction.

ls: Parameter controlling the slope of isotropic compression line with respect to suction.

emr : Reference value of the microstructural void ratio for the reference suction sr.

sr: Reference value of suction

r: Parameter controlling stiffness in shear.

m: Controls the dependency of wetting-induced collapse on the overconsolidation ratio
and the macropore occlusion by microporosity on relative void ratio.

κm: Specifies the dependency of microstructural swelling/shrinkage on the microstruc-
tural effective stress.

se0: The air entry value of suction for the (arbitrary) reference macrostructural void ratio
eM0 .

eM0 : The reference macrostructural void ratio.

ae: The ratio between the air expulsion and entry values of suction.

In addition, it is necessary to specify the initial values of the following state variables:

e: global void ratio.

asc: Specifies whether the current state belongs to the main drying branch of macrostruc-
tural WRC, main wetting branch or specify the position along the macrostructural
scanning curve.
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Koudelka, T., Kruis, J., Lepš, M., and Nodek, J. (2014). Fitting Model Parameters of
Prestressed Concrete Bridge: Computational Aspects. In Fuis, V., editor, Engineering
Mechanics 2014, pages 316–319. Brno University of Technology, Brno University of
Technology.

Krejč́ı, T., Koudelka, T., and Brouček, M. (2014). Numerical modelling of consolidation
processes under the water level elevation changes. Advances in Engineering Software,
72(Supplement C):166–178.
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