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Abstract

Inverse Problems in Modeling of Random Materials

Anna Kučeroá

Reliable modeling of large-scale structures with the prediction of their durability is inevitably
related to an adequate description of the materials used in the structure. Most of the building
materials are heterogeneous with random morphology, which complicates namely the mod-
eling of damage and application of traditional homogenization-based techniques. Therefore
there are several strategies to handle this underlaying randomness of material and structural
response, which are not directly connected to employed constitutive models, but rather to
description of input material morphology and material parameters. This work is devoted
to methods leading to the suitable characterization of the inputs to advanced constitutive
and structural models, in other words to methods providing solutions to the related inverse
problems. The emphasis is put to the classification of the methods and inverse problems,
their appropriate formulation and namely to the clarification of several common misinter-
pretations of solutions to inverse problems. Finally, examples of three selected topics are
discussed in more detail in particular chapters: (i) generating random microstructures with
prescribed statistical properties, (ii) parameter identification for random material models and
(iii) related approximation-based acceleration techniques.

Keywords: Random materials; Statistically equivalent periodic unit cell; Wang tiles, Statisti-
cal descriptors; Inverse problems, Parameter identification, Bayesian inference, Uncertainty
quantification, Surrogate models, Polynomial chaos expansion, Artificial neural networks
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Abstrakt

Inverznı́ problémy v modelovánı́ náhodných materiálů

Anna Kučeroá

Spolehlivé modelovánı́ stavebnı́ch konstrukcı́ je nevyhnutelně spojeno s adekvátnı́m popisem
chovánı́ použitých materiálů. Převážná většina stavebnı́ch materiálů má heterogennı́ struk-
turu s náhodnou morfologiı́, která představuje značnou komplikaci zejména v modelovánı́
poškozenı́ nebo při použı́vánı́ tradičnı́ch homogenizačnı́ch technik. Proto existuje celá řada
postupů, které se náhodnostı́ v popisu materiálů zabývajı́. Tato práce se věnuje takovým
postupům, které majı́ za cı́l zı́skat vhodný popis náhodných materiálů z různých typů dos-
tupných měřenı́, což vede k řešenı́ různých inverznı́ch úloh. Důraz je kladen na klasi-
fikaci identifikačnı́ch postupů a inverznı́ch problémů, jejich správnou formulaci a interpretaci
výsledků. V práci jsou ukázány podrobněji tři vybraná témata v samostatných kapitolách:
(i) generovánı́ náhodných mikrostruktur s předepsanými statistickými vlastnostmi, (ii) iden-
tifikace parametrů modelů náhodných materiálů a (iii) akceleračnı́ techniky založené na kon-
strukci náhradnı́ch modelů.

Klı́čová slova: Materiály s náhodnou morfologiı́; Statisticky equivalentnı́ periodická jed-
notková buňka; Wangovo dlážděnı́; Statistické deskriptory; Inverznı́ problémy; Identifikace
parametrů; Bayesovská inference; Modelovánı́ nejistot; Aproximace; Polynomiálnı́ chaos;
Umělé neuronové sı́tě



Chapter 1

INTRODUCTION

Random materials, which exhibit indeterministic behavior at macro-scale due to het-
erogeneities at fine-scales, are very common materials not only in civil engineering but in
many other engineering fields, natural sciences, medicine etc., see Figure 1.1 for illustrative
examples. Nevertheless, the best developed theoretical framework provided by homoge-

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Examples of random materials: (a) Concrete, from Sitek, L., Bodnarová, L.,
Souček, K., Staš, L., and Gurková, L. (2015). Analysis of inner structure changes of con-
crete exposed to high temperatures using micro X-ray computed tomography. Acta Geody-
namica et Geomaterialia, 12(1), 177. (b) Irregular filling (quarry masonry). (c) Metal foam.
(d) Copper-silver alloy. (e) Trabecular bone, from Jiroušek, O., Zlámal, P., Kytýř, D., and
Kroupa, M. (2011). Strain analysis of trabecular bone using time-resolved X-ray microto-
mography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 633, S148-S151. (f) Birch.

nization theories, which aim at the replacement of the heterogeneous microstructure with an
equivalent homogeneous material, is originally tailored for periodic or quasi-periodic ma-
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terials, see Torquato (2006). Their application to random materials is driven namely by
the lack of any better alternative and insufficient computational power limiting the develop-
ment of probabilistic formulations. Only to briefly recall two main homogenization-based
approaches, first are the effective media theories estimating material response analytically
based on selected geometrical information. The computational requirements are very low,
but their application is limited only to specific inclusion shapes, see e.g. Tanaka (1973);
Vorel and Šejnoha (2009); Odegard et al. (2017); Tornabene et al. (2019). Second is the
computational homogenization with more general applications, see E et al. (2007); Geers
et al. (2010); Sýkora et al. (2012, 2013); Matouš et al. (2017). This numerical method is
based on detailed finite element discretization of heterogeneous microstructure resulting in a
detailed description of local response fields. The appropriate application is, however, condi-
tioned by the existence of a representative volume element (RVE), which cannot be fulfilled
in case of random materials.

The last decades witnessed an intense development of statistical and probabilistic refor-
mulations of existing methods for modeling random materials and representation of their
morphology, which can be for this work divided into three families briefly described below.

Advanced statistical cell-based representation:
The first group of methods is working with information about the material at the micro- or
mesoscale level based on image analysis. These methods follow and extend the concept of
RVE in two directions.

(i) The exactly periodic unit cell unavailable for a random material is replaced by the cell
preserving spatial geometrical statistics also called as statistically equivalent periodic
unit cell (SEPUC) or statistically similar representative volume element (SSRVE), see
Zeman and Šejnoha (2007); Schröder et al. (2011); Niezgoda et al. (2010); Bostanabad
et al. (2016). To this goal, different statistical descriptors are available such as the
n-point probability function (Torquato and Stell (1982)), two-point cluster function
(Doškář (2013)), lineal path function (Havelka et al. (2016)) or others, see Torquato
(2006) or Chapter 2.2.

(ii) A single PUC or SEPUC is replaced by a set of statistically equivalent and geometri-
cally compatible cells, so-called Wang tiles, allowing to represent an aperiodic random
morphology without or with the controlled long-range correlations arising as artifacts
of using a single PUC, see Novák et al. (2012, 2013); Doškář et al. (2014); Doškář and
Novák (2016) or Chapter 2.1. As the tiling-based concept is relatively new, the further
possible steps for tiling-based mechanical simulations inspired by homogenization or
partition of unity method are discussed in Novák et al. (2013); Doškář and Novák
(2016).

The principal attribute of these methods is preserving the sharp separation of particular
phases at the microstructural level. The advantage consists in the fact that the material prop-
erties of these phases can be obtained separately from experiments on single-phase speci-
mens. The key difficulty is thus shifted to a determination of particular geometry of statis-
tically equivalent set of tiles based on the images of real material. This leads to a specific
inverse problem discussed in more detail in Section 1.1. Another possibility to introduce the
statistical description of heterogeneous material into homogenization-based framework is to
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model the microstructural effective properties by random variables. This formulation leads
to a group of the so-called stochastic multi-scale methods, see e.g. Babuška et al. (2014);
Guan et al. (2015); Chu and Guilleminot (2019).

Lattice/particle-based discrete systems:
Another source of information available typically in the case of concrete is the knowledge
of the constituents employed during the material preparation, such as granulometric distri-
butions. This particular example leads to lattice/particle-based models of random materials
developed in the scientific community studying mostly the failure phenomena in quasi-brittle
materials on the meso- or microstructural levels, see Jirásek and Bažant (1995). Discrete
models allow to realistically and relatively easily simulate the propagation of discontinuities
or multiple cracks interaction in the heterogeneous materials. The internal structure is char-
acterized by the finite number of coarse aggregate particles in accordance with granulometric
distributions, which are randomly placed into the volume. According to physical laws de-
scribing the mechanical response of the system, the following three modeling strategies can
be recognized: (i) lattice models, see Hrennikoff (1941); Ostoja-Starzewski (2002); Nikolić
et al. (2018), (ii) particle models, see Cundall (1971); Bažant et al. (1990); De Schutter and
Taerwe (1993); Wang et al. (2016), and (iii) lattice–particle models representing the syn-
thesis of aforementioned formulations, see Grassl and Bažant (2009); Cusatis et al. (2011);
Schauffert and Cusatis (2012); Marcon et al. (2017).

Probabilistic description based on random variables and/or fields:
The last category of methods considers no additional information about the material itself.
In this situation, the estimation of its physical or mechanical properties, as well as their
spatial distribution, needs to be identified from the macroscopic observations. A significant
milestone in probabilistic modeling was establishing the theory for spectral stochastic finite
element method by Ghanem and Spanos (1991), which started an intense development and
elaboration of probabilistic reformulation of engineering material and structural models, just
to cite a few Hamdia et al. (2017); Quarteroni et al. (2017); Beran et al. (2017); Muneo
(2018). The so-called probabilistic or stochastic mechanics deals with mechanical systems,
which are either subject to random external influences - a random or uncertain environment,
or are themselves uncertain due to insufficient knowledge of their inner characteristics, or
both, cf. e.g. the reports Matthies (2007); Stefanou (2009); Xiu (2010); Gutiérrez and Krenk
(2017). From a mathematical point of view, these systems can be characterized by stochastic
ordinary/partial differential equations (SODEs/SPDEs), which can be solved by the stochas-
tic finite element method (SFEM). SFEM is an extension of the classical deterministic finite
element approach to the stochastic framework, where finite elements have random proper-
ties. Originally, Monte Carlo (MC) was widely used technique in simulating models driven
by SODEs/SPDEs. MC simulations require thousands or millions of samples because of
relatively slow convergence rate, thus the total cost of these numerical evaluations quickly
becomes prohibitive. The surrogate models based on the polynomial chaos expansion (PCE),
see Wiener (1938); Xiu and Karniadakis (2002), were developed as promising alternative.
For more details, see Chapter 4.2, where different methods for the construction of PCE-
based surrogates are compared on a simple civil engineering example of frame structure
with uncertain parameters in loading and geometry. Moreover, to accelerate the simulations
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for heterogeneous materials with spatially varying material properties characterized by ran-
dom fields, the truncated Karhunen-Loève (KL) expansion is typically introduced to reduce
the stochastic space dimension to a reasonable number of random variables Matthies (2007);
Rosić and Matthies (2015). The inverse problem related to this type of random materi-
als modeling thus leads to the estimation of random variables describing either the particular
material properties or scaling the particular KL modes in the employed random fields. Such a
probabilistic identification of random variables needs to be properly formulated to avoid mis-
interpretation of the results, as discussed in more detail in Section 1.2. One more elaborate
example of probabilistic parameter identification of a coupled model for transport processes
in a heterogeneous medium characterized by random fields is presented in Chapter 3.1.

A common feature of random fields-based and particle-based strategies is that in the fur-
ther mechanical modeling the particular phases are not necessarily modeled with the sharp
separated geometry. Particular material parameters considered in the FEM-based models
are related either to homogenized or smoothly spatially varying medium (see Chapters 3.2
and 3.1, respectively, for detailed examples). The key inverse problem to be solved here
is thus the identification of material parameters. As the meaning of these parameters is in-
evitably related to a particular constitutive model (and some of them are phenomenological),
the estimation of their values needs to be based on the observations of the material response,
which is generally in nonlinear relationship to particular material parameters to be identified.
The deterministic formulation and numerical techniques available for parameter identifica-
tion in the case of non-linear material models are thoroughly discussed in the doctoral thesis
Kučerová (2007). One perspective on the probabilistic formulation of the parameter identifi-
cation problem is presented in Rosić et al. (2013). Section 1.2 presents another classification
of probabilistic parameter identification along with the indication of common misinterpreta-
tion of its results.

Note on computational acceleration:
The last topic related to a certain extent to all listed categories concerns the computational
burden connected to probabilistic models of random materials or their calibration, which
can be partially relieved by replacement of the material model by its cheaper surrogate.
While the parameter identification community prefers for decades different types of artifi-
cial neural networks, see Kučerová (2007) for a review and other applications in Kučerová
et al. (2009); Kučerová and Lepš (2014); Mareš et al. (2016), the uncertainty quantification
community originally focused more on uncertainty propagation applies namely polynomial
chaos expansion allowing for fast analytical evaluation of statistical moments of approxi-
mated quantities, see e.g. Kučerová et al. (2012); Rosić et al. (2013, 2016); Gutiérrez and
Krenk (2017); Janouchová et al. (2018). For more details about both of these types of sur-
rogates, we refer to Chapters 4.1 and 4.2, respectively. Nowadays, both communities start
to blend and both types of surrogates are compared or combined, see e.g. the recent works
Shahane et al. (2019); Schwab and Zech (2019); Zhang et al. (2019). Surrogate models for
stochastic models, particularly, are discussed e.g. in Marrel et al. (2012); Azzi et al. (2020).
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1.1 Search for statistically representative cells

Computational techniques suitable for the determination of statistically representative cells
can be generally used both for the more traditional reconstruction of a single SEPUC or
for the more recent design of a set of Wang tiles. A very thorough and recent review of
techniques available in the literature is presented e.g. in Bostanabad et al. (2018). Here,
more compressed classification into three categories follows as:

(i) Optimization: Cells are optimized with respect to a chosen measure of statistical differ-
ence from the original medium. One set of measures is based on correlation functions
such as two-point, lineal path or two-point cluster. The optimization is then governed
by some of the stochastic algorithms based on the principles of simulated annealing
(e.g. Yeong and Torquato (1998a,b); Kumar et al. (2008); Jiao et al. (2009); Collins
et al. (2010); Novák et al. (2012, 2013); Chen et al. (2014); Havelka et al. (2016)). An-
other type of measures is physically based, for instance, the distance to nearest neigh-
bor motivated by transport processes in medium with inclusions (Tewari and Gokhale
(2004) or connectivity of the local stress/strain fields (Novák et al. (2013)).

(ii) Random field: Here the random field-based description is not used to generate fields
of smoothly varying material properties, but again to generate samples of cells with
prescribed spatial correlation. Particular samples are created as random realizations
of typically smooth Gaussian random field, which is then transformed into two-phase
medium by means of chosen level-cutting, see Grigoriu (2003); Jiang et al. (2013). On
the other hand, the correlation function can be also derived by image analysis directly
from the scan of the microstructure and the advantages of this approach are discussed
in Kučerová et al. (2014) and in Section 1.1.2 in more detail.

(iii) Texture synthesis: These methods based on fusion of raster images were originally
developed for computer graphics problems and later applied to the reconstruction of
random media in (Wei and Levoy (2000); Efros and Freeman (2001); Doškář et al.
(2014)). In particular, the image quilting algorithm seeks for a continuous path along
which the desired pieces of microstructure are glued together, minimizing the sum of
squared differences of pixel values.

Of course, not all of the related works fit one of the listed categories, for instance, an in-
teresting work of Bostanabad et al. (2016) presents the microstructure reconstruction using
supervised learning. To conclude, the methods based on random fields or texture synthesis
are namely very fast, while the optimization-based strategies are more general and allow for
better control of desired microstructural measures. Further search for more efficient opti-
mization algorithms tailored specifically to this type of problem remains highly demanded.
As an attempt to elaborate more on this topic, Section 1.1.1 is focused on the comparison of
available optimization algorithms on the design of isotropic two-phase PUC for equal-sized
hard-disk ensembles.

1.1.1 Optimization of an isotropic PUC

To compare available optimization algorithms suitable for seeking statistically representative
cells, a simple example focused on the minimization of anisotropy is presented. In particular,
the goal is to find an isotropic two-phase PUC consisting of equal-sized hard-disk particles,
see Figure 1.2.



Search for statistically representative cells 6

Figure 1.2: Example of PUC for two-phase medium with 25 equal-sized hard-disks repre-
senting 40 % of volume fraction.

1.1.1.1 An anisotropy measure formulation

To quantify the anisotropy of a given microstructure, the two-point probability function
seems to be convenient thanks to its possibly fast evaluation for binary discretized mi-
crostructures. More formally, the two-point probability function Srs(x1,x2) quantifies the
probability of finding simultaneously the phase r at x1 and the phase s at x2 and can be
written in the form

Srs(x1,x2) = χr(x1, α)χs(x2, α), (1.1)

i.e. as the ensemble average of the product of characteristic functions χr(xi, α), which are
equal to one when point xi lies in the phase r in the sample α and equal to zero otherwise:

χr(xi, α) =

{
1, if xi ∈ Dr(α)
0, otherwise . (1.2)

In Equation (1.2), Dr(α) denotes the domain occupied by the r-th phase.
In general, the evaluation of these characteristics may prove to be prohibitively diffi-

cult. Fortunately, a simple method of attack can be adopted when accepting an assumption
regarding the material as statistically homogeneous, so that

Srs(x1,x2) = Srs(x1 − x2) = Srs(x). (1.3)

Last note concerns particularly the two-phase medium, where two-point probability func-
tions are related according to the following equation

Srr(x) = cr − cs + Sss(x), (1.4)

where cr and cs are volume fractions of phases r and s, respectively. Thanks to this relation,
only one probability function needs to be determined to describe the two-phase medium.

To establish Srr(x) value for a particular binary image with dimensions W × H , the
two-point probability functions can be re-written as a correlation of functions χr and χs.
By implementing the Discrete Fourier Transform (DFT), see Burrus and Parks (1985), the
two-point probability function Srs becomes

Srs(m,n) =
1

WH
IDFT

{
DFT {χr(m,n)}DFT {χs(m,n)}

}
, (1.5)

where IDFT is the inverse DFT, ·̄ stands for the complex conjugate and χr(m,n) denotes the
value of χr for the pixel located in the m-th row and n-th column of the binary image. This
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method is very economical and its accuracy depends only on the selected resolution of the
digitized medium. The Fast Fourier Transform, which needs onlyO(WH log(WH)+WH)
operations, is called to carry out the numerical computations.

In the case of statistical isotropy assumption, the shape of two-point probability function
should be invariant to rotation, i.e.

∀l = ‖x‖ : Srs(x) = Srs(l) . (1.6)

For an anisotropic medium, the spread of the two-point probability function values over the
vectors of the same length is non-zero. For illustration, it is obvious that the microstructure
shown in Figure 1.3a is not isotropic. The shape of the corresponding two-point probability
function for white phase Sww is shown in Figure 1.3b and its mean Sww(l) and standard
deviation STD(Sww(l)) over the vectors of the same length are shown in Figures 1.3c. An

(a)

(b)
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(c)

Figure 1.3: (a) Illustration of simple PUC with two equal-sized hard-disks. (b) Correspond-
ing two-point correlation function. (c) Mean Sww(l) and standard deviations STD(Sww(l))
over vectors of same length.

anisotropy measure can be thus formulated as a sum of standard deviations in values of
two-point probability function:

A =
∑

i

STD(Sww(li)) (1.7)

for some choice of discrete vector lengths li ∈ {l1, l2, . . . , la)} and this value of anisotropy
could be then considered as a cost function A(c) for an optimization process, where cen-
ter coordinates of hard-disks c = (x1, y1, x2, y2, . . . , xN−1, yN−1) represent optimized vari-
ables. To simplify the optimization process, the coordinates of N -th hard-disk are fixed to
the origin of the coordinate system so that only (N − 1) hard-disks are optimized. For a
microstructure with two hard-disks, the cost function has only two optimized variables and
its shape is shown in Figure 1.4a. Figure 1.4c corresponds to the case of microstructure with
30 hard-disks, where all but one hard-disks are fixed to some possibly optimal values and the
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(a) (b) (c) (d)

Figure 1.4: Illustration of terms in optimized cost function: (a) anisotropy and (b) penalty in
cell with 2 disks, (c) anisotropy and (d) penalty in cell with 30 disks, all plotted in terms of
coordinates of one selected disk, while other coordinates are fixed.

anisotropy value A(c) is plotted for varying coordinates of only one hard-disk. This figure
demonstrates high non-linearity and multi-modality of the anisotropy measure.

The optimization process is performed for different numbers of disks N and different
values of their volume fraction V . Nevertheless, for some optimization algorithms, it can be
more suitable to consider as feasible also solutions with smaller volume fraction due to some
overlapping disks. Nevertheless, as these solutions are not preferred, they are penalized by
the term added to the optimized cost function F (c) as

F (c) = A(c) + α|V − V (c)|, (1.8)

where V is prescribed volume fraction to hard-disks, V (c) is computed volume fraction of
hard-disks in configuration c and α is a weighting factor fixed to α = 106. The shape of
the penalty term for the case of V = 0.1 is shown in Figures 1.4b and 1.4d for two and 30
hard-disks, respectively.

1.1.1.2 Optimization algorithms

The goal of this study is to test the performance of several available algorithms and namely
of steady-state algorithms working with one solution such as Simulated Annealing and
population-based genetic algorithms.

Metropolis algorithm (M)
is the simplest algorithm applied in Torquato (2006). This algorithm is used to generate
Gibbs or equilibrium ensembles of interacting particles, spins, etc. Here a canonical ensem-
ble is considered with a fixed number of N interacting hard-disks and fixed system volume
V . The instantaneous particle positions at time t are denoted by ct. The simplest version
of the Metropolis algorithm presented in Torquato (2006) and applied here starts with initial
configuration of disks in a square array. Then a displacement is applied to each particle along
each axis by random steps uniformly distributed in the interval [−δ, δ], where δ is the maxi-
mum step size. The move is accepted if the particle on a new position does not overlap with
any other particle. The cost function is not taken into account here and the algorithm is used
only to generate some random configuration of hard-disks. A solution obtained by this algo-
rithm is included just to justify the necessity of explicit optimization of the anisotropy and
to quantify the contribution of optimization algorithms. The pseudocode of the Metropolis
algorithm is written in Table 1.1(a).
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1 Generate initial configuration(); 1 Generate initial configuration();
2 for ( t=1; t<nsteps; t++ ){ 2 for ( t=1; t<nsteps; t++ ){
3 for ( i=1; i<N; i++ ){ 3 for ( i=1; i<N; i++ ){
4 Move particle(i, delta); 4 Move particle(i, delta);
5 if Particle not overlap() { 5 if Particle not overlap() {
6 Accept move(); acm++; } 6 Evaluate new configuration();
7 n++; } 7 if (F new<F) {
8 if ((acm/n)>0.5) delta*=1.05;

8 Accept move(); acm++; }}
9 else delta*=0.95; } 9 n++; }

10 if ((acm/n)>0.5) delta*=1.05;
11 else delta*=0.95; }

(a) (b)

Table 1.1: Pseudocodes of (a) Metropolis algorithm and (b) Hill-climbing algorithm.

Hill-climbing algorithm (HC)
is a simple modification of the Metropolis algorithm, which takes into account a chosen cost
function to be optimized. More specifically, the move of a particle is accepted only if the
new position leads to a decrease in the cost function value. Its pseudocode is shown in Table
1.1(b), where the difference from the Metropolis algorithm consists of Lines 6 and 7. From
the optimization point of view, such an algorithm is called the Hill-climbing algorithm as it
enables only down-hill moves and is not able to escape from any local minimum.

Simulated Annealing (SA)
algorithm implemented here can be considered as a modification of the hill-climbing al-
gorithm designed with the ability to escape from local extremes. The first version of this
method was proposed by Kirkpatrick et al. (1983) and independently by Černý (1985). The
core of SA is based on physical principles - on the analogy between the optimization problem
and the annealing process of metals. In the physical process of annealing, the temperature
of a solid is initially kept rather high and then decreases sufficiently slowly, so the individual
crystals can attain the state with the minimal energy for a given constant temperature. As the
temperature gradually decreases the energy of the whole body decreases as well and finally
reaches the minimal value. SA works on the same principle - the initial solution is gener-
ated, some artificial parameter called temperature is set to initial value and the new solution
is generated modifying the solution from the previous step. If the new solution is better than
the preceding one in terms of the objective function, it is accepted automatically and replaces
the original solution. However, if the new solution is worse than the preceding one, it has
still a chance to replace the original solution enabling the solution to escape from a local
minimum. The probability of accepting the worse solution depends on the difference of the
cost function and actual temperature. The procedure is repeated several times for constant
temperature and then the temperature is decreased until it reaches a certain prescribed mini-
mum. The pseudocode of SA implemented here is presented in Table 1.2(a). Particularity of
SA consists in Lines 2, 10− 13 and 17.

Simulated Re-Annealing
is again a modification of the preceding algorithm designed to even more increase its ability
to escape from the local extreme. The original algorithm was proposed by Ingber (1989).
The difference from SA consists of a faster cooling schedule and re-annealing phase, where
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1 Generate initial configuration(); 1 Generate initial configuration();
2 T = Tmax; 2 T = Tmax;
3 for ( t=1; t<nsteps; t++ ){ 3 for ( t=1; t<nsteps; t++ ){
4 for ( i=1; i<N; i++ ){ 4 for ( i=1; i<N; i++ ){
5 Move particle(i, delta); 5 Move particle(i, delta);
6 if Particle not overlap() { 6 if Particle not overlap() {
7 Evaluate new configuration(); 7 Evaluate new configuration();
8 if (F new<F) { 8 if (F new<F) {
9 Accept move(); acm++; 9 Accept move(); acm++;

10 else 10 else
11 p=exp((F-F new)/T); 11 p=exp((F-F new)/T);
12 if rand num uni(0,1) < p 12 if rand num uni(0,1) < p
13 Accept move(); acm++; }}} 13 Accept move(); acm++; }}}
14 n++; } 14 n++; }
15 if ((acm/n)>0.5) delta*=1.05;

15 if ((acm/n)>0.5) delta*=1.05;
16 else delta*=0.95;

16 else delta*=0.95;
17 T=T*pow(Tmin/Tmax,1/nsteps); } 17 T=T*pow(Tmin/Tmax,10/nsteps);

18 if (T<Tmin) T=100*Tmax; }
(a) (b)

Table 1.2: Pseudocodes of (a) Simulated Annealing and (b) Simulated Re-Annealing.

the temperature is increased again after achieving its minimum at the end of the cooling
schedule. This step enables to escape from the local minimum, which is found here with
higher probability due to faster cooling schedules. The particular version implemented here
assumes six re-annealing phases within the maximum number of iterations. Its pseudocode
in Table 1.2(b) contains its particularities in Lines 17 and 18.

Genetic algorithm (G)
is an algorithm operating with a population of feasible solutions simultaneously in contrast to
all previously presented steady-state algorithms operating with just one individual. It is be-
lieved that population-based algorithm is usually more successful on multi-modal problems
thanks to their ability to better explore whole domain space. When looking for such an algo-
rithm, we have chosen the GRADE algorithm, which was successfully tested to solve highly
multi-modal problems. Its detailed description, testing results, as well as the configuration
of the algorithm control parameters, are presented in Kučerová (2007) or in Ibrahimbegović
et al. (2004). For its brief introduction, it is a real-coded genetic algorithm applying one mu-
tation and differential cross-over operator to create new individuals and inverse tournament
selection operator for selecting a given number of solutions for the next population. One
individual represents a vector of real-coded coordinates of particle centers ci. The genetic
operators than create new individuals in the domain given for each variable by the size of
microstructure volume. Nevertheless, genetic operators in their original form can create an
individual with overlapping particles, therefore the penalization term is considered here in
the cost function formulation. Pseudocode of this algorithm is shown in Table 1.3.

Genetic algorithm 2 (G2)
is the modification of the previous one motivated by its high percentage of penalized solu-
tions. Particular modifications are listed below.

(i) The original GRADE algorithm starts with an initial population, where disks of each
individual have coordinates randomly chosen from the prescribed domain. In such a
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1 Generate initial population();
2 for ( i=0; i<n generations; i++ ) {
3 Mutate();
4 Cross();
5 Evaluate();
6 Select(); }

Table 1.3: Pseudocode of GRADE algorithm

way, most of the configurations are penalized. Therefore, one individual with a square
array configuration and no penalization is placed into the initial population. Thanks
to the inverse tournament selection operator, this individual survives till some better
solution without penalization is found.

(ii) The other problem concerns the identical configuration of disks obtained for different
vectors of coordinates due to different ordering of disks inside the vector. Sorting of
disks inside the vector of coordinates may facilitate the convergence because similar
configurations having also the similar vector of coordinates can produce also similar
offspring within the cross-over operator. Without this sorting, two parents with similar
configurations may produce completely different offspring, which significantly slows
down the convergence. Therefore, when two parental vectors are chosen1, their coor-
dinates are sorted to minimize their pair-wise distances, before applying the rule for
generation of their offspring.

1.1.1.3 Comparison of algorithms in optimizing anisotropy of PUC

To compare the performance of the presented algorithms, the microstructure generation pro-
cess was started 100 times for each algorithm. The number of considered hard-disks was
prescribed to N ∈ {4, 9, 16, 25} and their volume fraction to V ∈ {0.1, 0.2, . . . , 0.7}. Each
process was stopped after evaluating 2000 × N solutions. Mean, maximum and minimum
value of anisotropy measure at the end of the optimization process over 100 optimization
runs are shown in Figure 1.5. The obtained results can be summarized in the following
conclusions:

(i) The anisotropy of the unoptimized, just randomized solution obtained by the original
Metropolis algorithm can be significantly improved by the optimization process and
especially for cells with a higher number of hard-disks.

(ii) Despite many successful applications of GRADE algorithm presented in Kučerová
(2007); Sýkora et al. (2013); Sýkora et al. (2018), it mostly failed in optimizing the
hard-disks centers. Namely for higher volume fractions and higher number of disks,
the GRADE algorithm resulted in average in worse solution than the one obtained by
the Metropolis algorithm. Although the presented modifications to the GRADE algo-
rithm were beneficial, they still did not sufficiently increase the number of offsprings,
which are not penalized and the convergence of the algorithm remains significantly
violated. In simplifying words, the algorithm is trying to make too big moves and

1 In both the cross-over and mutation operators, the offspring is produced as a linear combination of two
parental solutions. In cross-over, both parents are chosen from the population, while in mutation one parent
comes from population and other is new randomly generated feasible solution.
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Figure 1.5: Statistics over anisotropy of obtained microstructures over 100 runs of each of the
algorithms: M = Metropolis algorithm, HC = Hill-climbing algorithm, SA = Simulated An-
nealing, SRA = Simulated Re-Annealing, G = GRADE algorithm, G2 = modified GRADE
algorithm, V = volume fraction of disks, N = number of disks.
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most of them are penalized, which makes it being outperformed by all steady-state
optimization algorithms.

(iii) Finally, all the consecutive improvements introduced to the Metropolis algorithm have
proven their benefit and the Simulated Re-Annealing algorithm can be considered as
the best suited for the elaborated problem.

1.1.2 Image-based covariance for microstructure reconstruction

A significantly faster method for reconstruction of material microstructure comparing to pre-
viously described optimization is based on random fields. Once having the characterization
of microstructural spatial variations in terms of covariance function, the Karhunen-Loève
expansion allows for a fast generation of samples with prescribed spatial covariance uti-
lizing surprisingly few orthogonal modes from spectral decomposition of covariance matrix,
see Adler and Taylor (2009). Jiang et al. (2013) use the method to reconstruct 3D microstruc-
tures from its 2D images. One significant drawback of their method is, however, construction
of random field-based realizations for smooth Gaussian covariance function although the
spatial evolution of correlation in the modeled microstructure is different. To address this in-
convenience, they further refine the reconstructed image by optimizing the cluster function to
corresponding better to the original image. Here, two strategies are proposed to derive more
precise information about the spatial covariance directly from the image. Fist, the covariance
function can be derived according to Lombardo et al. (2009) from the two-point probabil-
ity function computed for the microstructure. Second, based on the erdogic assumption,
the spectral decomposition of the image-based covariance can be derived from the samples
of the microstructure employing principal component analysis (Jolliffe (2002)). Both these
methods converge to the same solution and differ only numerically to the level of difference
between the large piece of the original microstructure and its representation by a set of small
segments. To quantify the effect of the considered spatial covariance, the proposed image-
based covariances are compared with commonly used Gaussian and exponential functions in
the following study.

1. Gaussian covariance kernel (GK) in two-dimensional space is given as

C(x1,x2) = σ2
g exp

(
−(x1 − x2)

2lx
− (y1 − y2)

2ly

)
, (1.9)

where x1 = (x1, y1) and x2 = (x1, y2) are arbitrarily chosen two points, σ2
g is the

variance of material property and l = (lx, ly) are the correlation lengths.
2. Exponential covariance kernel (EK) is defined as

C(x1,x2) = σ2
g exp

(
−
∣∣∣∣
x1 − x2
lx

∣∣∣∣−
∣∣∣∣
y1 − y2
ly

∣∣∣∣
)
. (1.10)

3. Image-based covariance kernel (IMGK) is derived from the two-point probability func-
tion Srs(x1,x2) in a two-phase medium, where phases s and r have values of modeled
material parameter prescribed to gs and gr, respectively. According to Lombardo et al.
(2009), the covariance function is derived as

C(x1,x2) =
(
Sss(x1,x2)− (cs)

2) (gs − gr)2 , (1.11)

where cs is the volume fraction of the phase s.
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4. Image-based covariance based on sampling (IMGK-PCA) starts with a set of equal-
sized image segments gi arranged as rows of a matrix G ∈ Rns×np , i.e. GT =
[g1 . . .gns ], where ns is the number of segments and np is their length in pixels.
The principal components analysis transforms them into the samples Q = GT, Q ∈
Rns×np in new coordinate system defined in fact by eigenmodes of the underlying co-
variance function of spatial fluctuations arranged as columns of transformation matrix
T ∈ Rnp×np . According to the corresponding eigenvalues, only a subset of eigen-
modes T̃ ∈ Rnp×nm allows to characterize the original segments with sufficient ac-
curacy, i.e. truncated samples of principal components Q̃ = GT̃, Q̃ ∈ Rns×nm ap-
proximate the original set of segments G. Based on the samples Q̃ in the space of
eigenmodes, it is possible to check also the distribution of the corresponding random
variables. In the application presented here, the original samples of binomial variables
transformed into samples distributed nearly normally. Therefore the application of
Gaussian variables in the employed representation of random field was justified.

The first step of the presented study consists in the identification of correlation lengths
used in the Gaussian and exponential covariance kernel functions, see Eq. (1.9) and Eq. (1.10),
respectively. For a sake of clarity, a set of digitized images representing one-dimensional ar-
tificial structures 1× 105 px is employed to illustrate the properties of particular correlation
functions, see Fig. 1.6. The fitting process of the covariance lengths is relatively simple and
intuitive, see also Kučerová et al. (2014) for more details. It starts from the calculation of the
two-point probability function Sss (according to Eq. (1.5)) of the original medium and subse-
quent derivation of the related covariance kernel, see Eq. (1.11). Then the correlation lengths
in Gaussian and exponential kernels, see Eqs. (1.9) and (1.10), respectively, are optimized
to fit these kernels to the one derived from the image. In our study, the in-house GRADE
algorithm (Kučerová (2007); Kučerová et al. (2009) is utilized for such type of optimization.
The computed results of optimized covariance lengths are listed in Tab. 1.4.

The results in Tab. 1.4 show that the computed correlation lengths are drastically smaller
than the original dimensions of the investigated medium. Thanks to this fact, the dimension

A1,2
2 [px] 2 [px] 2 [px] 2 [px] 2 [px]x

B1,2
5 [px] 5 [px]x

C1,2
10 [px]x

D1,2
20 [px]x

R1,2
10 [px] 2 [px]x

Figure 1.6: Reference media, size 1 × 105 px: A1 - particles 2 px filling 10 % of vol.; A2 -
particles 1 × 2 px filling 50 % of vol.; B1 - particles 5 px filling 10 % of vol.; B2 - particles
5 px filling 50 % of vol.; C1 - particles 1 × 10 px filling 10 % of vol.; C2 - particles 10 px
filling 50 % of vol.; D1 - particles 1 × 20 px filling 10 % of vol.; D2 - particles 20 px filling
50 % of vol.; R1 - particles ranging from 2 px to 20 px filling 10 % of vol.; R2 - particles
ranging from 2 px to 20 px filling 50 % of vol.
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A1 A2 B1 B2 C1 C2 D1 D2 R1 R2

GK - lx [px] 0.75 0.50 1.91 1.10 3.78 2.33 7.66 4.77 4.91 2.48

EK - lx [px] 0.87 0.50 2.39 1.20 4.68 2.59 9.64 5.40 6.37 3.10

Table 1.4: Optimized covariance lengths calibrated for EK and GK.

of the problem can be reduced to 1× 100 px, and thus the computational demands decrease
to a reasonable level.

In the next step, nr = 1000 realizations of random fields with the length of 1 × np =
100 px were generated according to all four abovementioned representations of the covari-
ance structure and for different number of employed eigenmodes. Each set of realizations
was again arranged as rows of a matrix R ∈ Rnr×np , i.e. RT = [r1 . . . rnr ] and used to
recompute their covariance matrix

Cr =
1

nr − 1
RTR . (1.12)

The obtained covariance matrix Cr is then compared with covariance matrix Co com-
puted for 1000 randomly cutted segments from original medium. The comparison for the
calculated covariances is shown in Fig. 1.7. The errors e(C) computed as

e(C) =
‖Cr −Co‖l2
‖Co‖l2

(1.13)

are plotted as a function of the number of KL modes – M . There we can see the gain
of image-based random fields construction and strong dependencies of errors for a small
number of KL modes. These findings can be further explored in a real physical analysis
propagating random fields.

1.2 Probabilistic identification of material model parameters

When dealing with models involving description of heterogeneous materials, the most im-
portant question concerns the real system, which is chosen to be modeled. Therefore, the
following classification is introduced here to clearly distinguish two categories of systems,
which are often confused when it comes to the identification of their parameters:

Deterministic system:
One object — specific laboratory specimen or more often specific real-world structure is
called here as a deterministic system in a sense that it is one object with some specific mate-
rial properties in every point of its spatial domain.

Stochastic system:
Set of objects — an ensemble or also group of objects having some common features defining
the set, while some other their properties vary from one sample to another. For example, a
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Figure 1.7: Relative error of covariance matrix as a function of KL terms – M .

set of laboratory specimens of heterogeneous concrete cylinders of the same size made of
the same mix of the concrete, where the particular samples differ in their morphology. If the
goal is to characterize whole system — a whole set of all possible cylinders belonging to
the set, its material properties attain also a set of values, which can be modeled as random
variables with some probability density function corresponding to the distribution of values
among particular samples in the set.

The presented categories are not exactly the intrinsic properties of particular systems.
Modeling a system as deterministic or stochastic is, in fact, the result of a pragmatic choice
of a modeler, whether he wants to model statistically a set of objects or one specific object,
regardless of whether the object or set of objects are manufactured or just virtual, see
Figure 1.8.

In the field of uncertainty propagation through mechanical models, the careful rationale
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Deterministic system Stochastic system

d(t) = y(x, t) + ε(t, ω) d(t) = y(x(ω), t) + ε(t, ω)

(a) (b)

Figure 1.8: (a) One specimen with deterministic vector of material parameters x and (b) set
of specimens with material parameters characterized by random variables x(ω).

for modeling a system as stochastic or deterministic is, of course, also important, but it is
also not subject to any misinterpretations. It becomes much more delicate when it comes
to inverse analysis, or more specifically, to probabilistic identification of parameters of a
modeled system trying to involve all relevant uncertainties. One of the widespread classifi-
cations of uncertainties in probabilistic parameter identification is the definition of the two
following categories, which were often a subject of many discussions in past decades, see
Der Kiureghian and Ditlevsen (2009).

Epistemic uncertainty was often defined as reducible uncertainty caused by insuffi-
cient knowledge about the quantity of interest.
Aleatory uncertainty was described as an irreducible, intrinsic property of the quantity
of interest without a clear definition, what ”intrinsic” means in this situation.

Considering uncertainties as epistemic or aleatory is very important, but it is again a
choice of a modeler connected precisely to the chosen representation of the modeled sys-
tem. When the system is modeled as stochastic, its properties varying among particular
samples need to be modeled in some statistical manner, e.g. by a random variable. This
randomness is then viewed within the inverse analysis as aleatory uncertainty, which is irre-
ducible as it represents the random nature of the investigated properties among the consid-
ered set of objects. The goal of the modeler is then to find the correct distribution of these
random quantities and not the reduce (sharpen or change in any sense) this distribution. On
the other hand, epistemic uncertainties may be considered in modeling of both systems as
these uncertainties reflect the lack of knowledge, which can be possibly reduced by addi-
tional observations, etc., see Figure 1.8. We refer an interested reader to Der Kiureghian and
Ditlevsen (2009) for a brief review on this topic accompanied by a few clarifying examples.
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Note on random inputs in homogenization-based models:
This work is focused especially on inverse problems connected to modeling heterogeneous
materials with random morphology being hardly characterized by any periodic unit cell.
Nevertheless, it does not implies that all models have to work with material properties de-
scribed by random variables only. Even if a modeler aims to characterize a material as a
stochastic system, he may decide to simplify the situation and work with some idealized av-
eraged or statistically representative sample. This philosophy leads to homogenization-based
models, where material properties attain again some deterministic values associated with the
homogenized medium. Estimation of these homogenized or so-called effective properties
may be again accompanied by some epistemic uncertainty about the correctness of the es-
timated deterministic values. Propagation of this uncertainty through a multi-scale model
leads to stochastic multi-scale model, see e.g. Frank Xu (2007); Babuška et al. (2014); Guan
et al. (2015); Chu and Guilleminot (2019). Characterization of this epistemic uncertainty
may not be then interpreted as the variability of material properties within the heterogeneous
materials as it is rather the modeling uncertainty reflecting our trust into the model itself.

Note on spatial variability and random fields:
It is possibly surprising that random fields are in the calibration of material models used
mainly for characterizing deterministic systems, see e.g. Marzouk and Najm (2009); Kučerová
and Matthies (2010); Kučerová and Sýkora (2013); Havelka et al. (2019); Yang et al. (2019);
Uribe et al. (2020) or Chapter 3.1. In the listed applications, the random field is applied to
characterize spatially varying material properties within one specific object. The goal of the
parameter identification is to reduce the prior uncertainty about the deterministic values of
material properties in each point of the modeled domain. Additional data brings a reduction
of the resulting epistemic uncertainty, which is again related only to the correctness of the
estimated deterministic values. As characterizing spatial variations within a continuous do-
main, the dimension of the inverse problem is, in fact, infinite as the number of points inside
the domain.

Note on dimensionality reduction in estimating spatially varying properties:
To reduce the problem dimension, the spatial variation is commonly approximated by a trun-
cated Karhunen-Loève expansion, where a limited number of random variables play a role
of scaling factors for KL modes selected in the expansion. Particular modes are obtained
as eigenfunctions of chosen covariance function, which is typically unknown and ad-hoc
chosen to be smooth exponential or Gaussian function thus implying the assumption that
the spatial variations are also smooth. The possibility to introduce also the non-smooth co-
variance functions based on the information about material morphology is already discussed
in Section 1.1.2. If no information about the morphology is available, the introduction of
smooth covariance is possible the only way to reduce the dimensionality of the inverse prob-
lem. It is interesting to point out that the same is valid not only for the random fields-based
probabilistic formulation but also for the deterministic formulation of the problem, where the
high problem dimensionality is commonly solved by the introduction of some regularization
terms to the cost function. This regularization term reduces the oscillations in the optimized
parameter field which has again the smoothing effect as consideration smooth covariance
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function. Very recent and detailed discussion on the determination of spatial varying prop-
erties from boundary measurements in deterministic as well as in a probabilistic manner is
presented in the doctoral thesis of Havelka (2019).

Note on stochastic models:
To cite an example of stochastic models, lattice/particle-based models aim to intrinsically
model the stochasticity of heterogeneous material by stochastic lattice generation. In other
words, their goal is to capture the aleatory uncertainty in material properties fully by ran-
domized generation of micro- or mesostructural geometry based on the knowledge of the
material constituents. Material properties to be calibrated can be then simplified again to
deterministic material parameters being spatially constant. Their meaning is thus similar to
homogenized or so-called effective properties. This category of models is called stochastic
because for a given set of material parameters, different macroscopic response is obtained
due to the random generation of the underlying geometry. The calibration of such models is
then significantly complicated by this stochasticity. The calibration of this type of model is
not much elaborated, but one example is discussed in very detail in Chapter 3.2.

1.2.1 Quantification of aleatory uncertainty

When no information about morphology or granularity of constituents is available, yet the
goal is to model the material as a stochastic set (representing e.g. a type of concrete), the
material parameters are no longer deterministic. Parameter identification turns into the quan-
tification of aleatory uncertainty in material parameters described by random variables (or
possibly fields), whose probability distribution characterizes the distribution of values of
material properties within the set.

Quantification of aleatory uncertainties in parameters of a nonlinear physical model is
significantly less elaborated than quantification of epistemic uncertainty in deterministic pa-
rameters mentioned above or in Chapter 3.1. Documented strategies to the quantification of
aleatory uncertainty in parameters of nonlinear models can be divided into two following
categories. Even though it is possible to characterize the aleatory uncertainty in material
parameters by random fields, most of the works describe each material property by a random
variable. Each sample of material is modeled with one sample of the material property being
spatially constant with the domain of a specimen. The distribution of material property in
a set of material samples can be thus viewed as a distribution of some type of effective (or
homogenized) property among the set of samples.

1.2.1.1 Deterministic fitting of aleatory uncertainty:

The first category of methods is based on the parametrization of the probability density func-
tion (PDF) prescribed to each material parameter. The goal of the inverse analysis then
turns into a search for the parameters of the prescribed PDF, which can be performed in a
deterministic manner. Fonseca et al. (2005) compares the mean-centered first-order pertur-
bation method and Monte Carlo-based maximum likelihood estimation (MLE) applied to
determine statistical moments of the prescribed PDFs. The proposed methods have several
crucial limitations. First, the assumption of a known type of statistical model is very limiting
and prohibits the identification of higher statistical moments. The perturbation method (even
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when extended by other nonlinear terms) is hardly applicable to nonlinear models and Monte
Carlo-based MLE faces high computational requirements. Recently, Fang et al. (2014); Sep-
ahvand and Marburg (2014) employed independently polynomial chaos (PC)-based surro-
gates to accelerate the identification of aleatory uncertainties formulated as a deterministic
optimization problem. In particular, statistical moments or PC coefficients defining the sta-
tistical model of physical parameters are optimized so as to fit the corresponding moments
of model response to the moments obtained from the experiments. While Fang et al. (2014)
emphasizes that the PC-based surrogate of a model response provides an efficient way for
computing sensitivities, Sepahvand and Marburg (2014) focuses on PC ability to effectively
represent higher statistical moments and identify non-Gaussian parameters. Nevertheless,
many related issues remain unsolved. For instance, quantification of related epistemic un-
certainties is not considered at all. It means that the methodology is not able to reflect the
number and the value of additional measurements. Also, the application of the proposed
methods to the set of correlated observations, which are typically obtained by measuring e.g.
load-displacement curves (see Figure 1.8) or by collecting the observations from a set of
probes placed on each specimen can be problematic. In such a situation, the higher dimen-
sionality of the observations leads to the increasing complexity of their joint distributions and
thus to an increasing dimensionality or a number of the underlying optimization problems.

1.2.1.2 Probabilistic estimation of aleatory uncertainty:

Modeling aleatory uncertainty in material parameters together with related epistemic uncer-
tainty in the correctness of estimated distributions is addressed in several recent works Arnst
et al. (2010); Mehrez et al. (2012a,b); Debruyne et al. (2015). The authors use again the PC-
based approximation of the distribution of material parameters, where the PC coefficients
are obtained via the formulation of a likelihood function constructed for the measured data.
Contrary to Fonseca et al. (2005), the PC coefficients are considered here as uncertain and
identified in the Bayesian way by MCMC sampling. The introduction of new random vari-
ables for describing the PC coefficients thus allows us to quantify the epistemic uncertainty
in the estimated distributions of aleatory material properties. Nevertheless, the method is
derived only for a situation, where identified material parameters coincide with observed
quantities. In the case of measuring a response of a nonlinear physical model, a set of de-
terministic inverse problems is solved first. Then quantification of aleatory uncertainty in
estimated set of discrete parameter values follows in a separate step. Such separation is
however not always feasible as the employed deterministic inverse problems are generally
ill-posed. A similar concept was derived already much earlier for probabilistic estimation of
statistical moments of PDFs prescribed to random variables Gelman et al. (2013); Šejnoha
et al. (2017). Nevertheless, its generalization for estimation directly from observations of
nonlinear response components was elaborated only recently in Behmanesh et al. (2015);
Nagel and Sudret (2016), and its application to the estimation of viscoplastic material pa-
rameters was presented in Janouchová and Kučerová (2018). The principal limiting factor
of this formulation for practical applications is the significant increase in problem dimen-
sionality and computational effort with the number of material samples used to acquire the
observations.
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1.2.1.3 Nonlinear transformation of random variables:

There are two principal drawbacks of the above-mentioned methods to quantify aleatory
uncertainty. First is their high computational effort needed even in the case when some
surrogate of material model is employed. Second is the necessity to prescribe some partic-
ular distribution family to each material parameter and identify its statistical moments. The
later can be partially relaxed by describing each random material parameter by polynomial
function and search for its coefficients thus allowing to find some more general probability
distribution. The preliminary choice of the particular polynomial degree with the given num-
ber of polynomial coefficients is, in fact, very similar limitation to the choice of a distribution
family with some given number of statistical moments. Driven by this motivation, another
less general, but computationally more effective strategy is presented in the following text.
Its simple idea is based on nonlinear transformation of random variables and its efficiency
is demonstrated on two simple examples with tens of observed samples. Moreover, the sec-
ond example is devoted to situations, where data are collected from two distinct groups of
samples, each employed for another destructive experiment, where none of the experiments
allow to fully identify all the model parameters.

Considering the nonlinear model mapping a vector of random inputs x into a vector of
random outputs y as

y = g(x) . (1.14)

The nonlinear transformation of probability distribution f(x) into distribution f(y) is then
given as

f(y) = f(g(x)) · |Jy(x)| , (1.15)

where Jy(x) denotes the Jacobian of g(x). Making this change of variables explicit imposes
certain constraints on the model g(x). First, the inverse image support X of the distribution
f(x) must be contained within the range of y, i.e. Y = g−1(x). Second, g(x) must be
a differentiable transformation from X to Y with a differentiable inverse. The constraints
do not be fully fulfilled by the original material model, but they can be easily valid for its
polynomial approximation employed for the acceleration of the transformation process. In
such a case, the Jacobian can be easily obtained analytically. Moreover, the second constraint
is not a great liability, when the transformation is performed by means of suitable sampling
methods such as Markov chain Monte Carlo, see Marzouk et al. (2007).

The crucial condition of the method is that the mapping (1.14) must be bijective. In prac-
tice, laboratory experiments often results in some load-deflection curves discretized into a set
of points corresponding to observed vector d. The dimension nd of d is thus typically much
higher than the dimension nx of x and particular components of d are highly correlated,
see Figure 1.8b. Once the data from nr repetitions of the experiments are collected into the
matrix D = (d1, . . . ,dnr) ∈ Rnd×nr , the correlations between couples of particular response
components can be computed directly from data. By means of principal component analy-
sis (PCA) they can be easily transformed into a set of uncorrelated quantities and ordered
according to their particular variance Jolliffe (2002). The first few components account for
most of the statistical variability in all of the original data. PCA thus allows to reduce the
dimensionality of observed data D to the set Y = (y1, . . . ,ynr) ∈ Rnx×nr of first nx most
important components without any significant information loss. The uncorrelation of the
principal components, however, do not imply their statistical independence. Therefore, the
construction of their joint probability density function f(y) is again not trivial and one has
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to keep in mind that its decomposition into a product of independent marginal distributions
f(y) =

∏
f(yi) may contain certain error.

1.2.1.4 Estimation of parameter distributions of cyclic loading test

This example was a part of the project governed by European Space Agency, where the re-
sults are confidential and thus all the data are scaled. A set of fifty curves were simulated
to represent pseudo-experimental data from the cyclic loading test on a heterogeneous vis-
coplastic material, see Figure 1.9.

Figure 1.9: Fifty pseudo-experimental curves obtained from cyclic loading test.

The corresponding model has six material parameters and the model itself is considered
as a black box. The given data set is produced for inputs where two of the parameters
are strongly correlated and one parameter is insignificant the elaborated experiment. The
goal is to identify the relevant parameters within the given loading test and their probability
distributions corresponding to the distribution of the pseudo-experimental data.

The data obtained by discretization of the curves are first transformed into six most im-
portant principal components. Corresponding response components of the material model
are approximated by sixth order Legendre polynomials constructed as optimal within the
feasible intervals prescribed to each material parameter. The marginal distribution of each
principal component is formulated as normal distribution with mean and standard deviation
estimated from the samples and their joint distribution is obtained as a product of marginals
under the simplifying assumption of their mutual independence. Joint distribution of mate-
rial parameters is then obtained by MCMC sampling of the (1.15). The obtained probability
density functions of material parameters are shown in Figure 1.10. The results confirm that
the proposed method is able to determine sufficiently precisely the distributions of five rele-
vant material parameters including the strong correlation between the first two of them. The
incorrect distribution is obtained only for sixth parameter, which is insignificant in the sim-
ulated experiment and the data contain no information about it. Prediction of the model for
identified distribution of random material inputs are compared with the prescribed pseudo-
experimental data in Figure 1.11.
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Figure 1.10: Identified 1D and 2D marginal PDFs of material parameters (red) and original
samples used for simulating pseudo-experimental data (blue).

1.2.1.5 Estimation of parameter distributions from independent tests

This example concentrates on identification of distribution of two damage parameters from
two distinct type of destructive experiments. The damage model is governed by the Landgraf
- Morrow equation, see Landgraf (1970), where the relation between the strain range ∆ε and
the number of cycles to a failure of the specimen Nf is given as

Nf =

(
∆ ε

S

)−s

. (1.16)
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Figure 1.11: Comparison of pseudo-experimental data and model predictions for identified
distributions of material parameters.

The material parameters to be identified are the fatigue ductility coefficient S [-] and fatigue
ductility exponent s [-]. According to the expert knowledge, the parameters are limited to
feasible intervals S ∈ [0.1; 1.2] and s ∈ [1.0; 2.8].

In order to identify the damage parameters, two types of destructive experiments are
considered and only pseudo-experimental data are used in this study. The first experiment
is a tensile test with 50 repetitions, where the measured quantity is the strain at rupture
and directly corresponds to the identified parameter S . In the second experiment with 30
realizations, the number of cycles to a failure of the specimen Nf is measured under cyclic
loading with the strain range ∆ε = 0.03. The histograms of the pseudo-experimental data
and the corresponding marginal distributions are depicted in Figure 1.12.

Figure 1.12: Distributions of pseudo-experimental observations.

Recording data from two distinct types of experiments on different specimens leads to
missing information about the inherent correlation in the data. Therefore this correlation
is estimated approximately based on model simulations for samples of material parameters
generated from prescribed feasible intervals. The estimated correlation is combined with
the estimated marginal distributions of data based on a normal kernel function to generate
new synthetic data with desired correlation. These are used to built the approximation of
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their joint probability density function, which is applied for the transformation of variables
according to (1.15) to obtain the identified distribution of material parameters depicted in
Figure 1.13.

Figure 1.13: Identified distribution of damage parameters - marginals and isolines of joint
PDF.

Figure 1.14: Comparison of pseudo-experimental data and model predictions for identified
distributions of damage parameters.

The identification of the fatigue ductility coefficient S is essentially perfect, whereas
variance of the fatigue ductility exponent s is not identified well. The obtained difference
in the variance of s can be caused by inaccurate estimation of the joint distribution of both
data components S and Nf , which is here principally unknown. Therefore is this joint dis-
tribution approximated at two levels. First, both components are modeled as simply linearly
dependent with estimated correlation. Second, their correlation is only roughly estimated
based on other simulated data sets obtained for parameters distributed in feasible intervals.
Nevertheless, according to Figure 1.14 the known marginal distributions of both data compo-
nents are fitted with high accuracy. As a possible simple extension of this work, the applied
identification steps can be sequentially repeated. New estimate of data correlation can be ob-
tained based on new simulations from identified distribution of material parameters instead
of original feasible intervals and further applied to gain new updated estimation of parameter
distributions.
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Mécanique et Technologie.
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terization with karhunen–loève and polynomial chaos via Bayesian approach. Engineering
with Computers, 35(1):337–350.

Yeong, C. L. E. and Torquato, S. (1998a). Reconstructing random media. Physical Review
E, 57(1):495.

Yeong, C. L. E. and Torquato, S. (1998b). Reconstructing random media. II. Three-
dimensional media from two-dimensional cuts. Physical Review E, 58(1):224.
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Chapter 2

REPRESENTATION OF RANDOM MATERIALS MORPHOLOGY

This chapter contains two parts devoted to advanced techniques for characterization and
reconstruction of morphology in random materials. While the first technique concentrates on
reducing long-range correlations arising in models based on a single representative cell, the
second part elaborates numerical methods for evaluating higher-order statistical descriptors
for morphology characterization. To be more specific, the first part introduces a new concept
for representing material morphology by a set of representative cells – Wang tiles – allowing
to reconstruct an aperiodic medium. The second part analyzes the properties of lineal path
function, its benefits, and drawbacks in comparison with widely applied two-point probabil-
ity function. To make the comparison computational feasible, the evaluation of lineal path
function is accelerated by porting part of its code to a graphics processing unit using the
CUDA (Compute Unified Device Architecture) programming environment.
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Abstract

This paper presents a stochastic Wang tiling based technique to compress or reconstruct
disordered microstructures on the basis of given spatial statistics. Unlike the existing ap-
proaches based on a single unit cell, it utilizes a finite set of tiles assembled by a stochastic
tiling algorithm, thereby allowing to accurately reproduce long-range orientation orders in
a computationally efficient manner. Although the basic features of the method are demon-
strated for a two-dimensional particulate suspension, the present framework is fully extensi-
ble to generic multi-dimensional media.

Keywords: Microstructure compression, Reconstructing algorithms, Wang tiles, Aperiodic
tilings

In 1961, Hao Wang introduced a tiling concept based on square dominoes with colored
edges permitting their mutual assembly in a geometrically compatible (hard) manner [1].
Since then, his tiles have been the subject of studies in discrete mathematics [2, 3, 4] and
found an extensive use in computer graphics [5], game industry [6], theory of quasicrys-
tals [7] or biology [8]. From the perspective of this paper, the appealing feature of Wang
tilings is that they can compress and reproduce naturally looking planar patterns or three-
dimensional surfaces by employing only a small number of distinct tiles [9, 3, 10]. Moti-
vated by this observation, we further explore the potential of Wang tiles to represent long-
range spatial correlations in disordered microstructures; a problem common to materials
science [11], geostatistics [12] or image analysis [13].

In this regard, two closely related applications can be distinguished, namely the mi-
crostructure reconstruction [14, 15, 16] based on given spatial statistics and microstructure
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compression [17, 18, 19] aiming at efficient representation of materials structure in multi-
scale computations [20]. Our focus is on the latter, since these procedures usually have the
microstructure reconstruction techniques at heart, hereby covering the common features of
both.

To the best of our knowledge, compression algorithms reported to date use a single
cell (PUC) that is periodically extended to tile the plane in a deterministic manner [18]. Such
structures then inevitably manifest strong long-range correlations with a period of the PUC
dimensions. We shall demonstrate that these artifacts can be effectively controlled when uti-
lizing small Wang tile sets [10, 3], carefully designed to capture morphological trademarks
of compressed media, combined with fast stochastic Cohen-Shade-Hiller-Deussen (CSHD)
tiling algorithm [5] for real-time texture generation. A potential of this approach will be
demonstrated for equilibrium two-dimensional particulate suspensions consisting of equi-
sized disks of radius ρ uniformly distributed in a homogeneous matrix, cf. [21].

To this goal, consider a two-dimensional microstructured domain D discretized by a reg-
ular square lattice. Each lattice cell contains specific morphological patterns that are compat-
ible on contiguous boundaries, Fig. 1(b). If there are no missing cells inD, the discretization
is called a valid tiling, and a single cell is referred to as the Wang tile [1], Fig. 1(a). The
tiles have different codes on their edges, lower-case Greek symbols in Fig. 1(a), and are
not allowed to rotate when tiling a plane. The number of distinct tiles within D is limited,
though arranged in such a fashion that none of them or any of their sub-sequence periodi-
cally repeats. The gathered distinct tiles are referred to as the tile set, Fig. 1(a). Sets that
enable uncountably many, always aperiodic, tilings are called aperiodic [3, 4]. In real world
applications, the assumption of strict aperiodicity of the tile sets is relaxed to aperiodicity of
tilings, ensured e.g. by the CSHD algorithm [5] introduced next.
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Figure 1: (a) A Wang tile set W8/2–2 with edge length ` and codes {α, β, γ, δ}. (b) Example of an aperiodic
valid tiling.

Intuitively, the ability of a tile set to control long-range order effects arises from tile and
edge code diversities, Fig. 1(a). Both factors are related, so that while the number of edge
codes nc

i in i–th spatial direction can be chosen arbitrarily, the number of tiles nt must satisfy

nt = nNW
√
ncs, (1)

where ncs = (nc
1n

c
2)

2 is the number of tiles in the complete set and nNW = 2, . . . ,
√
ncs

stands for the optional number of tiles with identical arrangement of north-western (NW)
edge codes. The complete set of ncs tiles is obtained by permuting the chosen codes ci. In
valid tilings, the south-eastern edge codes must match those assigned to NW edges, Fig. 1(b).
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Thus, the tiles in the complete set are sorted according to existing NW edge code combina-
tions and the desired number of tiles in a user defined set is formed by selecting nNW of
unique tiles from each group. Such a set is referred to as Wnt/nc

1–n
c
2 in what follows. Notice

that the W1/1–1 set corresponds to the PUC setting.
In the stochastic tiling algorithm, the index of a new tile to be placed is selected randomly

with the uniform probability from an appropriate NW group compatible with the eastern
code of the tile previously placed and the southern code of the tile above the one to be placed
(edges γ and α in bold adjacent to shaded cell in Fig. 1(b)). Aperiodicity of the resulting
tiling is guaranteed provided that the random generator never returns a periodic sequence of
numbers and that each NW group contains at least two distinct tiles [5].

Analogously to the existing works on reconstruction and compression of random me-
dia, the tile morphologies are designed by an optimization procedure expressed in terms of
suitable statistical descriptors. As our focus is to control long-range artifacts, we limit the
exposition to the two-point probability function S2(x) [11]. For statistically uniform er-
godic media, it provides the probability that two arbitrary points from D, separated by x,
are simultaneously found in the particle phase. The function satisfies S2(0) = φ, where φ
is the volume fraction of particles, and S2(x) ≈ φ2 for ‖x‖ > λ indicates the absence of
long-range orders at the characteristic length λ, Fig. 2(b).

In the current setting, the Wang tiling compression consists of a set of nt tiles of the edge
length `, in which we distribute nd disks. The configuration of particles is determined by the
parameter vector [td, ξ1,d, ξ2,d]

nd

d=1, where td ∈ {1, . . . , nt} specifies the parent tile index of
the d-th disk and ξj,d ∈ [0, `] the local position of the disk at j-th direction. To determine the
two-point probability function S̃2 for a given configuration, we assemble a tiling that covers
the domain of the same size as the representative sample D, Fig. 2(a). Notice that such
tiling corresponds to a realization of a statistically homogeneous material, since the tiles are
selected from NW edge groups with the uniform probability. The proximity of the tile-based
morphology to the original sample is quantified by an objective function

E =
1

|D|

∫

D

(
S2(x)− S̃2(x)

)2
dx (2)

which can be efficiently evaluated using the Fast Fourier Transform techniques, e.g. [11].
The minimization of (2) is carried out by the Simulated Re-Annealing method with compu-
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Figure 2: (a) Reference two-phase medium of size 174ρ × 174ρ formed by equilibrium distribution of 1, 300
equi-sized disks of volume fraction 26.8% and (b) its two-point probability function S2; ρ is the disk radius.
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tational cost similar to existing PUC design strategies [22]. The algorithm ensures that the
tiles in the set satisfy the corner constraint [5], requiring that the tile corners are not occu-
pied by a disk, and determines the number of disks nd and the cell size ` such that the local
volume fractions associated with edges (grey disks in Fig. 5) and tile interiors (white disks
in Fig. 5) are as close to the target value φ as possible.
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Figure 3: Optimized microstructures and two point probability functions S̃2 for PUC (a,b) and set W18/3–3
(c,d). The arrow in (c) denotes periodic region due to local character of tile placement in CSHD tiling algorithm.

An example of optimal approximations of the target microstructure from Fig. 2 in terms
of a PUC and the Wang tile set W18/3–3 is shown in Fig. 3. The representations are based
on nd = 49 particles and tile sizes ` = 24.5ρ and ` = 7.5ρ, respectively. Evidently, both
heterogeneity patterns carry long-range order effects with the period of `, manifested as the
local peaks

Ŝ2 = max
k\{0}

S̃2(k`) (3)

in the two-point probability functions, Fig. 3(b,d). Notice that Ŝ2 is always equal to φ for the
PUC approach, whereas the Wang tiles are capable of adjusting these artifacts by the proper
morphology design. This is also reflected in visual regularity of the generated suspensions,
compare Fig. 2(a) with Fig. 3(a,c). Also observe the locally periodic region in Fig. 3(c),
arising from the local character of CSHD algorithm and from the lowest number of tiles in
groups of admissible NW edge code combinations, nNW = 2. Such phenomenon is thus
less likely when increasing parameter nNW, however, at the expense of increasing set sizes,
especially for higher edge code diversities, recall Eq. (1).

The principal features of Wang tile-based compressions are further illustrated in Fig. 5.
Instead of relying on a single cell containing the complete morphological information (see
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Figure 4: (Color online) Comparison of S̃2 in x1–S2 plane for (a) tile set W8/2-2 with respect to number of
disks nd involved, (b) different sets. (c) Comparison of different sets in terms of objective function (2) and with
respect to number of disks nd involved. The curves in (b) are plotted for particular values of nd highlighted in
(c).

Fig. 5(a)), the tiling-based approach utilizes substantially simpler building blocks, Fig. 5(b),
assembled to comply with edge constraints (grey disks in Fig. 5). This, however, restricts the
space of admissible disk configurations in Wang tiles compared to the single PUC design.

Now, we are in the position to quantify to which extent is the quality of reconstructed
suspensions determined by the tile set diversity and the morphology design itself. This aspect
is examined first in Fig. 4 by means of sections of the two-point probabilities S2(x1, 0) and
the objective function E, revealing that two effects govern the amplitude and period of the
local extremes Ŝ2. First, for a fixed tile set, increasing the number of disks increases the tile
edge dimension ` (and thus the period) and slightly decreases the amplitude, Fig. 4(a). On
the other hand, increasing the number of tiles decreases the period as well as the magnitude
of local extremes, Fig. 4(b). Also notice that the quality of the W18/3–3 set in terms of
the objective function (2) is systematically inferior to W8/2–2, Fig. 4(c). This is caused
by an inaccurate representation of disk volume fraction for the former set, which pollutes
the shape of Ŝ2 statistics, Fig. 4(b) 1. It further follows from Fig. 4(c) that increasing the

1The best resulting disk volume fraction for W18/3–3 and 24 disks was by 1.3% higher than the prescribed
value. The remaining sets, however, never resulted in a worse scatter than 0.2%.
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(a) (b)

Figure 5: Building blocks of microstructure compression based on (a) PUC and (b) tile set W18/3–3 with 49
disks assigned to tile edges (grey) and interiors (white).

tile set diversity is much more efficient; for sets containing more than 32 tiles, the error
is almost independent of the number of disks. This saturation value reflects the inaccurate
representation of short-range values of S2, caused by the particular form of the objective
function (2). If needed, the local details can be incorporated in terms of higher-order statistics
or specifically tailored descriptors [14, 15, 24, 25].

It is now clear that the local extremes can be attributed to a limited number of tiles used
in a repetitive, although random fashion. Actually, two components repeat when tiling the
plane: tile edges and interiors. To study the local artifacts analytically, we consider user
defined sets with tiles selected so that their edges incorporate each code ci at least once.
Assuming that tiles and edges repeat independently, the maximum local extremes can be
estimated as

Ŝp
2 ≈

φt

nt

[
φ+ (nt − 1)φ2

]
+max

i

{
φe

nc
i

[
φ+ (nc

i − 1)φ2
]}

(4)

where φt = (` − 4ρ)2/`2 and φe = 1 − φt denote the volume fractions of tile interiors (oc-
cupied by white disks in Fig. 5) and edges (occupied by grey disks in Fig. 5), respectively 2.

In Fig. 6, we compare the actual values of Ŝ2 with theoretical predictions (4) for several
values of φe. Apart from the limit cases, φe ∈ {0, 1}, Ŝp

2 was also explored for φe = 0.2
(average value from all considered tile sets). We observe that an almost exact match is
obtained for the lower bound with φe = 0, red solid curve in Fig. 6(a), demonstrating that
the long-range artifacts are carried mainly by the tile interiors. This is rather surprising, since
all considered tile sets satisfy nt � nc

1 = nc
2, so that edges repeat more often than the tile

interiors. Moreover, the magnitude of spatial artifacts converges rapidly to the limit value
φ2. Altogether, this leads us to the conclusion that artifacts due to discrete nature of Wang
tilings can be almost eliminated by a proper morphology optimization. Also note that the
accuracy of the estimate (4) appears to be reasonable, both for the average value of φe = 0.2,
blue double dotted curve in Fig. 6(a), as well as for values corresponding to individual tile
sets, Fig. 6(b). It may thus serve as a basis for the a-priori selection of the tile set parameters
nc
i and nt.

2Observe that the estimate (4) contains contributions from tile interiors and edges. In addition, the tile
interior part arises from two complementary events. If the two adjacent tiles are identical, the probability of
simultaneously locating two disks distant by ` amounts to φtφ/nt. Otherwise, we consider the disks in both
tiles as independent which gives rise to the term φt(1−1/nt)φ2. The contribution of repeated tile edges related
to i–th spatial direction is established analogously, by estimating the probability of simultaneously matching
two edges distant by ` as 1/nc

i .
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Ŝ
2

φ
2

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.07  0.08  0.09  0.1  0.11  0.12

Ŝ
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Figure 6: (Color online) (a) Dependence of local extremes Ŝ2 on the particular tile set. (b) Correlation of
local peaks obtained from two-point probabilities of optimized microstructures and their predictions given by
Eq. (4); r in (b) denotes the Pearson correlation coefficient.

Summary.
A new compression/reconstruction technique based on Wang tilings has been proposed and
applied to two-dimensional microstructures of disordered particulate media. The technique is
extensible to generic three-dimensional microstructures, adopting the frameworks of Wang
cubes [27, 28] and image synthesis [5]; it substantially generalizes the periodic unit cell
concept by making use of multiple tiles instead of a single cell, preserves long range spatial
features, and is computationally efficient. A formula for estimates of long-range order spatial
artifacts has also been proposed and verified for the studied material system.
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Abstract

Microstructure reconstruction and compression techniques are designed to identify micro-
structures with desired properties. While a microstructure reconstruction involves search-
ing for a microstructure with prescribed statistical properties, a microstructure compression
focuses on efficient representation of material morphology for the purpose of multiscale
modelling. Successful application of these techniques, nevertheless, requires proper under-
standing of the underlying statistical descriptors quantifying morphology of a material. In
this paper, we focus on a lineal path function designed to capture short-range effects and
phase connectedness, which can hardly be handled by the commonly used two-point proba-
bility function. Usage of the lineal path function is, however, significantly limited because of
huge computational requirements. So as to examine the properties of the lineal path function
during computationally exhaustive compression and reconstruction processes, we start with
an acceleration of the lineal path evaluation, namely by porting part of its code to a graphics
processing unit using the CUDA (Compute Unified Device Architecture) programming en-
vironment. This allows us to present a unique comparison of the entire lineal path function
with the commonly used rough approximation based on the Monte Carlo and/or sampling
template. Moreover, this accelerated version of the lineal path function is then compared to
the two-point probability function during the compression and reconstruction of two-phase
morphologies. Their significant features are discussed and illustrated using a set of artificial
periodic as well as real-world random microstructures.
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1. Introduction

Computational modelling of random heterogeneous materials is a nontrivial multi-disci-
plinary problem with a wide range of relevant engineering applications. FE2-methods have
been developed as promising techniques for material modelling and have been used to derive
effective models at various scales of interest. A unifying theoretical framework has been
provided by homogenization theories aiming to replace heterogeneous microstructures with
equivalent homogeneous materials, see [1]. Currently, two main approaches are available:
(i) computational homogenization and (ii) effective media theories.

The latter approach estimates material response analytically on the basis of limited ge-
ometrical information (e.g. volume fractions of constituents) about an analysed medium.
Structural imperfections are introduced in the cumulative sense using one of the averaging
schemes, e.g. the Mori-Tanaka method [2]. The computational requirements are very low,
however, because such an analytical solution is available only for a limited spectrum of mi-
crostructural geometries, such as media with specific inclusion shapes.

Methods based on computational homogenization have more general applications, see [3,
4]. They study the distribution of local fields within a typical heterogeneity pattern using a
numerical method. It is generally accepted that detailed discretisation techniques and the
finite element method, in particular, remain the most powerful and flexible tools available.
Despite tedious computational times, these provide us with details about local fields, see
e.g. [5, 6]. The principal requirement of these techniques is finding a representative volume
element (RVE). This can be intriguing when considering real-world random microstructu-
res. Recent studies suggest that structure preserving spatial geometrical statistics, such as a
statistically equivalent periodic unit cell (SEPUC) [7], a statistically similar representative
volume element (SSRVE) [8] and/or RVE Sets introduced in [9], is computationally very
efficient when compared to classical RVE concept.

A relatively new concept in microstructure modelling is based on the production of a set
of structures morphologically similar to the original media, so called Wang tiles, see [10,
11]. This approach allows us to obtain aperiodic local fields in heterogenous media with
a small set of statistically representative tiles. The main advantages of stochastic Wang
tilings are their computational efficiency and long range spatial correlations, neglected in
classical homogenization techniques, see [10]. In some cases tiles can be produced by a
computationally efficient image quilting algorithm [12] or generally by optimising a chosen
statistical descriptor.

This paper is devoted to statistical descriptors defining statistically/mor-phologically sim-
ilar material structures (cells or tiles). Such structures are generally obtained using a process
of microstructure reconstruction [13, 14, 15] or compression [10, 16] in order to represent
the microstructure as accurately as possible in terms of a selected statistical descriptor. In
particular, we focus on two commonly used descriptors, the two-point probability func-
tion [17, 18, 19] and the lineal path function [8, 20, 21, 22, 23]. To gain further insight
into n-point statistics and the other types of spatial correlation functions, one may consult
monographs [24] and [1], respectively.

The goal of this paper is to investigate the properties and differences of these two de-
scriptors within the compression and reconstruction process in more detail. To achieve this
goal, we concentrate on the calculation of the entire lineal path function instead of its often
used rough discretisation with a sampling template evaluated approximately using a Monte
Carlo-based procedure, see [25]. Since the evaluation of the entire lineal path function can be
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computationally extremely exhaustive, we introduce certain acceleration steps for the algo-
rithmic as well as implementation sides, where significant acceleration is achieved, namely
by porting the algorithm to the graphics processing unit (GPU) using a CUDA environment.

This article is organised as follows: Section 2 describes the theoretical formulation for
both descriptors. Section 3 is devoted to describing the acceleration of the lineal path func-
tion and presents the resulting improvement in speed obtained at the GPU in comparison with
the sequential central processing unit (CPU) formulation. Section 4 briefly introduces the op-
timisation algorithm employed for microstructure compression and reconstruction, which are
discussed in Sections 5 and 6, respectively. A summary of the essential findings is provided
in Section 7.

2. Statistical description of random media

The morphology quantification for random heterogeneous materials starts with the intro-
duction of the concept of an ensemble established by Kröner [26] and Beran [27]. Proposed
mathematical formulations are considered as one of the milestones in statistical physics and
the basic idea is that macroscopic observables can be calculated by performing averages
over the systems in an ensemble. In other words, the ensemble represents a collection of ge-
ometrical systems having different microstructures but being completely identical from the
macroscopic point of view [25].

A variety of statistical descriptors have been developed to describe the morphology of a
multi-phase random heterogenous material [7, 19, 24, 25] based on the concept of an ensem-
ble. Here, the two-point probability function and the lineal path function are investigated as
frequently used descriptors. Therefore, this section provides their brief analytical description
and classical numerical implementation.

As a preamble, throughout this paper we consider an ensemble of a two-phase medium
consisting of a black and white phase labelled by superscripts i, j ∈ {b,w}. We also model
the medium only as a two-dimensional system, where the position of an arbitrary point xa

is defined by the Cartesian coordinates xa = (xa, ya). Nevertheless, extension into three-
dimensional systems could be very straightforward.

2.1. Two-point probability function
More formally, the two-point probability function Sij

2 (x1,x2)
1 quantifies the probability

of finding simultaneously the phase i and the phase j at two arbitrarily chosen points x1 and
x2, respectively, and can be written in the form, see [25, 28],

Sij
2 (x1,x2) = 〈χi(x1, α)χj(x2, α)〉, (1)

where the symbol 〈·〉 denotes the ensemble average of the product of characteristic functions
χi(xa, α) which are equal to one when the point xa lies in the phase i in the sample α and
equal to zero otherwise:

χi(xa, α) =

{
1, if xa ∈ Di(α)
0, otherwise . (2)

In Eq. (2), Di(α) denotes the domain occupied by the i-th phase. In general, the evaluation

1with Si
2 abbreviating Sii

2
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Figure 1: Illustration of the two-point probability function: (a) Example of a homogeneous system, size 500×
500 [px]; (b) Sw

2 -function; (c) Sb
2 -function; (d) Comparison of S2-functions in cut 1-1.

of these characteristics may prove to be prohibitively difficult. Fortunately for homogeneous
systems, Si

2 depends only on the relative position of the two points x = x2 − x1 and has
following asymptotic properties, see [13],

Si
2(|x| = 0) = φi, (3)
lim
|x|→∞

Si
2(x) = (φi)2, (4)

where φi is the volume fraction of the i-th phase. Eq. (3) follows from definition (1) and
means that the probability of a randomly thrown point (i.e. vector of zero length) falling into
phase i is equal to the volume fraction of phase i. On the other hand, Eq. (4) assumes that
the system has no long-range correlations and thus, falling of the two distant points x1 and
x2 into phase i are independent events, each having a probability equal to φi, see Fig. 1 as
an illustrative example of such a system.

Even though we aim to characterize generally non-periodic media with SEPUC, whose
boundaries are constructed as periodic, it has been demonstrated in [29] that the assump-
tion of periodic boundaries does not introduce systematic bias into the values of statistical
descriptors. On the other hand, the assumption of periodicity simplifies computation of the
two-point probability function because we do not need to consider all possible orientations
of the vector x. As shown in Fig. 2a, four differently oriented vectors are actually connecting
identical points and obviously have the same value as the two-point probability function. As
a consequence, the evaluation of the two-point probability function for vectors oriented into
the first quadrant includes information about all other vector orientations, see Fig. 2b.

The last note concerns a two-phase medium where the two-point probability functions of
particular phases are related according to the following equation

Si
2(x) = (φi)2 − (φj)2 + Sj

2(x), (5)
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Figure 2: Vectors connecting identical points in a periodical setting (a) and the corresponding identical values
of the periodic two-point probability function (b)

i.e. they differ only by a constant, also visible in Fig. 1d. Since the constant is given by
known volume fractions of particular phases, only one two-point probability function needs
to be determined to describe the two-phase medium. For this reason, we may drop the
superscript of Si

2(x) and write the two-point probability function as S2(x).
Implementation of the two-point probability function is based on the assumption of a dis-

crete description of the system being studied, primarily binary images in our case. The gen-
eral and simple Monte Carlo-based evaluation strategy throws two points randomly into the
investigated medium and counts successful “hits” of both points into phase i. This approach
is, however, not only approximate but is also very computationally demanding. Therefore,
another practical method was introduced on the basis of rewriting the two-point probability
function as an autocorrelation of the characteristic function χi for a periodic medium as,
see [25],

Si
2(x, y) =

1

WH

W−1∑

x1=0

H−1∑

y1=0

χi(x1, y1)χ
i((x1 + x)%W, (y1 + y)%H), (6)

where the symbol % is the modulo; χi(x1, y1) denotes the value of χi for the pixel located in
the y1-th row and the x1-th column of the digitised image with dimensionsW×H; and where
x and y are the vertical and horizontal distances between two pixels, see Fig. 3. According
to [28], Eq. (6) can be computed in an efficient way using the Fast Fourier Transform. Ap-
plying this, the reformulation of the two-point probability function Si

2 for a periodic medium
can be written as

Si
2(x, y) =

1

WH
IDFT

{
DFT

{
χi(x, y)

}
DFT {χi(x, y)}

}
, (7)

where IDFT is the inverse Discrete Fourier Transform (DFT) and where the symbol ·̄ stands
for the complex conjugate. This method is very efficient and its accuracy depends only on
the selected resolution of the digitised medium, see [25, 7]. The Fast Fourier Transform,
which needs only O(WH log(WH) + WH) operations, is used to perform the numerical
computations presented below.

Compression and reconstruction of random microstructures using accelerated Lineal
path function 47



x1 x

y1

y H

W

x1

x2

Figure 3: Illustration of a digitised image

(a)

−200

0

200

−200

0

200

0

0.1

0.2

0.3

0.4

x [px]y [px]

cut 1-1

L
w 2
[−

]

(b)

−200

0

200

−200

0

200

0

0.2

0.4

0.6

x [px]

cut 1-1

y [px]

L
b 2
[−

]

(c)

0 50 100 150 200 250
0

0.2

0.4

0.6

x [px]

L
2
[−

]

φb = 0.612

φw = 0.388

Lb
2

Lw
2

(d)

Figure 4: Illustration of the two-point probability function: (a) Example of a homogeneous system, size 500×
500 [px]; (b) Lw

2 -function; (c) Lb
2-function; (d) Comparison of L2-functions in cut 1-1.

2.2. Lineal path function
Another frequently used statistical descriptor for microstructural morphology quantifica-

tion is the lineal path function Li
2(x1,x2), originally introduced in [20] and further elabo-

rated in [13, 25]. It is defined as a low-order descriptor based on the more complex funda-
mental function λi which is able to describe certain information about phase connectedness
and put more emphasis on short-range correlations because its value quickly vanishes to zero
with increasing |x|. The fundamental function λi is defined as

λi(x1,x2, α) =

{
1, if x1x2 ⊂ Di(α),
0, otherwise,

(8)

i.e. a function which is equal to 1 when the segment x1x2 is contained in phase i for sample
α, and 0 otherwise. The lineal path function is defined as the probability that the line segment
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Figure 5: Vectors corresponding to identical segments (a), point symmetry of the lineal path function of black
(b) and white (c) phases

x1x2 lies entirely in phase i and can be written as the ensemble averaging fundamental
function given as

Li
2(x1,x2) = 〈λi(x1,x2, α)〉. (9)

As mentioned above, under the assumption of statistical homogeneity [25], the function can
again be simplified to Li

2(x1,x2) = Li
2(x) with x = x2 − x1 and yielding

Li
2(|x| = 0) = φi (10)

lim
|x|→∞

Li
2(x) = 0. (11)

Here again, Eq. 11 assumes no long-range correlations and thus the probability that the line
segment x1x2 lies entirely in phase i vanishes to zero as its length increases, see Fig. 4 for
an illustration of such a homogeneous system.

For the sake of consistency regarding formulation and computation of the two-point prob-
ability function, we again introduce the assumption of periodicity in our numerical imple-
mentation. However, there are no computational benefits, since all vectors in Fig. 2a connect
the same points via different paths. Nevertheless, we need to keep in mind that line segment
x1x2 is identical to line segment x2x1 and thus

Li
2(x) = Li

2(−x), (12)

which means that the lineal path possesses point symmetry, see Fig. 5. Hence, we need to
compute the lineal path function only for half of all possible orientations of vector x and the
rest is obtained by symmetry.

In contrast to the evaluation of Si
2, see Eq. (5), the lineal path function computed for

one phase does not include all the information about the lineal path function regarding the
other phase, which thus needs to be computed separately, see Fig. 5. This yields additional
information about structural morphology but also has higher computational demands.

With this in mind, the standard numerical implementation of a sequential version of the
entire Li

2 starts from the definition of line segments connecting two pixels x1 and x2 within
an image with dimensions W × H . The set of pixels representing a segment starting in
x1 = (0, 0) and ending in x2 = (x, y) is specified by an algorithm originally proposed by
Bresenham [30] defining a unique solution for any positions for boundary pixels x1,x2. Due
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to point symmetry for the lineal path function, all orientations of a line segment necessary
for its computation are produced by moving point x2 within domain D which is given by two
rectangles specifying the left bottom corner of a pixel, i.e.

D := [−W + 1;−1]× [1;H − 1] + [0;W − 1]× [0;H − 1] (13)

see Fig. 6. The number of segments defining the lineal path function is thus given as a
cardinality of domain D, which is |D| = 2HW − H − W + 1. With defined segments,
the computation of the lineal path function involves simple translations of each segment
throughout the image and a comparison for examining if all pixels of the segment at a given
position correspond to image pixels with the value of an investigated phase. Such an intuitive
description represents, however, a computationally costly procedure leading to O(H3W 2)
operations for periodic media with W ≤ H . For our purposes, this simplifies to O(W 5)
for W = H , i.e. a square shape of SEPUC/SSRVE. In order to reduce the computational
demands, several algorithmic and hardware acceleration steps are introduced and described
in the following section.

3. Numerical implementation of L2

In order to avoid the tremendous computational requirements for an entire L2 evaluation,
some authors (see e.g. [25]) compute only its approximation using the Monte Carlo-based
procedure. In such cases, the line segments are not compared with the image at all available
positions equal to a number of all pixels in the image, but only for a limited number of
randomly selected positions. The level of error produced by such approximation is illustrated
in Figure 7 for three different types of microstructures as a function of the number N of
selected positions. The values on the vertical axis are the least square errors between the
exact lineal path function L2 and its approximation L̃2 given as

e(Li
2) =

∑

p∈D
(Li

2(xp)− L̃i
2(xp))

2, (14)
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Figure 7: Convergence analysis of MC-based approximation of lineal path functions computed for (a) white
phase and (b) black phase

where superscript i denotes the phase and subscript p covers all the oriented segments defin-
ing the lineal path function given by (13). Dimensions of all three microstructural images
are 100× 100 pixels. Since the lineal path function is evaluated at N positions obtained as a
random N -combination of set |D| without repetition, error converges to zero for N = |D|.

3.1. Parallelisation on GPU using a CUDA environment
The key idea described here is porting part of the code to a GPU device. Parallel com-

putations on GPUs have become very popular within the last decade thanks to their high
performance at a relatively low financial cost. Moreover, the programming environment
CUDA (Compute Unified Device Architecture) simplifies GPU-based software development
because it uses standard C/C++ language, see [31]. In order to clearly describe GPU par-
allelism, we start with the algorithmic structure of the L2 evaluation consisting of several
computational steps:

1. generating line segments for given input dimensions,
2. allocating the inputs (e.g. each input representing a binary image),
3. calculating the lineal path function based on translations of each segment and its com-

parison with an image.

Regarding the computational requirements for particular steps, one needs to keep in mind
that L2 is supposed to be called repeatedly within an optimisation process for new feasible
solutions (i.e. new binary images) of the same dimensions W × H . This means that the
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definition of line segments remains the same during the entire optimisation process, thus
enabling step 1 to run only once at the beginning of the optimisation, while steps 2 – 3 need
to be repeatedly called. This also implies that step 1 is critical namely from the memory
usage point of view, while steps 2 – 3 need to be optimised with respect to computational
time.

Before starting an implementation of Bresenham’s algorithm for defining line segments,
one needs to carefully consider line segment coding. While the definition of a particular
pixel according to its (x, y) coordinates is very intuitive, it is excessively memory intensive.
It is much more efficient to index all pixels in the image by only one integer value from 0 to
WH − 1. Then the number of integer values required for definition of all line segments is
given as

M =
W∑

i=1

H∑

j=1

max(i, j) +
W∑

i=2

H∑

j=2

max(i, j), (15)

which leads to

M =
W (3H2 + 3H +W 2 − 1)

3
− W (W + 1)

2
− H(H + 1)

2
+ 1 (16)

for W ≤ H and to

M =
4W 3 − 4W + 3

3
(17)

forH = W . Figure 8 shows the dimensions of square images which can be handled by cards
with a given memory size, assuming that one integer requires 4 bytes.

As mentioned above, the consecutive steps 2 and 3 are supposed to be called repeatedly
within the optimisation process and thus represent the principal demands on computational
time, see Alg. 1 for a more detail algorithmic structure for step 3. The image enters the
algorithm as matrix A twice wider and twice higher than the original because it is periodi-
cally copied onto a grid 2 × 2 to enable simpler translation of the segments starting within
the image and to ensure that segments never end outside an image. Translation is thus de-
fined by moving the starting point of a segment within one quadrant of the entering image.
To facilitate repeatedly called computations, the indices of moves within one quadrant are
precomputed and stored in separate matrix C.

The structure of Alg. 1 suggests several possibilities for parallelisation. One method
involves parallelisation over particular segments (line 1), which would, however, lead to
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Data:
A . . . a binary image defined as an integer vector with size 2W · 2H
B . . . an irregular 2D integer matrix defining the pixels of Bresenham’s line
segments of size S×segment size, where S = 2WH −W −H + 1
C . . . an integer vector of size WH defining a translation within an image W ×H
mapped onto a periodically copied image of size 2W × 2H
D . . . an integer vector of size S defining the size of particular segments phase . . .
an integer defining phase, for which L2 is evaluated
Result: L . . . an integer vector of size S defining L2

1 for seg=0 to S − 1 do
2 for transl=0 to WH − 1 do
3 for pix=0 to D[seg] do
4 if A[B[seg][pix]+C[transl]] 6= phase then
5 break;
6 end
7 end
8 if pix = D[seg] then
9 L[seg] = L[seg] + 1;

10 end
11 end
12 end
Algorithm 1: Algorithmic structure of implementation designed for a CPU device;
seg, transl and pix represent integer variables used to govern the corresponding
items for loops.

extremely asynchronous computation due to large differences in the lengths of segments.
Parallelisation over translations (line 2) is not completely synchronous because its inner cy-
cle over pixels of the segment (line 3) is stopped when it proceeds to a pixel which does
not lie in a given phase, which is dependent on the morphology of a particular image. Nev-
ertheless, computation has at least a chance to be more synchronous than the surely highly
asynchronous parallelisation over segments.

Fortunately, the algorithm clearly consists of a very large number of extremely simple
logic and arithmetic operations and is thus well-suited for parallelisation on a GPU because
of the following reasons:

(i) It allows for a nearly synchronous parallelisation scheme, thus respecting the basic
GPU programming rule – memory coalescence;

(ii) It corresponds to the SIMD (single instruction, multiple data) architecture: a single
instruction is an index of a segment to be compared with an image at all possible
positions, which thus represents the multiple data;

(iii) Most of the memory transfer corresponding to copying of images, translations, line
segments and their sizes is done only once and in large chunks, thus reducing related
system overhead.
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Figure 9: Illustration of overlapping line segments

The parallel algorithmic structure proposed to increase numerical efficiency of L2 com-
putation is given in Alg. 2. The crucial step for implementation efficiency involves line 9,
where all nt = WH translations are distributed into available multiprocessors (MP). Since
particular GPU architectures differ slightly from each other, we concentrate here on a Fermi
compute architecture [31], where each MP has 32 single-precision CUDA cores. This means
that each MP can simultaneously solve up to 32 tasks – so-called threads – defining one warp.
Besides currently computing threads, the MP can already load and prepare other threads up
to maximally 1536 threads = 48 warps. The tasks are sent to the MP in blocks, where each
particular translation is assigned to a particular thread automatically according to its position
within a block. Storing the translations in a 1D vector instead of a 2D matrix thus allows
for more even distribution of translations among the MPs. Each MP can handle maximally
8 blocks at the same time. The size of a block can be chosen by a programmer, but finding
the optimum size is not a straightforward process. To maximise the occupancy of MPs, it is
convenient to define the size of block B as

B =





1× 6 warps = 1× 192 threads, if
⌈

nt

nmp

⌉
≥ 1536,

1×
⌈

nt

8nmp

⌉
threads, otherwise,

(18)

where d·e denotes a round-up operation to the nearest integer and nmp is the number of
available MPs. Nevertheless, other aspects related to shared memory and registers [31] may
shift the preferences towards bigger blocks. A more detailed study of optimal block size is
beyond the scope of this paper. In our computations, we focuse on occupancy maximisation
only and the block size was set according to Eq. (18).

3.2. Algorithmic acceleration of L2 evaluation
Besides parallelisation, we also propose one simple algorithmic acceleration of lineal

path computation. The idea stems from the discrete nature of segments and the fact that
some shorter segments overlap with some longer segments. See Fig. 9, where all segments
start at x1 = (0, 0) and those ending in red pixels are overlapped by segments ending in
black pixels. If a segment never falls entirely in a given phase and its L2 value is zero,
it is obvious that all longer overlapping segments will have a value of zero as well. This
simple logic brings additional significant time savings in L2 evaluation. One only needs
to precalculate a vector containing the indices of the longest shorter overlapping segments
(LSOS). Such a precalculation is computationally expensive but is done only once at the
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1 CPU: calculating line segments: indices in B and sizes in D;
2 CPU→GPU: copying B and D into GPU;
3 CPU: loading and copying binary image onto grid 2× 2 saved
4 into A, defining translations C ;
5 CPU→GPU: copying C and phase into GPU;
6 CPU→GPU: copying A into GPU;
7 for seg = 0 to S − 1 do
8 CPU→GPU: copying seg into GPU;
9 GPU calls threads: for transl = 0 to WH − 1 do

10 L[seg] = 0;
11 for pix=0 to D[seg] do
12 if A[B[seg][pix]+C[transl]] 6= phase then
13 break;
14 end
15 end
16 if pix = D[seg] then
17 L[seg] = L[seg] + 1;
18 end
19 end
20 end
21 CPU←GPU: copying L to CPU;
Algorithm 2: Simplified algorithmic structure of implementation designed for a sin-
gle GPU device; All variables are defined in Alg. 1.

beginning of the algorithm. Keeping in mind that steps 6 to 21 in Alg. 2 are supposed to be
called repeatedly within an optimisation process, this precalculation should take place before
step 3. Then one simple if-condition is added before translating and comparing the segments
with the image. If the LSOS corresponding to the current segment has a zero value for L2,
then the L2 value of the current segment is also automatically given a zero value and the
translating and comparing phase is skipped. To be more specific, there are two possibilities
for solving this crucial if-condition. An intuitive solution involves solving the if-condition
on the CPU, i.e. before line 8 of the Alg. 2, so as to skip the calling of the GPU entirely.
However, in such a case, the CPU needs to have knowledge about previously computed
segments, which means that the value of the lineal path function has to be sent to the CPU
for every segment separately inside the for-loop before line 18. Our computations, however,
revealed that repeated sending of one integer from GPU to CPU is time-consuming and it is
faster to repeatedly call the GPU, solve the if-condition there (i.e. before line 10) and store
all computed values of the lineal path function on the GPU only until the last segment is
computed. Then sending the whole vector of the lineal path values saves significant time.
We implemented this latter variant and refer to it as enhanced, while the original version of
the algorithm without any algorithmic acceleration is called standard.

The performance of GPU parallelism is demonstrated by evaluating the L2-function on
three different microstructures: (i) a chess-type morphology with dimensions of squares 10×
10 [px], (ii) a particulate suspension consisting of equal-sized squares with dimensions 4×4
[px] and (iii) a metal foam taken from [32]. Tab. 1 compares the amount of time necessary
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Standard Enhanced
dim. GPU CPU S GPU CPU S S∗

[px] [s] [s] [−] [s] [s] [−] [−]
10× 10 2.4·10−3 0.59·10−3 0.2× 2.4·10−3 0.39·10−3 0.2× 0.2×
20× 20 11.9·10−3 11.9·10−3 1.0× 11.1·10−3 7.8·10−3 0.7× 1.1×
50× 50 0.15 0.55 3.7× 0.10 0.24 2.5× 5.8×
100× 100 2.1 7.0 3.3× 0.26 0.27 1.0× 27.0×
200× 200 32.6 110.9 3.4× 2.0 1.0 0.5× 53.9×
500× 500 318.4 1071.1 3.4× 16.3 6.4 0.4× 65.8×

Standard Enhanced
dim. GPU CPU S GPU CPU S S∗

[px] [s] [s] [−] [s] [s] [−] [−]
10× 10 2.5·10−3 0.71·10−3 0.3× 2.5·10−3 0.38·10−3 0.2× 0.3×
20× 20 12.9·10−3 16.0·10−3 1.2× 12.5·10−3 8.2·10−3 0.7× 1.3×
50× 50 0.16 0.81 5.0× 0.13 0.36 2.7× 6.0×
100× 100 2.5 16.1 6.4× 1.7 7.2 4.1× 9.3×
200× 200 41.9 256.3 6.1× 20.8 78.0 3.7× 12.3×
500× 500 411.6 2544.0 6.2× 205.1 789.1 3.9× 12.4×

Standard Enhanced
dim. GPU CPU S GPU CPU S S∗

[px] [s] [s] [−] [s] [s] [−] [−]
10× 10 2.4·10−3 0.73·10−3 0.3× 2.4·10−3 0.65·10−3 0.3× 0.3×
20× 20 12.0·10−3 13.8·10−3 1.1× 11.9·10−3 9.7·10−3 0.8× 1.2×
50× 50 0.17 1.31 7.6× 0.15 0.67 4.4× 8.7×
100× 100 2.8 31.9 11.5× 2.22 17.2 7.7× 14.3×
200× 200 48.3 577.9 12.0× 32.9 241.7 7.3× 17.5×
500× 500 542.1 7911.7 14.6× 445.2.1 3884.2 8.7× 17.7×

Table 1: Comparison of CPU and GPU performance averaged over five evaluations (S stands for speedup and
S∗ represents overall speedup obtained by hardware and software accelaration)

averaged over five evaluations of the lineal path function for both phases on single CPU or
GPU devices depending on image size and chosen variant of the algorithm. Computational
times correspond to a part of the lineal path function computation, which is called repeatedly
within the optimisation process, i.e. evaluation of lines 1 to 5 in Alg. 2 is excluded. We
show that for very small images, the use of CPU outperforms use of the GPU because of
the additional time spent by communicating with the GPU. Nevertheless, for images of 50×
50 [px], the GPU achieves an evident acceleration which mostly increases as the dimensions
of the image increase. An exception is the chess-type microstructure, where a specific phase
distribution limits the length of most of the line segments to 10 [px]. This significantly
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elevates the gain in speed obtained for the enhanced variant of the algorithm and even the
CPU version is so fast that communication with the GPU leads again to deceleration, which
increases according to the image dimensions.

The computations presented in Tab. 1 were performed on a 2× INTEL Xeon E5− 2620
@ 2.0 GHz, 96 GB RAM, 2×GPU - NVIDIA QUADRO 4000 with a Micrsosoft Windows 7
64-bit operating system and CUDA v. 6.5. Furthermore, the algorithm is also designed for
dual GPUs. However, scalability towards multiple GPU devices is not considered here. The
logical step for implementing a dual GPU algorithm would be to uniformly distribute the
generated segments so that each device holds only a certain amount of them. This improve-
ment would thus result in lower memory requirements.

4. Optimisation procedure

Before proceeding to a comparative study of the lineal path and two-point probability
function, we briefly describe the optimisation procedures employed in our computations.
Here, we used the framework first introduced by Yeong and Torquato [13] for digitised media
and further elaborated, for instance, in [33, 34, 19, 23]. The algorithm is based on a simulated
annealing method independently developed by Kirkpatrick et al. [35] and Černý [36]. It starts
with a randomly generated microstructure and quantification of its quality according to a
chosen statistical descriptor. The microstructure is then modified with a chosen operator and
its new quality is evaluated. The acceptance of the proposed modification is governed by the
Metropolis rule, which allows, with certain probability, acceptance of a worse solution and
thus avoids a local extreme. Such a generic optimisation scheme opens up the possibility
for defining the modification operator suitable for a given microstructure. For instance, a
particulate suspension consisting of equal-sized discs can be modified by moving the centre
of an arbitrarily chosen disc, see e.g. [10, 11]. Such a move affects the whole set of pixels
and allows preservation of the known shape of particles, thus accelerating the optimisation
procedure. Most of the microstructures, however, do not consist of particles having a specific
known shape. In such cases, the simplest modification operator is based on interchanging
two randomly chosen pixels from different phases, which at least allows for preservation of
their volume fractions [13]. The very simple acceleration employed in our implementation
consists of a random selection of interfacial pixels which leads to a significant increase in
accepted modifications, as presented in [37].

Since the proposed way of porting lineal path evaluation onto the GPU counts with copy-
ing the whole image from CPU to GPU for any new proposed modification, the modification
operator can be designed in any convenient way. Nevertheless, our further computations
only use the interchange of two pixels. The particular structure of the employed optimisa-
tion algorithm is given in Alg. 3. First of all, a random digitised image P is created with the
same volume fractions of phases as the original morphology. Its statistical similarity to the
original image is then evaluated using the chosen statistical descriptor SD as the least square
error:

e(SDi) =
∑

p∈D
(SDi

original(xp)− SDi(xp))
2, (19)

where superscript i denotes the phase for which the SD is evaluated and subscript p cor-
responds to the component of a discretised descriptor. If superscript i is missing in the
following text, SD is evaluated for both phases. Note that the least square error in Eq. (19)
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Data: binary image with dimensions W ×H
Result: optimised SEPUC corresponding to given image

1 create random image(P );
2 SDP = evaluate(P );
3 T = Tmax;
4 Tmult = (Tmin/Tmax)

(succmax/Nstep);
5 while c < Nstep do
6 c = s = 0;
7 while c < cmax & s < smax do
8 c = c+ 1;
9 Q = modify(P ) ;

10 SDQ = evaluate(Q);
11 if random number U[0,1] < exp((SDQ− SDP )/T ) then
12 s = s+ 1;
13 P = Q;
14 SDP = SDQ;
15 end
16 end
17 T = T · Tmult;
18 end

Algorithm 3: Algorithmic structure of simulated annealing

also consists of a large number of simple arithmetic operations, which are again efficiently
evaluated in parallel on the GPU.

Control parameters of the algorithm were set to following values: The value of Tmax

Nstep = 4 · 106 cmax = 0.1Nstep

Tmin = 0.01Tmax smax = 0.01Nstep

Table 2: Control parameters of simulated annealing method

was manually changed for every particular computation so as to achieve approximately the
ratio s/c = 0.5 within the first few steps of the algorithm. Some other recommendations for
setting these parameters can be found e.g. in [38].

5. Microstructure reconstruction

Reconstruction of a microstructure from its statistical description is an inverse problem
addressed by several authors in different ways, see [37, 39, 40] and the references therein.
Here we follow the concept proposed in [13], where the discretised randomly generated mi-
crostructure is optimised in relation to the prescribed statistical descriptor. The authors in
[41] presented numerical evidence that a periodic medium discretised into pixels is com-
pletely specified by its two-point correlation function, up to a translation and, in some cases,

3Similarly as in the introduction part, superscripts ·b and ·w represent again black and white phases, respec-
tively.
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inversion. This conclusion implies that the reconstruction process based on the discretised
two-point probability function has a unique solution. For many microstructural morpholo-
gies, the same holds also for reconstruction from the lineal path function. For instance,
the chess-type morphology is fully defined not only by the lineal path function computed
for both phases, but only one of the phases is fully sufficient to completely define the mor-
phology, see Figure 10. Nevertheless, generic evidence for a unique solution of the lineal
path function-based reconstruction is missing and is suggested only by findings concerning
orientation-dependent chord length distributions in continuous domains [42]. On the con-
trary, we can demonstrate that when employing Bresenham’s algorithm for the definition of
the line segments, the lineal path function does not define a unique solution for a reconstruc-
tion process based on a discretised medium.

Fig. 11 shows an example of two different periodic cells with dimensions 2×8 of pixels.
Due to the same volume fraction of both phases, the two-point probability functions obtained
for both phases in Fig. 11c-d are identical, which is in agreement with Eq. 5. However, both
functions differ from the corresponding ones obtained for the other cell in Fig. 11i-j. The
lineal path functions are, on the other hand, identical for both phases in Fig. 11e-f as well as
for both phases obtained for the second cell in Fig. 11k-l. This proves a non-unique solution
for the reconstruction process of the chosen highly rough discretisation. Of course, for a
higher resolution, the difference between the lineal path functions obtained for both cells can
be revealed again. As a conclusion, a reconstruction process based on a discretised medium
always has a unique solution for a two-point probability function and mostly for a lineal path
function where the differences among a potential set of solutions decrease with increasing
resolution.

Based on this conclusion, we can proceed to comparing the entire lineal path function L2

with its Monte Carlo-based approximation L̃2 within the reconstruction process. Considering
the microstructures depicted in Fig. 7, we may assume that their reconstruction based on
the entire lineal path function will lead to almost the same microstructures as the original
ones in the case of the microstructures B and C, and to exactly the same one in the case of
A. To decrease the computational demands of the comparison, we reduced the dimensions
of the microstructures to 50 × 50 pixels. The reconstruction process is driven again as the
minimisation of the least square error given in Eq. 14. The Monte Carlo-based approximation

(c)

(a) (b) (d) (e) (f)

Figure 10: Chess microstructure: (a) Original medium with size 100 × 100 [px] and characteristic lengths
20 × 20 [px]; (b) Random initial structure, size 20× 20 [px]; (c) S2-based reconstructed image; (d) L2-based
reconstructed image; (e) Lb

2-based reconstructed image; (f) Lw
2 -based reconstructed image; obtained within

less than 5 · 105 iterations3.
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described in Sec. 3 is applied here to evaluate both the lineal path functions of the original
as well as of the reconstructed image, respectively. In order to investigate the influence
of the approximation quality, we have considered three levels corresponding to a Monte
Carlo evaluation based on N = 10, 100 and 1000 samples. The results are compared with
the reconstruction based on the entire lineal path function, where the number of samples is
identical with the number of pixels in the images, i.e. N = 2500.

The relative errors of the final reconstructed L2-based images related to the entire lineal
path function L2 of original images are displayed in Fig. 12. The displayed values reveal
that the reconstruction procedure based on lineal path approximation converges very slowly
with the number of evaluated samples and the reconstruction process thus leads to images
according to the lineal path function which are very different from the original image.
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Figure 11: (a) Original medium, size 20×24 [px]; (b) Periodic unit cell (PUC), size 2×8 [px]; (c) Sw
2 -function

of PUC; (d) Sb
2 -function of PUC; (e) Lw

2 -function of PUC; (f) Lb
2-function of PUC; (g) Original medium, size

20 × 24 [px]; (h) Periodic unit cell, size 2 × 8 [px]; (i) Sw
2 -function of PUC; (j) Sb

2 -function of PUC; (k) Lw
2 -

function of PUC; (l) Lb
2-function of PUC;
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Figure 12: Comparison of the entire L2 and its approximation L̃2 used in microstructure reconstruction for
different values of N

6. Microstructure compression

While the reconstruction process aims at rediscovering a microstructure with dimensions
and spatial statistics defined by a given descriptor, the compression process tries to reduce the
information content of the given morphology and searches for its compressed representation
using a small statistically similar periodic cell [7, 43] or a set of compatible cells [10]. After
evaluating a chosen statistical descriptor over the whole available domain of the original
medium, one needs to determine the cells’ dimensions and accordingly cut the dimensions
of the descriptor. Then the compression process proceeds in exactly the same manner as the
microstructure reconstruction.

As our numerical implementations of the two-point probability function and the lineal
path function are both based on the assumption of periodicity, they will not provide precise
results when applied to original random and non-periodic microstructures. Nevertheless,
as already mentioned, in [29], we have shown that the assumption of periodicity does not
introduce systematic bias in the values of the descriptors.

6.1. Particulate suspension
The first example comparing properties of S2- and L2-based compression concerns an

artificially created particulate suspension consisting of equal-sized white squares randomly
distributed within a black matrix, see Fig. 13. The shape of particles is a very significant
property in such microstructures that can easily be preserved by modifying the optimisation
algorithm so as to start with randomly distributed particles and then to move their centres
during the optimisation process. Nevertheless, here we tested the descriptors according to
their ability for capturing such an important property within the compression process.

Fig. 13c shows that S2-based compression leads to significant deterioration of the shape
of particles. This is caused by the very small ratio of particles over the size of the PUC,
i.e. 4 × 4 [px] vs. 50 × 50 [px]. The information regarding shape is thus saved on a
small portion of the descriptor’s domain which corresponds to short-range correlations (see
Fig. 14a), while most of the domain defines long-range correlations corresponding to the
mutual distances between the particles. The lineal path function allows us to separate the
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(c)

(a) (b) (d) (e) (f)

Figure 13: Particulate suspension: (a) Original medium, size 100× 100 [px], particles 4× 4 [px]; (b) Random
initial structure, size 50 × 50 [px]; (c) Compressed S2-based image, size 50 × 50 [px]; (d) Compressed Lb

2

and Lw
2 -based image, size 50 × 50 [px]; (e) Compressed Lw

2 -based image, size 50 × 50 [px]; (f) Compressed
Lb
2-based image, size 50× 50 [px]
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Figure 14: Particulate suspension: (a) Original medium, size 100 × 100 [px], particles 4 × 4 [px]; (b) S2-
function; (c) Lw

2 -function; (d) Lb
2-function

information about the shape of particles from their mutual positions, since Lw
2 in Fig. 14b

only contains information about shape, while Lb
2 in Fig. 14c defines position. Accordingly,

Lw
2 -based compression as in Fig. 13e obviously leads to well compressed particle shapes,

while Lb
2-based compression as in Fig. 13f does not capture the shape of particles at all and

L2-based compression as in Fig. 13d provides a compromise solution. It is hard to evaluate
the quality of obtained structures in an objective manner, but we can conclude that the L2

function allows a user to emphasise short-range effects as needed.
Another interesting aspect concerns mutual comparison of the compressed microstructu-

res and the corresponding errors in describing original media according to Eq. (14), listed in
Tab. 3. While the optimisation of S2 leads to a microstructure which is relatively good also
in relation to L2 and comparable with microstructures obtained for Lw

2 - or Lw
2 -based optimi-
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sation, the opposite is not true. The microstructures optimised w.r.t. one or both phases of L2

manifest very poor correlations, which are comparable or even worse than those obtained for
a random image. The lineal path function cannot therefore be applied to correlations-based
compression.

Compressed medium e(S2) e(L2)

Random Fig. 13b 3.12 · 10−1 1.68 · 101

S2-based Fig. 13c 9.20 · 10−3 2.35 · 100

L2-based Fig. 13d 3.09 · 10−1 2.73 · 10−2

Lw
2 -based Fig. 13e 3.53 · 10−1 1.08 · 100

Lb
2-based Fig. 13f 6.52 · 10−1 9.60 · 10−1

Table 3: Mutual comparison of compressed microstructures.

6.2. Epithelial cells
Epithalial cells provide a typical example of morphology characterised by very thin and

continuous walls, see Fig. 15a. Their volume fraction is very small, only 4.97 [%] and thick-
ness is mostly equal to only 1 pixel. Assembling continuous walls from a random initial
arrangement is rather unattainable. As can be expected, the two-point probability function
fails completely in this task, see Fig. 15c. Nevertheless, the assumption that the continuity
of the white walls can be captured by a lineal path computed for the white phase is incor-
rect. As a matter of fact, the nonlinear walls are composed of a set of short line segments

(a)

(b)

(c)

(d) (e) (f)

Figure 15: Epithelial cells: (a) Original medium, size 510 × 510 [px]; (b) Random initial structure, size
100 × 100 [px]; (c) Compressed S2-based image, size 100 × 100 [px]; (d) Compressed Lb

2 and Lw
2 -based

image, size 100 × 100 [px]; (e) Compressed Lw
2 -based image, size 100 × 100 [px]; (f) Compressed Lb

2-based
image, size 100× 100 [px]
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Figure 16: Epithalial cells: (a) Original medium, size 100 × 100 [px]; (b) S2-function; (c) Lw
2 -function; (d)

Lb
2-function

and Lw
2 -based compression thus leads to a random arrangement resembling stars as visible

in Fig. 15e. The continuity of walls is actually closely related to cells, whose limited size
requires a continuity in the surrounding medium. As a consequence, the information about
the continuity of walls is surprisingly hidden in Lb

2; see results of Lb
2-based compression

in Fig. 15f. Due the small volume fraction of the white phase, its influence on L2-based
compression is rather small and the results are principally similar to those from Lb

2-based
compression, cf. Figs. 15d and 15f. The remaining discontinuities are very difficult to im-
prove with the proposed optimisation strategy based on random interchanging of two pixels.
We can only assume that full connectivity of walls can be obtained using a more sophisticated
modification operator.

(a)

(b)

(c)

(d) (e) (f)

Figure 17: Sandstone: (a) Original medium, size 300 × 300 [px]; (b) Random initial structure, size 50 × 50
[px]; (c) Compressed S2-based image, size 50×50 [px]; (d) Compressed Lb

2 and Lw
2 -based image, size 50×50

[px]; (e) Compressed Lw
2 -based image, size 50× 50 [px]; (f) Compressed Lb

2-based image, size 50× 50 [px]
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6.3. Sandstone
The next example of microstructure compression is devoted to the morphology of sand-

stone, which is characterized by irregular shapes of its porous system, corresponding here to
the white phase. A slice of digitised sandstone 300× 300 [px] is depicted in Fig. 17a.

As in previous examples, it is worthwhile to mutually compare again the final compressed
structures. The corresponding errors are listed in Tab. 4 and it can be seen that computed re-
sults differ from those calculated for the regular shape of inclusions presented in Sec. 6.1.
L2-based compression also yields relatively good results for the two-point probability func-
tion, but not vice versa. This confirms that the level of connectedness information starts to
play a role and it is not captured by S2-based optimisation.

Compressed medium e(S2) e(L2)

Random Fig. 17b 1.14 · 100 1.48 · 103

S2-based Fig. 17c 3.97 · 10−1 2.22 · 102

L2-based Fig. 17d 6.91 · 10−1 9.45 · 10−1

Lw
2 -based Fig. 17e 5.61 · 10−1 1.24 · 102

Lb
2-based Fig. 17f 7.63 · 10−1 1.77 · 100

Table 4: Mutual comparison of compressed microstructures.

6.4. Trabecular bone
The last example concerns trabecular bone, which represents a medium with approxi-

mately equal volume fractions of both phases creating continuous irregular branches. Our
original microstructural specimen was a 100× 100× 100 [px] three-dimensional image ob-
tained with micro Computed Tomography [44]. We divide this data into an ensemble of
100 two-dimensional cuts 100 × 100 [px] and, by employing the assumption of ergodicity,
the statistical descriptors are computed as an average over the ensemble. The computational
effort for the L2-based reconstruction is enormous. Although part of the L2 calculation was
ported to a GPU, the entire compression process for image 100 × 100 [px] lasted days, re-
call Tab. 1 for the time requirements for single L2 evaluation. According to the relations in
Sec. 2, the overall number of operations for a single standard calculation4 of the Li

2-function
is 6.716 · 109 comparing to 1.021 · 105 operations of S2 evaluation.

The final compressed S2 and L2-based structures are shown in Figs. 18c and d, respec-
tively. The S2- and L2-functions of original and new microstructures are then summarised
in Fig. 19. It is clearly visible that the optimised functions coincide very well with the
prescribed ones, see Fig. 19b,d,f. However, the same does not hold for a microstructure
optimised w.r.t. one descriptor but then evaluated w.r.t. to another. The L2-based com-
pressed microstructure manifests much stronger short-range correlations, see Fig. 19b, while
the S2-based compressed microstructure underestimates the connectivity and, especially in
the black phase, consists of a smaller number of continuous line segments, see Fig. 19f.

4The number of operations related to an enhanced version of Li
2 evaluation cannot be determined exactly

because of missing knowledge about the zero segments. However, there are approximately 97 percent fewer
operations for dimensions 100× 100 [px], i.e. approximately 2.0 · 108 operations.
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(a)

(b) (c) (d)

Figure 18: Trabecular bone microstructure obtained by micro Computed Tomography [44]: (a) 3-D cuts of
original structure, 100 × 100 [px]; (b) Initial random morphology corresponding to volume fraction φb and
φw of original medium, 100× 100 [px]; (c) Compressed S2-based structure, 100× 100 [px]; (d) Compressed
L2-based structure, 100× 100 [px]

Nevertheless, we can conclude that both descriptors provide visually well compressed mi-
crostructures and even the two-point probability function enables continuous regions similar
to the original medium to be obtained.

7. Conclusions

This paper is devoted to comparing the lineal path function and the two-point probability
function in reconstruction and compression of two-phase microstructures. To investigate the
properties of the descriptors in a sufficient detail and to avoid some misleading conclusions
based on rough discretisation of the lineal path by an approximately evaluated sampling
template, an accelerated version of the entire lineal path function was proposed. Acceleration
involves namely reformulation of the sequential C/C++ code for the repeatedly called part of
the lineal path function into the parallel C/C++ code with CUDA extensions enabling the use
of computational potential for the NVIDIA graphics processing unit (GPU). Even though the
algorithm requires copying relatively large data structures to the GPU, we have shown that
the principal limitations reside in the computational time required within the compression or
reconstruction process, where the lineal path function often needs to be called, indeed, more
than a million times. Despite parallel evaluation of the lineal path function on the GPU, the
evaluation of the two-point probability function remains faster even on a single CPU thanks
to an accelerated formulation based on the Fast Fourier Transform.

Compression and reconstruction of random microstructures using accelerated Lineal
path function 66



−50

0

50

−50

0

50

0

0.1

0.2

0.3

0.4

x [px]y [px]

cut 1-1

S
2
[−

]

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

x [px]

S
2
[−

]

 

 

φw = 0.342 random
original
compressed S2-based
compressed L2-based

(a) (b)

−100

0

100

−100

0

100

0

0.1

0.2

0.3

0.4

x [px]y [px]

cut 1-1

L
w 2
[−

]

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

x [px]

L
w 2
[−

]

 

 

φw = 0.342 random
original
compressed S2-based
compressed L2-based

(c) (d)

−100

0

100

−100

0

100

0

0.2

0.4

0.6

x [px]y [px]

cut 1-1

L
b 2
[−

]

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

x [px]

L
b 2
[−

]

 

 

φb = 0.658 random
original
compressed S2-based
compressed L2-based

(e) (f)

Figure 19: Results of compressed trabecular bone microstructure: (a) S2-function of compressed S2-based
medium; (b) Comparison of S2-functions in cut 1-1; (c) Lw

2 -function of compressed L2-based system; (d)
Comparison of Lw

2 -functions in cut 1-1; (e) Lb
2-function of compressed L2-based system; (f) Comparison of

Lb
2-functions in cut 1-1;

The accelerated discrete versions of both descriptors were successfully employed for mi-
crostructure reconstruction and compression processes governed by the simulated annealing
algorithm based on interchanging two interfacial pixels belonging to opposite phases. We
demonstrated that unlike the two-point probability function, the discrete version of the lineal
path function based on line segments defined by Bresenham’s algorithm does not generally
ensure a unique solution for a reconstruction process. Nevertheless, the difference among
feasible solutions is small and decreases with increasing resolution. On the other hand,
many different morphologies could be fully defined by the lineal path computed for only one
continuous phase.
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Three particular microstructures were employed for illustrating typical features of both
descriptors. A particulate suspension consisting of equal sized squares revealed the S2 func-
tion was unable to capture the shape of particles. This can be emphasised by the L2 function.
The example of epithelial cells demonstrated that the S2 function also cannot capture very
thin walls and that the computation of L2 corresponding to the phase of the walls is sur-
prisingly not needed to achieve the most connected walls in the compressed cell. Trabecular
bone, on the other hand, represents an example of mutually penetrating phases of comparable
volume fractions, where both descriptors provided visually well developed microstructures.

We may conclude that despite the proposed acceleration steps, the lineal path function
is still a computationally expensive descriptor which can, however, be essential when com-
pressing morphologies consisting of specific formations such as particles or thin walls.
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Chapter 3

CALIBRATION OF RANDOM MATERIAL MODELS

This chapter elaborates on the methods for identifying properties of random materi-
als from the macroscopic behavior of specimens in a laboratory or real-world structures.
The identification method applied here is based on Bayesian inference combining the expert
knowledge about the realistic values of material properties with the information contained
in the limited and noisy experimental data. Its principal advantage is the well-posed proba-
bilistic formulation allowing to quantify the uncertainty in the estimated values of material
properties. To preserve the robustness of the method, the probabilistic description of the es-
timated material parameters is obtained via Markov chain Monte Carlo sampling. Its crucial
drawback consists of high computational requirements connected to repeated simulations of
a finite element-based nonlinear model of the experiments. To overcome this inconvenience,
the simulations by the structural model are replaced by evaluations of polynomial chaos-
based approximation of simulated response components. The robustness and efficiency of
the method are demonstrated in two examples:(i) identification of the spatial distribution of
material transport properties within one rectangular 2D sample based on measurements of
temperature and moisture modeled by highly nonlinear Künzel’s coupled heat and moisture
transport model and (ii) identification of homogenized mechanical properties of stochastic
lattice discrete particle model for concrete from a set of stress-strain diagrams obtained in
unconfined compression cube test and notched three-point bending test.
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Kučerová, A., Sýkora, J., Rosić, B., and Matthies, H. G. (2012). Acceleration of uncertainty
updating in the description of transport processes in heterogeneous materials. Journal of
Computational and Applied Mathematics, 236(18):4862–4872.
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Email addresses: anicka@cml.fsv.cvut.cz (Anna Kučerová),
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1. Introduction

Durability of structures is influenced by moisture damage processes. High moisture lev-
els cause metal corrosion, wood decay and other structural degradation. Thermal expansion
and contraction, on the other hand, can induce large displacements and extensive damage to
structural materials with differing coefficients ,e.g. masonry. The Charles Bridge in Prague,
currently the subject of rehabilitation works, is a typical example, see [1]. A study of the
coupled heat and moisture transport behaviour is thus essential in order to improve the build-
ing materials’ performance. So far, a vast number of models have been introduced for the
description of transport phenomena in porous media. An extensive overview of transport
models can be found in [2]. In this work we focus on the model by Künzel [3], since the
predicted results comply well with the results of experimental measurements [4], once the
relevant material parameters are well estimated.

Material properties are usually determined from experimental measurements via an iden-
tification procedure, see e.g. [5]. However, the experimental measurements as well as the
identification methods involve some inevitable errors. Bayesian updating, employed within
this study, provides a general framework for inference from noisy and limited data. It enables
mutually involving both expert knowledge of the material, such as limit values of physical
parameters, and information from experimental observations and measurements. In other
words, it uses experimental data to update the so-called a priori uncertainty in the material
description and results in a posterior probabilistic description of material performance [6].
In addition, unlike traditional identification techniques that aim to regularise the ill-posed
inverse problem to achieve a point estimate, the Bayesian identification process leads to a
well-posed problem in an expanded stochastic space.

The main disadvantage of Bayesian updating lies in the significant computational effort
that results from the sampling-based estimation of posterior densities [7]. While determinis-
tic quadrature or cubature may be attractive alternatives to Monte Carlo at low to moderate
dimensions [8], computationally exhaustive Markov chain Monte Carlo (MCMC) remains
the most general and flexible method for complex and high-dimensional distributions [9, 10].
In a sampling-based procedure, the posterior distribution must be evaluated for any sample
generated from the prior one in order to decide, whether the sample is admissible or not.
The computation of the posterior involves the evaluation of the computational model—the
FE discretisation of a non-linear partial differential equation (PDE)—relating model (i.e.
material) parameters and observable quantities (i.e. model outputs). Hence, complex and
time-consuming models can make the sampling procedure practically unfeasible.

Bayesian updating of uncertainty in the description of the parameters of Künzel’s model
is thoroughly described in [11] for the case of heterogeneous material, where material pa-
rameters are described by random fields (RFs). It was shown that Bayesian updating is
applicable even for such a complex and nonlinear model as Künzel’s model. However, the
demonstrated results were performed for a sample with a coarse FE, thereby rendering the
evaluation of the numerical model computationally relatively cheap. A higher complexity of
modelled structure and its FE-based numerical model lead to time-consuming simulations
and are prohibitive for the sampling procedure. In such a case one may construct an approx-
imation of the model response and evaluate this within the sampling procedure in order to
render the updating procedure feasible [12, 13].

The efficient forward propagation of uncertainty, which may describe material proper-
ties, the geometry of the domain, external loading etc., from model parameters to model
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outputs is a main topic of stochastic mechanics. The recently developed polynomial chaos
(PC) variant of the stochastic finite element method (SFEM)—the spectral SFEM (SSFEM)
[14, 15, 16, 17, 18]—has become one of the promising techniques in this area. Some of the
uncertainties in the model are represented as random fields/processes. Here one often em-
ployed technique in SFEM computations is the use of a truncated Karhunen-Loève expansion
(KLE) to represent the RFs in a computationally efficient manner by means of a minimal set
of random variables (RVs) [19, 16, 20, 21], via an eigenvalue decomposition of the covari-
ance. This approach involves the introduction of an orthogonal—hence uncorrelated—basis
in a space of RVs. These are projections of the RF onto the orthogonal KL eigenfunctions,
and in the case of Gaussian RFs consists of Gaussian RVs. In that case they are not only
uncorrelated but independent—a computationally very important property [22]. However,
the material properties very often cannot be modelled as Gaussian due to crucial constraints
such as positive definiteness, boundedness in some interval, etc. In such a case, one has to
adopt non-Gaussian models and their corresponding approximations, see [17, 18, 23], often
as a non-linear transformation of a Gaussian RF. The orthogonal or uncorrelated RVs alluded
to above are not Gaussian in that case, and hence not independent. One then may adopt a
pure PC representation of the RF in terms of polynomials of independent Gaussian RVs
[14], or—to take advantage of the dimension reduction inherent in the KLE truncation—one
uses the PC representation for the orthogonal/uncorrelated non-Gaussian RVs from the KLE
[16, 20].

In this paper, we focus on Künzel’s model [24, 3], defined by uncertain positive-definite
material parameters, modelled as log-normal RFs according to the maximum entropy prin-
ciple. Since these RFs are non-Gaussian, their spectral decomposition (KLE) gives a set of
uncorrelated but not necessarily independent RVs. To address this problem, we project the
RVs onto a PC basis constructed from Hermite polynomials in independent Gaussian RVs
as alluded to in the previous paragraph. Such a combined expansion (KL/PC) is then used
to represent the RFs as inputs to the FE discretisation of the nonlinear Künzel model. The
solution procedure of Galerkin type for this SPDE is chosen in an “intrusive” manner based
on analytic computations in the PC/Hermite algebra [20, 25, 26]. This brings huge compu-
tational savings in case of small and moderate problem dimensions, but it requires complete
knowledge of the model (the FEM system can not be used in black-box fashion).

Once such a representation is propagated through the physical model, one obtains a de-
scription of all desired output quantities in terms of simply evaluable functions—in this case
polynomials—of known independent Gaussian RVs. This is often called a surrogate model
or a response surface.

The paper is organised in the following way. The next Section 2 reviews Künzel’s model.
Section 3 is focused on the probabilistic description of heterogeneous material properties
where particular material parameters are not spatially constant. Intrusive stochastic Galerkin
method for computing coefficients of the PC-based surrogate of outputs of Künzel’s model is
developed in Section 4 and the related outcomes a presented in Section 5. Finally, Section 6
presents the Bayesian updating procedure on Künzel’s model with the results summarized in
Section 7, and Section 8 concludes.

2. Coupled heat and moisture transfer

Künzel [24, 3] derived balance equations describing coupled heat and moisture transport
through porous media using the concepts of Krischer and Kiessl. Krischer [27] identified two
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transport mechanisms for material moisture, one being the vapour diffusion and the other
being described as capillary water movement. In other words, he introduced the gradient of
partial pressure in air as a driving force for the water vapour transport and the gradient of liq-
uid moisture content as the driving force for the water transport. This model is then extended
by Kiessl [28] who introduced the so-called moisture potential Φ used for unification of the
description of moisture transport in the hygroscopic ϕ ≤ 0.9 and over-hygroscopic ϕ > 0.9
range (where ϕ is relative humidity). The introduction of the moisture potential brings sev-
eral advantages, especially very simple expressions for the moisture transport across the
interface. On the other hand, the definition of the moisture potential in the over-hygroscopic
range was too artificial, and Kiessl introduced it without any theoretical background, see [2].

For the description of simultaneous water and water vapour transport Künzel chose the
relative humidity ϕ as the only moisture potential for both the hygroscopic and the over-
hygroscopic range. He also divided the over-hygroscopic region into two sub-ranges—the
capillary water region and supersaturated region—where different conditions for water and
water vapour transport are considered. In comparison with Kiessl’s or Krischer’s model
Künzel’s model brings certain simplifications. Nevertheless, the proposed model describes
all substantial phenomena and the predicted results comply well with experimentally ob-
tained data [4]. Therefore, it was chosen as a physical basis for the formulation of the
probabilistic framework.

Künzel’s model is described by the energy balance equation

dH

dθ

dθ

dt
= ∇T[λ(ϕ)∇θ] + hv(θ)∇T[δp(θ)∇{ϕpsat(θ)}] (1)

and the conservation of mass equation

dw

dϕ

dϕ

dt
= ∇T[Dϕ(ϕ)∇ϕ] + ∇T[δp(θ)∇{ϕpsat(θ)}] , (2)

where the transport coefficients defining the material behaviour are nonlinear functions of
structural responses, i.e. the temperature θ[◦C] and moisture ϕ[−] fields. We briefly recall
their particular relations [3]:

• Thermal conductivity [Wm−1K−1]:

λ = λ0

(
1 +

btcswf(b− 1)ϕ

ρs(b− ϕ)

)
. (3)

• Evaporation enthalpy of water [Jkg−1]:

hv = 2.5008 · 106

(
273.15

θ + 273.15

)(0.267+3.67·10−4θ)

. (4)

• Water vapour permeability [kgm−1s−1Pa−1]:

δp =
1.9446 · 10−12

µ
· (θ + 273.15)0.81 . (5)
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• Water vapour saturation pressure [Pa]:

psat = 611 exp

(
17.08θ

234.18 + θ

)
. (6)

• Liquid conduction coefficient [kgm−1s−1]:

Dϕ = 3.8
a2

wf

· 10
3wf (b−1)ϕ

(b−ϕ)(wf−1) · b(b− 1)

(b− ϕ)2
. (7)

• Total enthalpy of building material [Jm−3]:

H = ρscsθ . (8)

• Water content [kgm−3]:

w = wf
(b− 1)ϕ

b− ϕ . (9)

A more detailed discussion on the transport coefficients can be found in [3, 29]. Some of
them defined by Eqs. (3)–(8) depend on a subset of the material parameters listed in Tab. 1.
The approximation factor b appearing in Eqs. (3) and (7) can be determined from the relation:

b =
0.8(w80 − wf)

w80 − 0.8wf

, (10)

where w80 is the equilibrium water content at 0.8 [−] relative humidity. Moreover, the free
water saturation wf must always be greater than w80. Therefore we introduce the water
content increment dwf > 0 and define the free water saturation as

wf = w80 + dwf . (11)

Consequently, w80 and dwf substitute b and wf as material parameters to be identified within
the updating procedure. Tab. 1 presents the resulting list of W = 8 material parameters to be
identified. As an outcome of such a substitution, all identified parameters should be positive
and thus described by log-normal RFs (a priori information) with second order statistics
(mean values µq and standard deviations σq) given in Tab. 1. Those particular values are
chosen to correspond to materials used in masonry [30].

The partial differential equations (1) and (2) are discretised in space by standard finite
elements. This also goes well with the use of the stochastic Galerkin method for the discreti-
sation in the stochastic space. Performing first only the spatial discretisation, the temperature
and moisture fields are spatially approximated as

θ(x) =
N∑

n=1

φn(x)uθ,n, ϕ(x) =
N∑

n=1

φn(x)uϕ,n (12)

where N is the number of nodes in FE discretisation, φn(x) are the shape functions (accord-
ing to the type of used elements) and uθ,n and uϕ,n are the nodal values of temperature field
θ and moisture field ϕ, respectively.
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Parameter µq σq
dwf [kgm−3] water content increment 100 20
w80 [kgm−3] water content at 0.8 [−] relative humidity 50 10
λ0 [Wm−1K−1] thermal conductivity of dry material 0.3 0.1
btcs [−] thermal conductivity supplement 10 2
µ [−] water vapour diffusion resistance factor 12 5
a [kgm−2s−0.5] water absorption coefficient 0.6 0.2
cs [Jkg−1K−1] specific heat capacity 900 100
ρs [kgm−3] bulk density of building material 1650 50

Table 1: Mean values and standard deviations of material parameters

Using the approximations Eq. (12) and Eqs. (1), (2), we obtain a set of first order differ-
ential equations

K(u)u+C(u)
du

dt
= F , (13)

where K(u) is the conductivity matrix, C(u) is the capacity matrix, uT = (uθ,1, . . . , uθ,N ,
uϕ,1, . . . , uϕ,N) is the vector of nodal values, and F is the vector of prescribed fluxes trans-
formed into nodes. For a detailed formulation of the matricesK(u) andC(u) and the vector
F , we refer the interested reader to the doctoral thesis [31, Chapter 3.1].

The numerical solution of the system Eq. (13) is based on a simple temporal finite dif-
ference discretisation. If we use time steps ∆τ and denote the quantities at time step i with
a corresponding superscript, the time-stepping equation is

ui+1 = ui + ∆τ [(1− γ)u̇i + γu̇i+1], (14)

where γ is a generalised midpoint integration rule parameter. In the results presented in
this paper the Crank-Nicolson (trapezoidal rule) integration scheme with γ = 0.5 was used.
Expressing u̇i+1 from Eq. (14) and substituting into the Eq. (13), one obtains a system of
non-linear equations:

(γ∆τKi+1 +Ci+1)ui+1 = γ∆τF i+1 +Ci+1[ui + ∆τ(1− γ)u̇i], (15)

which can be solved by some iterative method such as Newton-Raphson. For clarification
and easier reading, we rewrite Eq. (15) using the symbolsAi+1(ui+1) := γ∆τKi+1(ui+1)+
Ci+1(ui+1) and f i+1(ui+1) := γ∆τF i+1 +Ci+1(ui+1)[ui + ∆τ(1−γ)u̇i] in the following
form

Ai+1(ui+1)ui+1 = f i+1(ui+1). (16)

3. Uncertain properties of heterogeneous materials

When dealing with heterogeneous material, some material parameters can vary spatially
in an uncertain fashion and therefore RFs are suitable for their description. This means that
the uncertainty in a particular material parameter q is modelled by defining q(x) for each
x ∈ G as a RV q(x) : Ω → R on a suitable probability space (Ω ,S ,P) in some bounded
admissible region G ⊂ Rd. As a consequence, q : G×Ω → R is a RF and one may identify Ω
with the set of all possible realisations of q. Alternatively, q(x, ω) can be seen as a collection
of real-valued RVs indexed by x ∈ G.
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The description of log-normal RFs given in Tab. 1 can be derived from a Gaussian RF
g(x, ω), which is defined by its mean

µg(x) = E[g(x, ω)] =

∫

Ω

g(x, ω)P(dω) , (17)

and its covariance

Cg(x,x
′) = E[(g(x, ω)− µg(x))(g(x′, ω)− µg(x′))]

=

∫

Ω

(g(x, ω)− µg(x))(g(x′, ω)− µg(x′))P(dω) . (18)

The log-normal RF q(x, ω) can be then obtained by a nonlinear transformation of a zero-
mean unit-variance Gaussian RF g(x, ω) [20, 26] as

q(x, ω) = exp(µg(x) + σgg(x, ω)) . (19)

The statistical moments µg and σg of the Gaussian field can be obtained from the statistical
moments µq and σq given for the log-normally distributed material property according to the
following relations [26]:

σ2
g = ln

(
1 +

(
σq
µq

)2
)
, µg = lnµq −

1

2
σ2
g . (20)

In numerical computation random fields are first spatially discretised by finite element
method (see Eq. (12)) into a finite collection of points {xni=1} ∈ G. Further, the semi-
discretised RF are described by a finite—but probably very large—number of RVs q(ω) =
(q(x1, ω), . . . , q(xn, ω)), which are usually highly correlated. Large number of RVs is, how-
ever, very challenging for the efficient numerical implementation of forward problem, as well
as for MCMC identification. As already alluded to previously, the number of RVs can be re-
duced by the approximation ĝ(ω) of a RF g(ω) based on a truncated KLE including much
smaller number of RVs [20, 13]. Here we use the KLE on the underlying Gaussian field
g(ω), and hence the RVs in the KLE are independent Gaussian RVs, as already indicated
above.

The spatial discretisation of a given RF concerns also the discretisation of corresponding
covariance functionCg(x,x′) into the covariance matrixCg which is symmetric and positive
definite [16, 20]. The KLE is based on the spectral decomposition of the covariance matrix
Cg leading to the solution of a symmetric matrix eigenvalue problem

Cgψi = ς2i ψi , (21)

whereψi are orthogonal eigenvectors and ς2i are positive eigenvalues ordered in a descending
order. The KLE approximation ĝ(ω) of a RF g(ω) can then be written as

ĝ(ω) = µg +
M∑

i=0

ςi ξi(ω)ψi, (22)

where ξi(ω) = ψi
T (g(ω) − µg)/ςi are uncorrelated RVs of zero mean and unit variance,

and in case that g(x, ω) and hence g(ω) are Gaussian, then xi(ω) are Gaussian and inde-
pendent. The number M ≤ n—the number of points used for the discretisation of the
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spatial domain—is chosen such that Eq. (22) gives a good approximation, i.e. captures a
high proportion of the total variance. Higher values of M lead to better description of a
RF, smaller values imply faster exploration by MCMC. The eigenvalue problem Eq. (21) is
usually solved by a Krylov subspace method with a sparse matrix approximation. For large
eigenvalue problems, the authors in [32] propose efficient low-rank and data sparse hierar-
chical matrix techniques. The approximation of a non-Gaussian RF can be then obtained by
a nonlinear transformation of the KLE obtained for a Gaussian RF such as in our particu-
lar case, where the approximation of a given RF q̂(ω) is obtained from the Eq. (19) by the
substitution of the Gaussian RF g(ω) by its KLE ĝ(ω).

We assume full spatial correlation among material properties, i.e. spatial fluctuations for
all parameters differ only in magnitude. Taking into account a log-normal distribution of the
parameters, the final formulation of the RF describing the parameter q then becomes

q̂(ω) = exp

(
µg + σg

M∑

i=1

√
ςiξi(ω)ψi

)
, (23)

where the exponential is to be used at each spatial point, i.e. for each component of the
vector inside the parentheses. The statistical moments µg and σg are derived from the prior
mean µq and standard deviation σq for each material parameter according to Eq. (20). The
eigenvectors ψi are obtained for the a priori exponential covariance function

C(x,x′) = exp

(
−|r1|
lx1
− |r2|
lx2

)
, (24)

where r = (r1, r2) = x − x′, and lx1 = 0.1 [m] and lx2 = 0.04 [m] are a priori covariance
lengths. Determination of correlation lengths is generally not obvious. In material modelling,
one possible way is based on image analysis as described in [33]. A numerical study for a
differing number of modes M included in the KLE is presented in [11].

4. Surrogate of Künzel’s model

While the KLE can be efficiently applied to reduce the number of RVs and thus to accel-
erate the exploration of the MCMC method in terms of the number of samples, construction
of a surrogate of the computational model can be used for a significant acceleration of each
sample evaluation. In [12, 13] methods were introduced for accelerating Bayesian inference
in this context through the use of stochastic spectral methods to propagate the prior uncer-
tainty through the forward problem. Here we employ the stochastic Galerkin method [15, 16]
to construct the surrogate of Künzel’s model based on polynomial chaos expansion (PCE).

According to Eq. (23), all model parameters are characterised by M independent stan-
dard Gaussian RVs ξ(ω) = [ξ1(ω), . . . , ξM(ω)]. Hence, the discretised model response
u(ξ(ω)) = (. . . , ui(ξ(ω)) . . . )T is a random vector which can be expressed in terms of the
same RVs ξ(ω). Since ξ(ω) are independent standard Gaussian RVs, Wiener’s PCE based on
multivariate Hermite polynomials—orthogonal in the Gaussian measure—{Hα(ξ(ω))}α∈J
(see [16, 20] for the notation) is the most suitable choice for the approximation ũ(ξ(ω)) of
the model response u(ξ(ω)) [34], and it can be written as

ũ(ξ(ω)) =
∑

α∈J
uαHα(ξ(ω)) (25)
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where uα is a vector of PC coefficients and the index set J ⊂ N(N)
0 is a finite set of non-

negative integer sequences with only finitely many non-zero terms, i.e. multi-indices, with
cardinality |J | = R. We collect all the PC coefficients in u := [. . . ,uα, . . . ]α∈J . Assuming
the uncertainty in all material parameters listed in Tab. 1 and consequently in the model
response, Eq. (16) can be rewritten as

Ai+1
(
ξ;ui+1(ξ)

)
ui+1(ξ) = f i+1

(
ξ;ui+1(ξ)

)
. (26)

Substituting the model response ui+1(ξ) by its PC approximation ũi+1(ξ) given in Eq. (25)
and applying a Bubnov-Galerkin projection, one requires that the weighted residuals vanish:

∀β ∈ J : E([f i+1
(
ξ; ũi+1(ξ)

)
− Ãi+1

(ξ)ũi+1(ξ)]Hβ(ξ)) = 0 , (27)

where Ã
i+1

(ξ) := Ai+1
(
ξ; ũi+1(ξ)

)
. Eq. (27) together with Eq. (25) leads to

∀β ∈ J :
∑

α∈J
E
(
Hβ(ξ)Ã

i+1
(ξ)Hα(ξ)

)
ui+1
α = E(f i+1(ξ)Hβ(ξ)) , (28)

which is a non-linear system of equations of size N ×R.
The approximation ũi+1(ξ) can be represented through its PC coefficients ui+1, and sim-

ilarly for all other quantities. Denoting the block-matrix Ai+1(ui+1) := (E (Hβ(ξ)Ai+1(ξ)
Hα(ξ)))β,α∈J , and the right hand side f i+1 := (E(f i+1(ξ)Hβ(ξ)))β∈J , the system Eq. (28)
may succinctly be written as

Ai+1(ui+1)ui+1 = f i+1. (29)

The matrix Ai+1 has more structure than is displayed here, but this is outside the scope of
this paper; see [16, 20] for details and possible computational procedures.

The evaluation of expected values in Eq. (28) can often be performed analytically in
intrusive Galerkin procedures—that is their advantage—using the Hermite algebra [20]. In
case they are to be computed numerically, they may be approximated by a weighted sum of
samples drawn from the prior distributions. To that purpose, one can apply some integration
technique: the Monte Carlo (MC) method, the quasi-Monte Carlo (QMC) method, or some
quadrature rule, see [20] for a recent review. The latter ones allow to take advantage of a
possibly regular behaviour in the stochastic variables and consequently reduce the number
of samples. Since the system of equations Eq. (28) can be quite large, the evaluation of the
left hand side for each sample of ξ becomes costly. Here we apply a sparse-grid Smolyak
quadrature rule [35, 22, 16, 20], sometimes also named hyperbolic cross integration method,
which is an efficient alternative for integration over Gaussian RVs.

After solving the system Eq. (29), one has via Eq. (25) a surrogate representation of
the model outputs. This model approximation may be evaluated orders of magnitude more
quickly than the evaluation containing the full FE simulation.

5. Numerical results for the uncertainty propagation

For an illustration of the described method, we employ the same simple example as in
[11] with the two-dimensional rectangular domain discretised by an FE mesh into N = 80
nodes and 120 triangular elements. Its geometry together with the specific loading conditions
are shown in Fig. 1. The initial temperature is θin = 14 [◦C] and the moisture ϕin = 0.5 [-]
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Figure 1: Experimental setup

in the whole domain. One side of the domain is submitted to exterior loading conditions
θext = 5 [◦C] and ϕext = 0.5 [-], while the opposite side is submitted to interior loading
conditions θint = 24 [◦C] and ϕint = 0.8 [-]. The solution of the time-dependent problem
in Eq. (29) also involves a discretisation of the time domain T into T = 151 time steps and
hence the PCE-based surrogate model consist of N×T = 12, 080 PCEs for the temperature,
and the same for the moisture.

In order to describe the accuracy of such a surrogate model, let us define the MC estimate
of the error expectation ε(u) as a relative difference between two response fields ua and ub

over the discretised spatial and time domain as

ε(u) := EΩ

(
N∑

n=1

T∑

t=1

∣∣uan,t − ubn,t
∣∣

uan,t

)
. (30)

The quality of a PC-based surrogate model depends on the number M of eigenmodes
involved in KLE describing the fields of material properties as well as on the degree of poly-
nomials P used in the expansion Eq. (25)1. Figure 2 shows the error estimate ε(u) computed

(a) (b)

Figure 2: Errors in approximation of the temperature (a) and the moisture (b) field induced by PCE and KLE
as a function of number of eigenmodes.

for different numbers of eigenmodes M and for the polynomial order P = 2 and P = 3.
Here, the response fields ua are computed by the FEM based on one realization of the KLE
of the parameter fields (further shortly called FE simulations) and the response fields ub are
obtained by evaluation of the constructed PCE in the same sample point. In order to dis-
tinguish the portion of error induced by the KL approximation of the parameter fields, the
estimate ε(u) is computed once for the FE simulations using all M = 120 (dashed lines),

1We assume the full PC expansion, where number of polynomials R is fully determined by the degree of
polynomials P and number of eigenmodes M according to the well-known relation R = (M + P )!/(M !P !).
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and once for the FE simulation using the same number of eigenmodes as in the constructed
PCE (solid lines). In other words, the solid lines represent the error induced by PC approx-
imation and the difference between the solid and corresponding dashed line quantifies the
error induced by the KL approximation of the parameter fields.

(a) (b)

Figure 3: Errors in approximation of the temperature (a) and the moisture (b) field induced by PCE and KLE
as a function of computational time needed for a PCE construction.

Figure 3 represents the same errors ε(u) as Fig. 2, but this time with respect to the
computational effort needed for the computation of PC coefficients. Regarding the obtained
results, we focus our following computations on the KL approximation of the material pa-
rameters including M = 7 eigenmodes and a PCE of order P = 2 providing, at reasonable
time, sufficiently good approximation of the model response, namely of the temperature field
where the errors are more significant.

For a more detailed presentation of the PCE accuracy, Fig. 4 compares the model re-
sponse in one node of FE mesh (the node No. 1 at Fig. 5) at the time t = 400[h] obtained by
the FE simulation and by the PCE as a function of the first stochastic variable ξ1.

(a) (b)

Figure 4: Detailed comparison of the temperature (a) and moisture (b) with their PC approximation as functions
of the first stochastic variable ξ1.

6. Bayesian updating procedure

In the Bayesian approach to parameter identification, we assume three sources of in-
formation and uncertainties which should be taken into account. The first one is the prior
knowledge about the model/material parameters qi(ω) defining the prior density functions.
In our particular case, we know that all the identified parameters are positive-definite and
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the log-normal random fields with the statistical moments given in Tab. 1 are suitable for
a description of the prior information. In fact, they are maximum entropy distributions for
this case. We describe the material parameters using the KLE which is fully defined by a
finite set of standard Gaussian variables ξ = [ξ1(ω), . . . , ξM(ω)] with the probability density
function (pdf) pξ(ξ) and thus, the updating procedure can be performed in terms of ξ turning
them into non-Gaussian variables.

Other source of information comes from measurements, which are violated by uncer-
tain experimental errors ε(ω̄). Last uncertainty ¯̄ω arises from imperfection of the numerical
model, when for example the description of a real system does not include all important
phenomena. However, it is a common situation that the imperfection of the system descrip-
tion cannot be distinguished from measurement error ε and the modelling uncertainties ¯̄ω
can be hidden inside the measuring error ε(ω̄). Then we can define the pdf pz(z) for noisy
measurements z(ω̄).

Bayesian update is based on the idea of Bayes’ rule defined for probabilities. Definition
of Bayes’ rule for continuous distribution is, however, more problematic and hence [6, Chap-
ter 1.5] derived the posterior state of information π(ξ, z) as a conjunction of all information
at hand

π(ξ, z) = κpξ(ξ)pz(z)p(z|ξ) , (31)

where κ is a normalization constant.
The posterior state of information defined in the space of model parameters ξ is given by

the marginal pdf

πξ(ξ) = EΩ̄ [π(ξ, z)] = κpξ(ξ)

∫

Ω̄

p(z|ξ)pz(z)P(dω̄) = κpξ(ξ)L(ξ), (32)

where Ω̄ is a set of random elementary events ω̄ and measured data z enters through the like-
lihood function L(ξ), which gives a measure of how good a numerical model is in explaining
the data z.

The most general way of extracting the information from the posterior density πξ(ξ)
is based on sampling procedure governed by MCMC method. For more details about this
approach to Bayesian updating of uncertainty in description of couple heat and moisture
transport we refer to [11]. In this paper, we focus on the comparison of the posterior infor-
mation obtained from the sampling procedure using directly the computationally exhaustive
numerical model (16) on one hand and using the PC approximation of the model (25) on the
other hand.

7. Numerical results for the Bayesian update

Due to the lack of experimental data, we prepared a virtual experiment using a FE sim-
ulation based on parameter fields obtained by the KLE with 7 eigenmodes so as to avoid
the error induced by KLE, which is mainly the subject of the work presented in [11]. A
related set of random variables ξ is drawn randomly from the prior distribution and stored
for a purpose of latter comparison with the prior and the posterior state of knowledge. The
resulting temperature and moisture fields considered as a so-called “true state” or simply the
“truth” are shown in Fig. 5. According to [11] the values of temperature and moisture are
measured in 14 points (see Figs. 5 (a) and (c)), and at three distinct times (see Figs. 5 (b) and
(d)). Hence, the observations z consist of 84 values. To keep the presentation of the different
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(a) (b)

(c) (d)

Figure 5: Virtual observations: (a) and (c) spatial arrangement of probes; (b) and (d) temporal organization of
measurements

numerical aspects of the presented methods clear and transparent, we focus here on a quite
common and simple case, where modelling-uncertainties are neglected and measurement
errors are assumed to be Gaussian. Then the likelihood function takes the form

L(ξ) = κ exp

(
−1

2
(Y (ξ)− z)T C−1obs (Y (ξ)− z)

)
, (33)

where Y (ξ) is an observation operator mapping the model response u given parameters
ξ and loading f to observed quantities z. Cobs is a covariance matrix representing the
uncertainty in experimental error, which is obtained by perturbing the virtual observations
by Gaussian noise with standard deviation for temperature σθ = 0.2 [◦C] and for moisture
σϕ = 0.02 [−] so as to get 100 virtual as an input for the covariance matrix evaluation. In
order to be able to compare the posterior state with the true state also in terms of model
parameters ξ, we assume an artificial situation where the observed quantities z correspond
exactly to the true state of temperature and moisture.

The Bayesian update was performed using Metropolis-Hasting algorithm and 100, 000
samples were generated in order to sample the posterior density (31) over the variables ξ =
(ξ1 . . . ξM=7). The truth state, prior and posterior pdfs obtained by the FE simulations and
using the PCE are plotted in Fig. 6. One can see that the error induced by PC surrogate
of model response are negligible in terms of the resulting posterior densities. Figure 6 also
demonstrates the fact that the variables ξ being a priori standard Gaussian should not be a
posteriori Gaussian.

During the sampling procedure, we stored also the corresponding values of parameter
fields and response fields in order to obtain their posterior state of information. As a result,
Fig. 7 shows the comparison of the truth, and prior and posterior pdfs for two material pa-
rameters λ0 and µ in the top-right corner FE element, and similarly, Fig. 8 presents pdfs for
the temperature and moisture in FE node 7 at 400[h] (i.e. at the 151-th time step).

We should note that the similarity of the prior and the posterior pdfs for moisture in
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(a) (b)

Figure 6: Comparison of pdfs (a) for the separate variable ξ1 and (b) for the pairs of variables.

(a) (b)

Figure 7: Comparison of pdfs for material properties in FE node 7: (a) the thermal conductivity of dry material
λ0 and (b) water vapour diffusion resistance factor µ.

(a) (b)

Figure 8: comparison of pdfs (a) for the temperature and (b) for the moisture in FE node 7 at 151-th time step.

Fig. 8 is probably caused by the very slight influence of the studied material parameters to
the moisture value or more precisely, the prior standard deviations were very small.

Beside the comparison of the PCE accuracy, we also compared the time necessary to
generate the samples. In case of PCE, the total time also includes the time of PC coefficients
computation. Particular comparison of computational time needed by FE simulations and by
PCE evaluations is demonstrated in Fig. 9.
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Figure 9: Comparison of time necessary for evaluation of samples.

8. Conclusions

The presented paper presents an efficient approach to propagation and updating of un-
certainties in description of coupled heat and moisture transport in heterogeneous material.
In particular, we employed the Künzel’s model, which is sufficiently robust to describe real-
world materials, but which is also highly nonlinear, time-dependent and is defined by 8 ma-
terial parameters difficult to be estimated from measurements. The updating procedure starts
with the prior information about the parameters’ properties such as positive-definitness and
second order statistics. Heterogeneity of the material under the study is taken into account
by describing the material properties by random fields, which are for a simplicity considered
as fully correlated. Then, the corresponding correlation lengths are assume to be known as
another a priori information. In order to limit the number of random variables necessary to
describe the material, the random fields are approximated by Karhunen-Loève expansion and
hence, all the remaining uncertainties are described by a set of standard Gaussian variables
whose number is given by the number of eigenmodes involved in KLE.

These uncertainties are then propagated through the numerical model so as to provide
a probabilistic characterization of the model response, here the moisture and temperature
fields. Simultaneously, the other information including uncertainties coming from the ex-
perimental measurements is used to update the prior uncertainties in the model parameters.
In order to imitate the experimental measurements, a virtual experiment is prepared together
with the relating uncertainties given by a covariance matrix. The Markov Chain Monte Carlo
method is then employed so as to sample the posterior state of information.

The primary objective of the presented paper is to accelerate the sampling procedure. To
this goal, a polynomial chaos-based approximation of the model response is constructed in
order to replace computationally expensive FE simulations by fast evaluations of the PCE
during the sampling. In particular, the PC coefficients are obtained by an intrusive stochastic
Galerkin method. It is shown that the resulting approximations exhibit high accuracy and the
related posterior probability density functions are sufficiently precise as well. Finally, the
comparison of the computational effort confirmed the large savings in case of PC evaluations.

While the acceleration obtained by the presented procedure is significant, it can be still
unfeasible for very large problems. Our future work will be focused on the elimination of the
MCMC sampling procedure itself by the update directly in terms of parameters of probability
density functions as proposed in [36].
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Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague,
Czech Republic

Jan Sýkora
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Abstract

Numerical modelling of quasi-brittle materials arising from lattice or particle formulations
is based on a priori discretisation of a medium according to an idealization of its granu-
larity. This paper concentrates on the so-called Lattice Discrete Particle Model (LDPM)
which provides more accurate modelling of damage initiation and crack propagation at var-
ious length scales. However, its simulations are very computationally demanding. In this
paper, we propose an automated identification procedure allowing for its widespread util-
isation without the necessity of the deep expert knowledge of the model details. Such an
automated procedure is complicated namely due to stochasticity of the LDPM related to the
random generation of the particle configuration. The particle size distribution is generated
to be statistically corresponding to prescribed concrete granulometric distributions, but each
realisation of particle configuration is created at random. The robustness and stability of the
proposed identification procedure are obtained by probabilistic Bayesian formulation, where
the time requirements are kept reasonable thanks to employed polynomial chaos approxima-
tion of the LDPM. The Bayesian formulation solves such an inverse problem as well-posed
and provides a quantitative assessment of the underlying uncertainty in the identified val-
ues of material properties. In particular, the procedure is applied to identify seven material
parameters from an unconfined compression cube test and notched three-point bending test.
Its efficiency is verified on the synthetic data with known parameter values to quantify the
accuracy of the estimates and it is also validated on experimental data to prove its robustness.
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1. Introduction

Lattice or particle formulations of models are suitable for the description of the macro-
scopic behaviour of quasi-brittle materials such as concrete due to their potential to cap-
ture the material morphology and its impact on material macroscopic behaviour. Material
morphology or granularity is defined by a set of geometrical parameters (or granulometric
distributions) which govern the generation of the lattice and thus equip this type of formula-
tions with inherent characteristic lengths. This allows more realistic simulations of a dam-
age initiation and crack propagation at various length scales, but the related computational
demands of model simulations are very high (in order of hours for standard experimental
setup, i.e. three-point bending test or cube compression test), which prohibits an easy hand-
fitting-based calibration of the model from experimental data. In particular, in this paper, we
employ the so-called Lattice Discrete Particle Model (LDPM) proposed by [1], which was
calibrated and validated against both quasi-static and dynamic loading conditions and it was
demonstrated to possess superior predictive capability, see [2]. The stochastic response of
the model caused by the random generation of the particle configuration is, however, another
burden for the calibration process. Calibration procedure employed for model validation in
[2] was based on hand-fitting and deep expert knowledge of the model. But the necessity of
such knowledge makes the further practical applications of the model almost impossible or
at least impractical.

Combination of trial-and-error method and automated calibration of the model is pre-
sented in [3]. The main drawback of this identification strategy, however, consists in consid-
eration of a fixed position of grains thus disabling the model stochasticity. Such simplifica-
tion significantly facilitates and accelerates the identification process, but it cannot be applied
in a general manner. The authors in [3] justify this simplification by a selection of a specific
experimental setup with a deep notch, where the strong stress concentration minimizes the
effect of model stochasticity. Oppositely to this approach, the goal of this paper is to present
an identification strategy allowing an automatisation, while preserving the applicability to
any commonly used experimental setups, such as cube compression test employed herein. In
order to reduce the effect of model stochasticity and to accelerate identification process, we
introduce the model approximation based on polynomial chaos (PC) expansion [4, 5, 6, 7]
with an averaging effect. In other words, we aim to construct the PC surrogate using a lim-
ited set of model simulations for selected values of material parameters as well as for various
randomly generated meso-structures. While the material parameters enter the PC expansion
as input variables, randomness in meso-structure geometry is smoothed out by keeping low
polynomial order of the approximation to avoid its random geometry-induced oscillations.

The authors in [8] developed an artificial neural network trained to mimic the recom-
mendations in building codes for predicting three fracture and shear strength parameters of
LDPM based on three concrete macroscopic properties: compressive strength, maximum
size of aggregates and initial fracture energy. The results obtained within validation on ex-
perimental data from uniaxial compression (UC) and notched three-point bending (TPB)
tests show good performance of the proposed procedure, however, it reveals its high sen-
sitivity to input values of initial fracture energy and its non-trivial estimation. Our aim is
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to propose the identification procedure, which does not require any deep insight into the
model detailed formulation or knowledge of some other macroscopic properties, which are
not easy to determine. Therefore, we want to consider the measured load-deflection curves
as input values without the necessity of any other complicated preprocessing of the data be-
fore the use of the identification method. So as to fulfil this goal, the procedure needs to be
sufficiently robust and numerically stable for a large variety of concretes characterised by
reasonably large feasible intervals for values of material parameters. Such requirements lead
us to Bayesian inference [9, 10, 11, 12], which formulates the inverse problem as well-posed
not only for limited and noisy experimental data but also in this case of stochastic model re-
sponse. This general probabilistic formulation of an inverse problem combines the available
information about the parameter values by means of the related uncertainty to each informa-
tion source. Here, we can thus consider three relevant sources of uncertainty: (i) in the prior
expert knowledge and recommendation about the realistic values of parameters, (ii) in the
model randomness leading to uncertainty about the assessment of the mean model response
for a given set of values of parameters and (iii) uncertainty in the experimental observations
caused by measurement errors. By combining these three sources of information and re-
lated uncertainty we obtain a joint posterior probability distribution of material parameters
quantifying our resulting uncertainty in estimated values of parameters. The probabilistic
description of estimates of parameters thus allow to quantify, whether the information con-
tained in the selected experimental data is sufficient to determine the parameters of such a
stochastic model with a satisfactory accuracy.

In order to demonstrate the advantages and drawbacks of the proposed identification
strategy, we apply it to the LDPM calibration utilising notched three-point bending tests and
cube compression tests. In particular, seven material parameters are to be identified: normal
modulus, shear-normal coupling, tensile strength, tensile characteristic length, softening ex-
ponent, shear/strength ratio and initial friction. The strategy is verified on ten synthetic data
sets, where the true values of parameters are known and then validated on one set of real
experimental data, where each both experiments were performed in three repetitions on six
samples of the same material. The material properties are thus assumed to attain the same
values in all samples.

Particular formulation of an expert knowledge about the identified values of material
parameters in terms of prior probability density functions along with the description of the
both considered laboratory experiments is presented in the following section. The identi-
fication strategy based on Bayesian inference is described in Section 3. The acceleration
of the identification process based on the polynomial chaos expansion is described in Sub-
section 3.1 along with the formulation of estimated theoretical uncertainty in the modelling
of the mean LDPM response. Resulting formulation of the posterior uncertainty in the es-
timates of material parameters combining prior knowledge, theoretical uncertainty due to
model stochasticity and the uncertainty in data caused by measurement errors is presented in
Subsection 3.2. Verification of the proposed identification strategy is presented in Section 4
for synthetic data simulated for ten different concrete mixes with known material parameters.
The proposed LDPM calibration is finally validated on real experimental data in Section 5
and the concluding remarks are summarized in Section 6.
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2. Concrete behaviour

This section is focused on the material model description and introduction of the em-
ployed experimental tests which are typically performed to characterize material properties
of concrete.

2.1. Lattice discrete particle model
The examined numerical model, which is capable of an accurate description of the macro-

scopic behaviour of concrete in different loading scenarios, falls into the category of mod-
els which are based on lattice or particle formulations in which materials are discretized
“a priori” according to an idealization of their internal structure. Particle size and size of
the contact area among particles, for particle models, as well as lattice spacing and cross-
sectional area, for lattice models, introduce inherent characteristic lengths into this type of
formulations. Therefore, lattice/particle models are able to simulate the geometrical features
of material internal structure more authentically.

Earlier attempts to formulate particle and lattice models for fracture are reported in
[13, 14, 15, 16, 17, 18]. A comprehensive discrete formulation for concrete was proposed by
Cusatis and coworkers [1, 2] who formulated the so-called Lattice Discrete Particle Model
(LDPM). This model describes a granular microstructure through a system of polyhedral
particles connected through a three-dimensional lattice. Such particles are placed randomly
across the volume following a prescribed grain size distribution, thus enabling the direct
representation of a heterogeneous system of grains surrounded by a bonding agent. Particle
contact behaviour represents the mechanical interaction among adjacent aggregate particles
through the embedding mortar. More specifically, the used constitutive law is based on the
strains and stresses defined in terms of one normal and two shear components on each facet,
the interested reader is referred to [1] for detailed formulation. LDPM was calibrated and
validated against a large variety of loading conditions in both quasi-static and dynamic load-
ing conditions [19, 20, 21]. The material parameters of the models can be divided into two
groups: (i) parameters characterising the concrete mix which are utilised for the generation
of concrete mesostructure; (ii) parameters used for the description of material behaviour (e.g.
elasticity, fracture, etc.).

In the present study, the basic properties of the tested concrete mix are fixed at values
listed in Table 1. Note that in a laboratory the concrete mix is prepared according to these

Table 1: Values of parameters governing the generation of concrete meso-structure

Material property Unit Value

Minimum particle size d0 mm 4
Maximum particle size da mm 16
Cement content c kg/m3 240
Water to cement ratio w/c - 0.7
Aggregate to cement a/c - 8.83
Fuller coefficient nF - 0.5
Concrete density ρ kg/m3 2400

prescribed parameters and their values can be used further for the generation of a correspond-
ing concrete meso-scale structure. The seed number governing the sampling of cumulative
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distribution function of concrete granulometric distributions by a pseudo-random number
generator is kept pseudo-random. The model response is thus depending on the specific
distribution of particles which causes stochasticity of the model. As experimental tests em-
ployed for the model calibration, an unconfined compression test and notched three-point
bending test are considered as the most commonly used laboratory tests for testing material
properties of concrete. In particular, seven material parameters are identified, two additional
parameters (compressive strength and transitional stress) are prescribed to be proportional to
the tensile strength and other seven material parameters of LDPM are prescribed to values
presented in [2]. To properly identify the latter parameters, more advanced experimental test
data would be needed (hydrostatic compression, triaxial compression, etc.). These tests are,
however, not trivial, financially expensive and are not typically available. Therefore, two
aforementioned concrete tests are employed in this study. All material parameters of the
model along with their prescribed values or prior uncertain knowledge in terms of feasible
intervals (interpreted further as uniform probability density functions) are summarised in Ta-
ble 2. Note that the intervals were defined based on the authors’ experience corresponding
to the normal strength concrete and according to the parameters presented in [2].

2.2. Experimental tests
Two types of standardized tests for concrete are utilised in the paper, i.e. cube com-

pression and three-point bending tests. These two tests are usually available and carried
out when the material properties of concrete are in demand. More specifically, the standard
cube compression test (with a side length of 150 mm), tested according to [22], is employed.
All experiments were performed with a rate of loading equal to 0.008 mm/s. The three-point
bending test was performed on notched prisms with dimensions of 100×100×400 mm, a rel-
ative notch depth of 30% and a span of 300 mm. These measurements were performed using

Table 2: Values of material model parameters used in the numerical simulations

Material property Unit Value/Prior bounds

Normal modulus E0 MPa 20000− 70000
Shear-normal coupling α - 0.2− 0.3
Tensile strength σt MPa 1.5− 5
Tensile characteristic length lt mm 50− 300
Softening exponent nt - 0.1− 1
Shear/strength ratio σs/σt - 1.5− 8
Initial friction µ0 - 0.001− 0.5

Compressive strength σc0 MPa σc0 = 40σt
Transitional stress σN0 MPa σN0 = 240σt

Initial hardening modulus ratio Hc0/E0 - 0.4
Transitional strain ratio κc0 - 4
Deviatoric strain threshold ratio κc1 - 1.0
Deviatoric damage parameter κc2 - 5.0
Asymptotic friction µ∞ - 0.0
Densification ratio Ed/E0 - 1.0
Volumetric-deviatoric coupling β - 0
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the servo-hydraulic testing machine Walter & Bai LFV-63 kN. To ensure stable tests and es-
pecially post-peak response, the tests were controlled by crack mouth opening displacement
(CMOD). A constant loading rate equal to 0.0001 mm/s was applied using an extensometer
of type Epsilon 3542-050M-025-HT2. Experimental data are available for three repetitions
of both experimental types.

For later use, the measured experimental data are post-processed and nominal values
are obtained. As mentioned above, the typical compression test is performed on cubes of
a = 150 mm edge length with the nominal stress σcN and nominal strain εcN defined as

σcN =
F

a2
and εcN =

u

a
, (1)

where F is the applied load and u denotes the load point displacement. In three-point bending
test the nominal values of stress and strain take the form

σbN =
3Fl

dh2
and εbN =

CMOD

h
, (2)

where l stands for the beam span and h, d are the beam height and width, respectively.
CMOD is the crack mouth opening displacement measured over the notch.

Moreover, to reduce the measurement error caused by the testing machine stiffness, the
elastic part of the stress-strain diagram is eliminated from the observed data in both loading
tests and the inelastic strains are then obtained according to

εinelξN = εξN − σξN/KξN , (3)

where ξ = c, b for compression and three-point bending tests, respectively. KξN is the elastic
stiffness estimated as a slope of elastic part of the stress-strain diagram. Furthermore, the
value of elastic stiffness KcN , obtained from the compression test, is then employed as an
additional observation. This value is less perturbated by measurement error than an elastic
part of the three-point bending test. The slope is obtained by using the linear regression on
the initial part of the stress-strain diagram corresponding to the range from 20 to 60 % of the
peak load.

3. Bayesian inference

Since the computational capacity and stochastic modelling are sufficiently developed to
be used for parameter identification in a probabilistic way, many researchers in different
fields have taken into account uncertainties to obtain more information about the parameter
estimates. Probabilistic parameter estimation, allowing an update of the initial knowledge
about the parameter values by processing the experimental data, is based on Bayes’ formula
[9, 10, 11]. The Bayesian identification method consists of modelling unknown parameters
x as well as observations z as random variables. The combination of the prior probabil-
ity distribution p(x) and the likelihood function p(z|x) results in the posterior probability
distribution of parameters p(x|z) expressing uncertainties about the identified values as

p(x|z) =
p(z|x)p(x)

p(z)
=

p(z|x)p(x)∫
x
p(z|x)p(x)dx

. (4)
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A Bayesian framework for the model calibration is well-suited namely for situations
where only a few experimental observations are available. In case of stress-strain diagrams
observed in terms of many discrete points, it is questionable, whether each observed point
can be considered as an independent measurement or how to build a likelihood function cor-
responding to the joint probability distribution of observed and possibly correlated values.
Underestimating of the correlation among particular data leads to the overestimation of their
information content and vice versa. More information in data is connected to their higher
significance and more pronounced reduction of the resulting uncertainty in parameter esti-
mates. Considered data correlation has of course only the magnifying effect to the posterior
uncertainty reduction. For example, if the data contain no information allowing to distin-
guish two model parameters, this lack of information in the data cannot be compensated by
the underestimated correlation of the data. On the other hand, high overestimation of the data
correlation can in the extreme situation lead to significant information loss. From the com-
putational point of view, considering a high number of observations corresponding to very
dense discrete points of stress-strain diagram may simply lead to increased computational
costs or numerical difficulties connected to highly sharp likelihood function representing
very low remaining uncertainty caused by measurement errors. Unfortunately, there is no
strict and clear rule, how to properly model the uncertainty and information in data for each
particular situation. Moreover, particular selection among the observed data points and ne-
glecting some observations can be also driven by the expert knowledge about the significance
of particular parts of the stress-strain diagram. Considering the higher density of data points
has then similar effect as considering smaller uncertainty caused by measurement error.

Here we decided to reduce the experimental data, consisting of 8, 500− 10, 500 discrete
points in case of compression tests and 14, 000−18, 000 discrete points in case of three-point
bending tests, to stresses corresponding to nσ = 200 equisized strain steps in each experi-
ment obtained by a linear interpolation among the original data points. We are convinced
that the resulting data points are still very dense and we do not lose any relevant informa-
tion, while a smaller number of observations significantly facilitates our implementation of
model approximation described in the following section. More specifically, the strain range
from 0 to 0.0293 is used for the compression test and 0 to 0.0265 for the three-point bend-
ing test. The simulated stress-strain diagrams are then also linearly interpolated to match
the experimental points. Overall, the considered model response consists thus of ny = 401
components and it is defined as

y(x) = {σcN(x),σbN(x), KcN(x)}, (5)

where σcN(x) is a vector of nσ stress values obtained in compression test and σbN(x) is
a vector of nσ stress values obtained in three-point bending test. x is a vector of nx = 7
material parameters, specifically, x = {E0, α, σt, lt, nt, σs/σt, µ0}.

3.1. Surrogate model
As mentioned in previous sections, the LDPM simulations of compression and three-

point bending tests are highly time-demanding. We run the LDPM simulations on a Vienna
Scientific Cluster1 using one node with 16 cores, where the running time is approx. 3 hours

1http://vsc.ac.at/systems/vsc-3/
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for a single compression test and approx. 3-4 hours for a single three-point bending test.
Such computational cost is caused by both the high number of particles and corresponding
facets (approx. 280,000 for uniaxial compression and 320,000 for three-point bending tests,
respectively) used for the evaluation of the mechanical interaction, and small time steps used
by the explicit solver.

To make the probabilistic identification process feasible, some surrogate model of the
LDPM have to be employed. In order to consider the uncertainty in material parameters x,
we model them as random variables defined over some probability space (Ω,A,P), where
Ω is the basic probability set of elementary events, A a σ-algebra of subsets of Ω, and P
a probability measure. Because the prior knowledge of the values of searched parameters
is expressed in terms of feasible intervals given in Table 2, we model them as uniformly
distributed independent random variables. Therefore, we choose the approximation of model
responses y(x) based on the polynomial chaos expansion (PCE) [4, 5, 10] and in particular
on the expansion of Legendre polynomials allowing an easy computation of integrals over the
uniform probability space [23]. To keep the surrogate complexity (namely its dimensionality,
non-linearity and possible multi-modality) as low as possible, we build one independent PC
expansion ỹi(x) for approximating each response component yi(x) separately as

ỹi(x) =
∑

α

βα,iψα(x), (6)

where α = (α1, . . . , αnx) is a vector of nx non-negative integer components that indicate
degrees of multivariate polynomial ψα(x1, . . . , xnx) = ψα1(x1) · . . . ·ψαnx

(xnx) with ψαj
(xj)

being univariate polynomial with a degree αj . The vector βα,i is a vector of PC coefficients
corresponding to a response component yi.

Due to the time limitations and a high computational cost, we decided to built the PC-
based surrogates using only ns = 400 LDPM simulations of both loading tests. There-
fore, the input sets of material parameters are selected by means of stratified Latin hyper-
cube sampling (LHS) which is able to select samples according to the prescribed probabil-
ity distributions. More specifically, we derive a particular LHS from the Halton sequence,
which provides an LHS design which is reasonable for joint statistical representation of
the prescribed prior probability distributions of material properties including their mutual
independence/non-correlation, as demonstrated e.g. in [24].

Using the obtained LDPM simulations, the PC coefficients βα,i are computed by means
of a linear regression based on the least-squares method (LSM) [6, 7]. Scheme of such a
surrogate construction is sketched in Figure 1. Every of the total ny = 401 PC expansions

Figure 1: Scheme of surrogate model construction.

is prescribed to have the same degree. The choice of the appropriate degree of the poly-
nomials arises from the performed leave-one-out cross-validation. The Table 3 presents the
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corresponding cross-validation errors for different degrees of the polynomials p computed
as mean absolute error relative to the span of simulated values obtained for a given response
component, i.e.

εp =
1

ns

ns∑

j=1

1

ny

ny∑

i=1

|yi(xj)− ỹi(xj)|
max(y(xj))−min(y(xj))

, (7)

where y(xj) = (. . . , yi(xj), . . . ) is a vector of ny response components obtained from the
j-th LDPM simulation for values of material parameters xj and ỹ(xj) is a vector of their
corresponding PC-based approximations. The maximal degree of polynomials is limited by
the number of the available model simulations ns which has to be at least equal to the number
of polynomial terms np to make the least-squares system of equations solvable. The number
of terms np in polynomial of the p-th degree and nx variables is given as follows:

np =
(p+ nx)!

p!nx!
. (8)

Of course, the situation when ns = np leads to polynomial exact interpolation among the
simulated response values, which is not desired here as we do not want to interpolate the
response oscillations due to the particle placement randomicity. Based on this knowledge,
we rather prefer a lower degree of the polynomial degree to reduce the undesired oscillations.
According to results in Table 3, the second and third degree provide very similar values of
the cross-validation error and thus, we decided to choose the lower degree, i.e. we employ
the second degree in all our further computations.

Table 3: Cross-validation error and required minimal number of simulations corresponding to the first five
degrees of polynomial approximations.

p 1 2 3 4 5

εp [%] 4.5217 2.6459 2.5573 7.0772 -
np 8 36 120 330 792

Now let us recall that the random generation of particle positions does not allow to exactly
represent the real material morphology of one specific example. However, it is assumed that
it represents well, from a statistical point of view, a set of concrete specimens. Once we
build the model surrogate to eliminate the response variance arising from the randomness of
particle positions, we may view the surrogate as an imperfect model unable to capture effects
connected to material morphology. Due to the lack of another knowledge, we may consider
the difference between the model response y and its approximation ỹ as caused namely by
this omitted effect. We thus consider these discrepancies in particular response components
as a vector of theoretical model errors

εt = y − ỹ, (9)

which can be modelled as a vector of correlated random variables. As the surrogate is built to
minimise the mean error, see Eq. (7), we may assume εt to have zero mean. In order to keep
the computational effort feasible, we estimate their covariance matrix Ct by using the same
ns samples employed for the surrogate construction. By arranging the sampled responses
y(xj) as the columns of a matrix Y = [y(x1) y(x2) · · · y(xns)] with ns columns and ny
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rows and in the same way their corresponding approximations ỹ(xj) into the matrix Ỹ, the
sample covariance matrix of εt is given as

Ct =
1

ns − 1
(Y − Ỹ)(Y − Ỹ)T . (10)

We consider this statistical description of theoretical model errors εt to be our best esti-
mate of the response variance and/or the uncertainty arising from the material morphology
and we thus employ this uncertainty also in the quantification of the posterior uncertainty of
estimates of material parameters as described in the following section.

3.2. Formulation of likelihood function
The likelihood function is defined as a probability distribution of the difference between

the available experimental data z and the numerical model response y. In our computations,
we replace the model response y by its approximation ỹ. Then the difference between the
experimental data and response approximation written as

z = ỹ(x) + εt + εm (11)

has two sources of error: (i) the theoretical error εt arising from the inability of the model
approximation ỹ to reproduce the effects of particular material morphology and (ii) the mea-
surement errors εm caused by the inaccuracy of experimental measurements. According to
the expert knowledge, the measurement errors εm are considered as independent normally
distributed random variables with zeros mean values and prescribed standard deviations σm,
i.e. εm,i ∼ N(0, σm,i). Particularly, we consider to the best of our knowledge the mea-
surement error in all stress values obtained from the compression test to have the variance
σ2
m,cN = 1.32 MPa2, the measurement error variance in the stress for the three-point bending

test to be σ2
m,bN = 0.32 MPa2 and the measurement error variance in the elastic stiffness K

to be σ2
m,K = 1502 MPa2. By arranging these measurement error variances onto the diag-

onal of an ny × ny matrix in an order corresponding to response components organised in
vector y(x) and by placing zeros on all off-diagonal terms, we obtain the covariance matrix
for measurement errors Cm. The joint probability distribution of measurement errors is thus
εm ∼ N(0,Cm).

If we consider the theoretical errors εt to be also normally distributed according to εt ∼
N(0,Ct), the likelihood function can be then simply formulated again as multivariate normal
distribution as

p(z|x) =
1√

(2π)ny |C|
e

1
2
(ỹ(x)−z)TC−1(ỹ(x)−z), (12)

where C = Ct+Cm. To justify this simplification for the presented example, we plot 1D and
2D marginal probability density functions of theoretical errors for selected response compo-
nents in Figure 2. Note that the density functions are relatively rough as they are constructed
using only 400 error samples obtained from computed LDPM simulations (ns = 400 in cur-
rent study). Nevertheless, we can conclude that the assumption of the normal distribution of
errors is in agreement with these data. It is also clearly visible that the theoretical errors in
neighbouring response components are highly correlated and thus this correlation needs to
be taken into account.

The updated joint probability distribution of estimates p(x|z) is formulated as a product
of the likelihood function p(z|x) and prescribed uniform prior distribution p(x) with bounds
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Figure 2: 1D and 2D marginal pdfs of theoretical errors in selected response components: εt,1, εt,2 and εt,150
correspond to the first, second and 150th response components obtained from the compression test and εt,201
corresponds to the first response component obtained from the three-point bending test.

given in Table 2. Due to the complicated formulation of the posterior distribution, the most
general method to obtain its characteristics in terms of statistical moments is Markov chain
Monte Carlo (MCMC) sampling [25], where the denominator in Eq. (4) does not need to
be evaluated. The MCMC method requires a large number of the posterior probability eval-
uations involving the model simulations, which is a general obstacle of sampling methods.
Nevertheless, we overcome this problem here by substituting the LDPM simulations by fast
evaluations of its PCE-based surrogate.

To be more specific, we compute a million of Markov chain steps by using the Metropolis
algorithm with symmetrical proposal distribution [26]. A random walk is governed by joint
Gaussian distribution of independent steps with zero means and standard deviations equal
to 1.75 % of the prior parameters ranges in order to attain acceptance rate between 20 %
and 40 %. According to [27], the acceptance rate is recommended to be between 10 %
and 60 % for providing good mixing properties of the generated Markov chain. In other
words, the proposal standard deviation can not be too high because large steps are frequently
rejected and the chain is often stuck, but on the other side too small random move slows down
exploring the domain. The appropriate setting of proposal distribution is crucial task for
optimising the convergence rate of this sampling method. The starting point of the algorithm
is always prescribed in the middle of the prescribed feasible domain and the initial part of the
chain, called a burn-in period, is considered in a length of 5.000 samples which are discarded.
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4. Verification

To verify the proposed identification method, synthetic experimental data are used, where
true values of material parameters are known and the identification method can be evaluated
not only based on the quality of the predicted data fit but also in terms of estimated values
of material parameters, see Figure 3 for a brief summary of the verification process. Red
rectangles highlight the outcomes of such an identification process used for its verification.

Figure 3: Scheme of verification of the proposed parameter identification strategy on synthetic data.

In particular, ten data sets of model parameters (nz = 10) are utilised to obtain the numer-
ical responses for three different meso-structures (different random particle configurations)
of each test. We selected the parameter sets for these simulations again with the help of
LHS design derived from the Halton sequence. The obtained synthetic data for both exper-
iments are depicted in Figure 4. The identification procedure is performed for each data set
independently and the obtained results, in terms of predicted stress-strain diagrams based on
estimated parameter values, are shown in Figure 5. In both Figures 4 and 5, the stress-strain
diagrams obtained by the LDPM with the purpose to construct the PC-based model surrogate
(ns = 400) are drawn by grey colour in order to demonstrate the range of feasible diagrams
corresponding to prescribed prior bounds of material parameters. The data corresponding
to one data set are displayed by one colour in both experiments. The solid lines show the
synthetic experimental data and the filled areas in Figure 5 correspond to the identification
results. More precisely, the displayed areas are centered around a stress-strain diagram ŷ(x̂)

Uniaxial compression test three-point bending test
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Figure 4: Gray stress-strain diagrams employed for construction of LDPM surrogate vs. synthetic experimental
data sets in colour. Each colour corresponds to one verification data set.
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Uniaxial compression test three-point bending test
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Figure 5: Gray stress-strain diagrams employed for construction of LDPM surrogate vs. results of verification
in colour. Solid lines are synthetic experimental data while areas in colour represent identified regions of high
prediction probability. Each colour corresponds to one verification data set.

obtained as a mean of the three diagrams simulated by LDPM for three randomly gener-
ated particle configurations, but for material parameters fixed to the posterior mean values x̂.
Since the measurement and theoretical errors cause a significant randomness of the model
response, the areas in colour aim to reflect this relevant randomness. In particular, it corre-
sponds to the interval [ŷi−σm,i−σt,i, ŷi+σm,i+σt,i] for i-th response component. Under the
assumptions that ŷ(x̂) is the estimate of the mean predicted LPDM response2 and the normal
distributions of both measurement (εm) and theoretical (εt) errors, the highlighted area cov-
ers the region where the LPDM response, including both considered errors, can be expected
with 68.2% probability. We should also note that the area thus reflects the measurement error
with modelled randomness of material morphology, but it does not include the uncertainty
in the parameter estimates. We excluded this uncertainty as it can be significantly reduced
by the amount of the data involved in the identification process, while the included errors
are expected to be always present to a similar extent. In order to illustrate also particular
contributions of both errors (εm and εt), we plotted their standard deviations in particular
response components in Figure 6. It can be thus clearly noticed that measurement error is
considered to be equal at all loading steps, while the influence of the randomly generated

2Note that it is only very rough estimate of the mean response as it is based on average values from only
three LDPM simulations.
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Figure 6: Standard deviations of measurement and theoretical errors.

meso-structure significantly differs and its impact is most pronounced at the later post-peak
of the compression test and around the maximal stress achieved in three-point bending test.
Based on the results shown in Figure 5, we thus conclude that the proposed identification
strategy is sufficiently robust and was satisfactorily verified against ten synthetic data sets.

4.1. Discussion on posterior distribution of material parameters for one data set
Besides the ability of the identification strategy to determine LDPM material parameters

allowing satisfactory reproduction of the synthetic data, we are also interested in the informa-
tion contained in the elaborated experiments about the material parameters and the precision
of the parameter estimates. In order words, we are interested in the remaining uncertainty
in the estimates of material parameters, which is expressed in terms of posterior marginal
1D and 2D probability distributions plotted in Figure 7. This particular posterior distribution
is obtained from an inverse analysis of one synthetic data set depicted by purple colour in
Figures 4 and 5.

Figure 7 clearly reveals the very significant correlation between the estimates of E0 and
α which attains the value -0.963. Remarkable correlation can be then noticed also namely
between lt and nt, between lt and σt, and between lt and E0 whose absolute values lie in the
range [0.55, 0.75]. Eight other parameter couples achieve absolute correlation values in the
interval [0.4, 0.55] and only nine parameter couples have the absolute correlation smaller. We
thus conclude that the overall correlation in parameter estimates is a high and different types
of additional experimental data can be significantly beneficial for more accurate parameter
estimation and namely more clear separation of the effect of particular parameters on the
measured data.

Regarding 1D marginal distributions of particular parameters, we can see large remain-
ing uncertainty in the estimates of parameters α, lt, and nt. To clearly quantify the posterior
uncertainty, limits in all plots in Figure 7 are set to the prescribed prior bounds of parameter
values. We can thus easily evaluate the change from the uniform prior in these prescribed
bounds to the resulting posterior distributions and simultaneously the information contained
in the data responsible for this distribution change. We have to also emphasise that the sharp-
ness of all distributions depends strongly on the number of observations, i.e. the more sharp
distributions (and also 1D marginals) can be achieved by employing a higher number of mea-
sured points considered to define the stress-strain diagram. Nevertheless, from the parameter
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Figure 7: 1D and 2D marginal posterior distributions of model parameters corresponding to purple data set,
black line in 1D marginals and black ’+’ symbol in 2D marginals correspond to the true value of parameter
used to simulate the data.

identification point of view, it is more interesting to compare particular 1D marginals mu-
tually. This leads us to the conclusion that additional experimental data should be selected
with the emphasis namely to parameters α, lt and nt.

We should also mention that the maxima of 1D marginals do not always correspond to
the true value of parameter depicted by the black line in Figure 7. It can be noticed especially
for the parameter µ0. This can be explained again by the model stochasticity. Even though
the synthetic data were obtained for the known true values of parameters, the particular three
synthetic experimental curves corresponding to one parameter set were obtained each for
randomly generated particle configuration. These three curves are thus only a very rough
representation of the material morphology and their mean response contains still a signif-
icant bias from the true mean material response corresponding to the used set of material
parameters. Also, the employed PCE-based surrogate of the LDPM is only the approxima-
tion of the LDPM mean response, where the corresponding approximation error is roughly
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quantified by the theoretical error depicted in Figure 6. Both these errors in the estimates of
the mean measured and modelled responses may lead the identification process to a slightly
different set of parameters than the true one. Note that the quantification of bias in the mean
of synthetic experimental response would require much more LDPM simulations performed
for the true values of material parameters, which will be again highly computationally ex-
pensive. Moreover, in the case of model calibration from real experimental data, a high
number of stress-strain diagrams from both experimental types will be too expensive in both
the financial and man-power aspects. Therefore, we consider as a reasonable to demonstrate
the functionality of the proposed identification strategy within the limits of its further prac-
tical applications, where again only a very limited number of stress-strain diagrams will be
available.

4.2. Quantification of bias in posterior mean estimates
On the other hand, in the case of synthetic experimental data obtained for known values

of material parameters, we can easily evaluate the bias in resulting parameter estimates. To
that purpose, the estimated posterior mean x̂i,j of i-th parameter for j-th synthetic data set
is compared to its known true values x∗i,j and the obtained bias is normalised with respect to
the prior range of parameter values (see Table 2) according to

εi,j =
|x∗i,j − x̂i,j|

max(xi)−min(xi)
. (13)

The mean, minimal and maximal bias obtained over all nz = 10 synthetic data sets are then
summarised in Table 4. By comparing these results with posterior 1D marginal distributions

Table 4: Normalised bias in estimated mean of material parameters.
E0 α σt lt nt σs/σt µ0

ε̄i [%] 4.81 24.60 3.04 12.62 14.86 4.82 7.84

min εi [%] 0.33 0.63 0.24 1.66 0.27 0.00 0.53

max εi [%] 12.31 67.87 8.61 28.02 29.58 12.44 21.90

in Figure 7, it can be noticed that the parameters with a higher amount of the posterior
uncertainty in their estimates (namely α, lt and nt) have also the higher value of bias in their
posterior mean. These values of biases clearly suggest that remaining posterior uncertainty
cannot be fully solved by increasing number of considered measured points of stress-strain
diagrams, but there is a principal lack of information in the two elaborated experiments and
some other type of experimental data is necessary for determination and separation of the
particular material parameters.

4.3. Global sensitivity analysis
Another inexpensive way to quantify the information about material parameters hidden

in particular data points is offered by the so-called global sensitivity analysis. Once having a
constructed PCE-based surrogate of the LDPM, its coefficients can be easily used to compute
analytically the Sobol’ sensitivity indices as described in [28]. The idea of this sensitivity
analysis is based on analysis of variance, where the variance of each response component
is decomposed into fractions which can be attributed to particular material parameters. The
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first-order Sobol’ indices include the variance induced solely by one parameter. Total Sobol’
indices, on the other hand, include the effect of all polynomial terms depending on a given
parameter including the effect of mixed polynomial terms depending on more parameters
simultaneously. Attributing the effect of mixed terms is questionable as there is no possibility
to clearly separate the role of individual parameters. Here we introduce modified Sobol’
indices, where variance of a mixed polynomial term is equally distributed among all involved
parameters in that term. This modified Sobol’ index SMi corresponding to i-th material
parameter is then given as

SMi =

∑
α∈IMi

1/nαβ2
αE[ψ2

α(ξ)]∑
α∈I β

2
αE[ψ2

α(ξ)]
, (14)

where nα is a number of variables included in the polynomial term given by the multi-index
α, I is a set of multi-indices or nx-tuples α defining all polynomial terms present in the
constructed PCE and IMi ⊂ I is a subset of terms depending on the i-th material parameter
xi. The advantage of the proposed sensitivity index SMi is simply that its sum over all
material parameters equals to one, i.e.

∑nx

i=1 SMi = 1 and the role of individual parameters
can be compared also mutually among particular response components. The results of such
sensitivity analysis for the elastic stiffness KcN and discrete stress values in the uniaxial
compression test and three-point bending test are shown in Figure 8.
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0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Figure 8: Sensitivity analysis - Sobol’ indices computed from PCE coefficients.

The sensitivity analysis shows, in accordance with the posterior 1D marginal distributions
in Figure 7 and biases in estimates in Table 4, that the material parameters α and nt are really
insignificant for all the response components. σt is highly significant for both experiments,
E0 is extremely significant for elastic stiffnessKcN and σs/σt is highly significant in uniaxial
compression. µ0 and lt parameters seem to be also relatively significant at least for one of the
two experiments, but their effect can be diminished by the other more significant parameters
and the underlying approximation errors. Moreover, the unsatisfactory estimation of lt can
be also caused by its high posterior correlation with other significant parameters such as σt,
whose correlation is −0.67, or with E0 and correlation 0.55.

To verify these results, we performed one inverse analysis also separately for both ex-
periment. In particular, one analysis was performed by using the elastic stiffness KcN and
a response from uniaxial compression, other analysis for response from three-point bending
test. The posterior 1D marginal distributions depicted in Figure 9 clearly confirm that σt can
be determined from both experiments even separately, while E0 can, as expected, be well
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Figure 9: Identified 1D marginal pdfs of model parameters corresponding to experimental data from both tests
(a), uniaxial compression test including elastic stiffness KcN (b), and three point-bending test (c). True values
are marked by black and identified values by red colour.

identified namely from elastic stiffness KcN (probably even without the responses from uni-
axial compression) and σs/σt or µ0 can be well identified from uniaxial compression test.
Regarding the results of lt, its separate identification from any of the experiments leads to
much worse results, which is consistent with our assumption of its disturbing correlation
with other parameters which is reduced by combining both experiments leading to its more
precise estimation.

The presented sensitivity analysis thus provides a useful tool allowing to distinguish the
role of particular material parameters to particular response components. Once a PCE-based
surrogate to the material model is constructed, its evaluation is analytical and very compu-
tationally inexpensive. Its results can be used for planning of additional observations with
emphasis on material parameters which are insignificant for the simulation of experimental
tests employed in this paper.

Figure 10: Scheme of validation of the proposed parameter identification strategy on experimental data.

5. Validation

The verified identification approach is then validated on experimental data, where the
LDPM is calibrated by the proposed strategy to fit these data according to the scheme in
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Table 5: Identified mean values and standard deviations of parameters.
E0 [MPa] α [-] σt [MPa] lt [mm] nt [-] σs/σt [-] µ0[-]

MIN 20000 0.2 1.5 50 0.1 1.5 0.001

MAX 70000 0.3 5 300 1 8 0.5

MEAN 36781 0.2723 2.7436 164.99 0.9472 1.6475 0.1742

STD 1471 0.0224 0.1910 28.94 0.0505 0.1307 0.0358

Figure 10. As already mentioned in Section 2.2, the real experimental data of normal strength
concrete, available for three repetitions of both experimental types, are utilised.

Table 5 contains the posterior means and standard deviations of parameter estimates
along with the prior bounds. The posterior distribution is also depicted in Figure 11 in
the form of marginal 1D and 2D probability distributions of the material parameters. By

Figure 11: 1D and 2D marginal posterior distributions of model parameters corresponding to experimental data,
black line in 1D marginals and black ’+’ symbol in 2D marginals correspond to the true values of parameters
used to simulate the data.
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comparing the posterior means with the prior bounds, we can highlight that the estimated
means of nt and σs/σt lie very close to the prior bounds. Also, the value of α approaches
remarkably its prior maximum, see its posterior distribution in Figure 11. This phenomenon
suggest that the prior bounds are not sufficiently wide and the elaborated experimental data
lie beyond these bounds. Luckily based on the results of verification we know that the pa-
rameters α and nt are not much significant and their inappropriate prior limitations probably
do not significantly harm the results of the validation. However, the opposite is true for the
σs/σt parameter, which is highly significant for uniaxial compression. Its incorrect estima-
tion due to inappropriate prior bounds may cause namely unsatisfactory fit of the measured
curves in uniaxial compression, as can be seen in Figure 12, where the experimental data are
plotted along with the LDPM response obtained for the posterior parameter means. We can
also conclude that the measured data obtained from three-point bending test are predicted
well for the estimated parameters and in accordance with the results of verification, values
of E0 and σt are determined with very low posterior uncertainty and µ0 with lt seems to be
identified also with good accuracy. In order to achieve higher accuracy in µ0, lt and namely
in α and nt, other types of experiments needs to be designed and incorporated in the LDPM
calibration process.

Uniaxial compression test Three-point bending test
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Figure 12: Gray model output curves for construction of approximation vs. results of the validation in colour.
Solid lines are experimental data while filled areas represent identified regions of high prediction probability.
Black lines represent the closest prior simulation to experimental data, i.e. prior simulation with minimum
mean square error (MMSE).

6. Conclusions

The paper is focused on the probabilistic parameter identification of lattice discrete parti-
cle model for concrete. The essential benefit of the presented identification method is that it
is general, computationally feasible, and automated (i.e. relatively easy-to-use) thus allow-
ing for wide model utilisation without necessity of deep understanding of its sophisticated
formulation. The core of the model calibration procedure is the Bayes’ theorem for proba-
bilistic parameter identification, which allows to take into account uncertainties connected
to the available experimental data as well as the model inaccuracy. This probabilistic for-
mulation requires, however, high number of LDPM simulations. To reduce the related com-
putational cost, the LDPM is replaced by its polynomial approximation. This substitution is
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not convenient only for reducing the computational time, but it namely solves the obstacle
of the LDPM stochasticity as the polynomial chaos expansion can be considered as a rough
approximation of the mean LDPM response. The model calibration is thus turned into fitting
the mean LDPM response to the mean observed stress-strain diagram for a concrete mix with
a given material parameters. The Bayesian inference results in posterior probability distri-
bution of deterministic values of material parameters corresponding to given concrete mix
and this distribution expresses the uncertainty due to the insufficient information contained
in the employed experiments, measurement error and estimated model stochasticity.

The effect of model stochasticity is estimated here only very roughly due to the limited
number of LDPM simulations employed for construction of the surrogate model. Runtime
of these simulations is the principal computational burden of the whole proposed calibration
method. Once the surrogate model is constructed, the Markov chain Monte Carlo-based
estimation of posterior distribution of material parameters is already relatively fast. From
another point of view, this type of surrogate has a significant potential in a repeated use for
any new data observed within the given framework, i.e. the prescribed experimental setups
(geometry of specimens, boundary conditions and loading).

The following conclusions can be drawn from the results presented in this study:

• the proposed identification strategy is sufficiently robust and precise to fit the synthetic
stress-strain diagrams representing ten different concrete mixes (Figure 5);

• the marginal posterior distributions (Figure 7) of material parameters for one selected
concrete mix suggests that many parameters play in the employed experiments similar
role and there is not enough independent data to clearly separate their effects, i.e. the
information contained in the employed experiments is insufficient to precisely deter-
mine all the identified parameters;

• lack of the information in the experiments is also projected to the remaining uncer-
tainty in the estimates of individual parameters (Figure 7) as well as in the bias in the
estimated posterior mean of the particular parameters (Table 2), where the biggest un-
certainty and/or error remains namely in the estimates of α, lt and nt. This conclusion
is also supported by the results of global sensitivity analysis (Figure 8) revealing no
observations significantly sensitive to these parameters;

• the prior lower/upper bounds has a substantial impact on the final results and must be
appropriately chosen before the surrogate model construction.

Overall we conclude that the paper presents an identification strategy for material param-
eters of LDPM, which is robust, computationally feasible and allows for an automatisation
thus enabling wider usage of the LDPM within the engineering community. As a recommen-
dation we suggest to be very careful with the prescribing prior bounds of the particular mate-
rial parameters, as their further change requires the nontrivial reconstruction of the employed
surrogate model. Moreover, the proposed procedure allows a comfortable incorporation of
any type of experimental setup for which the surrogate model can be created based on the
LDPM simulations and arbitrary extension to all relevant material parameters used within
LDPM.
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Chapter 4

ACCELERATION OF MODEL CALIBRATION BASED ON
SURROGATES

This chapter concentrates on accelerating the calibration of nonlinear material and/or
structural models by constructing their computationally efficient surrogates. Two parts of the
chapter are devoted to two widely used types of surrogate models: (i) layered feed-forward
artificial neural network and (ii) polynomial chaos expansion. The first part elaborates and
discusses different strategies for applying surrogates in the calibration of nonlinear material
models. The second part is focused on the comparison of different numerical methods for
constructing polynomial chaos-based surrogates.
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Mareš, T., Janouchová, E., and Kučerová, A. (2016). Artificial neural networks in calibration
of nonlinear mechanical models. Advances in Engineering Software, 95:68–81.
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Abstract

Last decades witness rapid development in numerical modelling of materials and the com-
plexity of new models increases quickly together with their computational demands. De-
spite the growing performance of modern computers and clusters, calibration of such models
from noisy experimental data remains a nontrivial and often computational exhaustive task.
The layered neural networks thus represent a robust and efficient technique to overcome the
time-consuming simulations of a calibrated model. The potential of neural networks con-
sists in simple implementation and high versatility in approximating nonlinear relationships.
Therefore, there were several approaches proposed to accelerate the calibration of nonlinear
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gies based on approximating (i) model response, (ii) inverse relationship between the model
response and its parameters and (iii) error function quantifying how well the model fits the
data. The advantages and drawbacks of particular strategies are demonstrated on calibration
of four parameters of affinity hydration model from simulated data as well as from exper-
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1. Introduction

Development in numerical modelling provides the possibility to describe a lot of com-
plex phenomena in material or structural behaviour. The resulting models are, however, often
highly nonlinear and defined by many parameters, which have to be estimated so as to prop-
erly describe the investigated system and its behaviour. The aim of the model calibration
is thus to rediscover unknown parameters knowing the experimentally obtained response of
a system to the given excitations. The principal difficulty of model calibration is related to
the fact that while the numerical model of an experiment represents a well-defined mapping
from input (model, material, structural, or other parameters) to output (structural response),
there is no guarantee that the inverse relation even exists.

The most broadly used approach to parameter identification is usually done by means
of an error minimisation technique, where the distance between parameterised model pre-
dictions and observed data is minimised [1]. Since the inverse relation (mapping of model
outputs to its inputs) is often ill-posed, the error minimisation technique leads to a difficult
optimisation problem, which is highly nonlinear and multi-modal. Therefore, the choice of
an appropriate identification strategy is not trivial.

Another approach intensively developed during the last decade is based on Bayesian
updating of uncertainty in parameters’ description [2, 3]. The uncertainty in observations
is expressed by corresponding probability distribution and employed for estimation of the
so-called posterior probabilistic description of identified parameters together with the prior
expert knowledge about the parameter values [4, 5]. The unknown parameters are thus mod-
elled as random variables originally endowed with prior expert-based probability density
functions which are then updated using the observations to the posterior density functions.
While the error minimisation techniques lead to a single point estimate of parameters’ values,
the result of Bayesian inference is a probability distribution that summarizes all available in-
formation about the parameters. Another very important advantage of Bayesian inference
consists in treating the inverse problem as a well-posed problem in an expanded stochastic
space.

Despite the progress in uncertainty quantification methods [6, 7], more information pro-
vided by Bayesian inference is generally related to more time-consuming computations. In
many situations, the single point estimate approach remains the only feasible one and devel-
opment of efficient tools suitable for this strategy is still an actual topic. Within the several
last decades, a lot of attention was paid to the so-called intelligent methods of information
processing and among them especially to soft computing methods such as artificial neural
networks (ANNs), evolutionary algorithms or fuzzy systems [8]. A review of soft comput-
ing methods for parameter identification can be found e.g. in [9]. In this paper, we focus on
applications of ANNs in the single point approach to parameter identification.

2. Artificial neural network

Artificial neural networks (ANNs) [10, 11] are powerful computational systems consist-
ing of many simple processing elements - so-called neurons - connected together to per-
form tasks analogously to biological brains. Their main feature is the ability to change their
behaviour based on external information that flows through the ANN during the learning
(training) phase.
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A particular type of ANN is the so-called feedforward neural network, which consists
of neurons organized into layers where outputs from one layer are used as inputs into the
following layer, see Figure 1. There are no cycles or loops in the network, no feed-back
connections. Most frequently used example is the multi-layer perceptron (MLP) with a sig-
moid transfer function and a gradient descent method of training called the back-propagation
learning algorithm. In practical usage, the MLPs are known for their ability to approximate
nonlinear relations and therefore, when speaking about an ANN, the MLP is considered in
the following text.

n0,0 n0,1 n0,2 n0,3 n0,4

n1,0 n1,1 n1,2 n1,3

n2,1

layer 1:
input data

layer 2:
hidden neurons

layer 3:
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oi−1,0 · wi,j,0 . . . oi−1,k · wi,j,k . . .

Σ

oi,j = fa(ui,j)

ui,j =
∑

k oi−1,kwi,j,k

Figure 1: Architecture of multi-layer perceptron

The input layer represents a vector of input parameters which are directly the outputs
of the input layer. The outputs oi−1,k of the (i − 1)-th layer are multiplied by a vector of
constants wi,j,k, the so-called synaptic weights, summarized and used as inputs ui,j into the
following i-th layer. Elements in the hidden and output layers - neurons - are defined by an
activation function fa(ui,j), which is applied on the input and produces the output value of
the j-th neuron in the i-th layer, i.e.

oi,j = fa (ui,j) where ui,j =
∑

k

(oi−1,kwi,j,k) . (1)

The synaptic weights wi,j,k are parameters of an ANN to be determined during the training
process. The type of the activation function is usually chosen in accordance with the type of
a function to be approximated. In the case of continuous problems, the sigmoid activation
function given as

oi,j = fa (ui,j) =
1

1 + e−ui,j
(2)

is the most common choice.
One bias neuron is usually added into the input and hidden layers. It does not contain

an activation function, but only a constant value. Its role is to enable to shift the value of
a sum over the outputs of his neighbouring neurons before this sum enters as the input into
the neurons in the following layer. The value of biases is determined by training process
together with the synaptic weights.

Despite of ANN’s popularity there are only few recommendations for the choice of
ANN’s architecture. The authors, e.g. in [12, 13], show that the ANN with any of a wide va-
riety of continuous nonlinear hidden-layer activation functions and one hidden layer with an
arbitrarily large number of units suffices for the ”universal approximation” property. There-
fore, we limit our numerical experiments to such case. The number of units in the input
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and the output layer is usually given by the studied problem itself, but there is no theory yet
specifying the number of units in the hidden layer.

To overcome this problem, some model selection technique [14] has to be applied in order
to perform a guided choice of the ANN’s topology. The most general strategy is the cross-
validation, because it does not involve any probabilistic assumptions or dependencies on a
identification problem. The idea of cross-validation is based on repeated ANN prediction
error evaluation for a chosen subset of training data and selection of the ANN with the
smallest averaged prediction errors. Comparing to the well-known model validation on some
independent set of data, the advantage of cross-validation consists in smaller requirements
on data amount [15].

3. Strategies for application of ANN in model calibration

In model calibration, the goal is to find a set of model parameters minimising the dif-
ference between the model response and experimental measurements, see Figure 2. An in-

Material properties Experiment Measurement

Material parameters Model Model response

Error
Error function
approximation

Forward model approximation

Inverse relation approximation function

? E d

p M r

F

Figure 2: Scheme of model calibration procedure.

tuitive way of solving calibration problem is to formulate an error function quantifying this
difference and to minimise the error function using some optimisation algorithm. The most
common error functions are given as

F1 =

NR∑

i=1

(ri − di)2 , (3)

F2 =

NR∑

i=1

|ri − di| , (4)

where ri is the i-th component of model response corresponding to the i-th measured quan-
tity di and NR is a number of measured quantities. The difficulty arises from the nonlinear
relation between the model response and model parameters often causing complexity of the
error function such as multi-modality or non-differentiability. Therefore, the computation-
ally efficient methods based on analytically or numerically obtained gradient can be applied
only in specific cases.

A more general possibility is to apply some evolutionary algorithm which can handle
the multi-modality once furnished by a sufficient number of function evaluations. However,
one evaluation of an error function always involves a simulation of the model. Even for the
relatively fast model simulation, the optimisation can become easily unfeasible because of
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the huge number of function evaluations commonly needed by evolutionary algorithms, even
though they usually need less simulations than uncertainty based methods mentioned in the
introductory part of the paper.

One way of reducing the number of model simulations is to construct a forward model
approximation based e.g. on an ANN. The error function minimisation then becomes a
minimisation of distance between the ANN’s predictions and experimental data. The effi-
ciency of this strategy relies on the evaluation of the trained ANN to be significantly much
faster than the full model simulation. The advantage of this strategy is that the ANN is used
to approximate a known mapping which certainly exists and is well-posed. Computational
costs of this strategy are separated in two parts of a similar size: (i) the ANN training - op-
timisation of synaptic weights and (ii) the minimisation of an error in the ANN prediction
for experimental data - optimisation of ANN inputs (i.e. determination of investigated model
parameters). An important shortcoming of this method is that this ill-posed optimisation
problem needs to be solved repeatedly for any new experimental measurement. This way of
ANN application to the parameter identification was presented e.g. in [16], where an ANN
is used for predicting load-deflection curves and the conjugate directions algorithm is then
applied for optimisation of ductile damage and fracture parameters. Authors in [17] train an
ANN to approximate the results of FE simulations of jet-grouted columns and optimise the
column radius and a cement content of the columns by a genetic algorithm. Principally same
methods are used for identification of elasto-plastic parameters in [18].

One more difficulty of the forward model approximation concerns the number of param-
eters and response components. It is very common that the experimental observations are
represented by a discretized curves or surfaces in time or space dimensions being defined as
a vectors with a large number of components. A forward model then represents a mapping
from usually low-dimensional parameter space to high-dimensional response space. Al-
though this mapping is well-posed, the surrogate model must have a large number of outputs
or the time and/or space dimensions have to be included among the model inputs.

Another way of avoiding the mapping to a large number of outputs is to construct the
error function approximation, where the model parameters are mapped onto only one
scalar value. One important inconvenience of such strategy is of course the complexity of
the error function, which can be, as mentioned above, highly nonlinear, multi-modal and/or
non-smooth. Higher complexity of the approximated relation leads to a higher number of
simulations needed for the approximation construction. This concerns another problem of
estimation and choice of an appropriate design of experiments, i.e. sets of parameters, to per-
form the simulations which will enable to build up the surrogate with a relatively small error.
This problem can be reduced by adaptive addition of design points, i.e. new simulations,
close to the minimum of the error function approximation. Result of the new simulation is
then used for an improvement of the surrogate and a new optimisation process is run again.
Such an approach is usually well suited for surrogates based on kriging or radial basis func-
tion networks [19, 20]. In this paper, we limit our attention to application of feedforward
layered neural networks and thus, we investigated their ability to approximate the error func-
tion with a limited number of simulations in non-adaptive fashion.

While the strategy of the forward model approximation involves a new optimisation pro-
cess for any new data, the strategy of the error function approximation involves not only the
optimisation process, but also the surrogate model construction. Regarding this aspect, the
most convenient strategy is the inverse relation approximation, which needs only one eval-
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uation to furnish the parameters corresponding to new observations. Of course, by the new
observations we mean observations of the system with different properties but performed un-
der the same external conditions (e.g. a different material, but the same specimen geometry
and loading conditions). The strategy of the inverse relation approximation assumes the ex-
istence of an inverse relationship between the outputs and the inputs of the calibrated model.
If such a relationship exists at least on a specified domain of parameters’ values, it can be ap-
proximated by an ANN. Here the ANN training process represents the whole computational
costs and a solution of the ill-posed problem. This way of ANN application to parameter
identification was presented e.g. in [21] or recently in [22] for identification of mechanical
material parameters, in [23] for estimation of elastic modulus of the interface tissue on dental
implants surfaces, in [24] for identification of interfacial heat transfer coefficient or in [25]
for determination of geometrical parameters of circular arches.

In order to illustrate the advantages and disadvantages of the outlined strategies of ANN’s
application to model calibration, we have chosen computationally simple but nonlinear affin-
ity hydration model briefly described in the following section. The model was successfully
validated on Portland cements in [26] and thus allows us to also validate the described iden-
tification strategies on experimental data as summarized in Section 9.

4. Affinity hydration model

Affinity hydration models provide a framework for accommodating all stages of cement
hydration. We consider hydrating cement under isothermal temperature 25◦C. At this tem-
perature, the rate of hydration can be expressed by the chemical affinity Ã25(α) under isother-
mal 25◦C

dα

dt
= Ã25(α), (5)

where the chemical affinity has a dimension of time−1 and α stands for the degree of hydra-
tion.

The affinity for isothermal temperature can be obtained experimentally; isothermal calori-
metry measures a heat flow q(t) which gives the hydration heat Q(t) after integration. The
approximation is given

Q(t)

Qpot

≈ α, (6)

1

Qpot

dQ(t)

dt
=

q(t)

Qpot

≈ dα

dt
= Ã25(α), (7)

where Qpot is expressed in J/g of cement paste. Hence the normalized heat flow q(t)
Qpot

under

isothermal 25◦C equals to chemical affinity Ã25(α).
Cervera et al. [27] proposed an analytical form of the normalized affinity which was

refined in [28]. A slightly modified formulation is proposed here

Ã25(α) = B1

(
B2

α∞
+ α

)
(α∞ − α) exp

(
−η̄ α

α∞

)
, (8)

where B1, B2 are coefficients related to chemical composition, α∞ is the ultimate hydration
degree and η̄ represents microdiffusion of free water through formed hydrates. The parame-
ters in (8) express isothermal hydration at 25◦C.
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Parameter Minimum Maximum Relation
B1 [h−1] 0.1 1 p1 = (B1 − 0.1)/0.9
B2 [−] 10−6 10−3 p2 = (logB2 + 6)/3
η̄ [−] 2 12 p3 = (η̄ − 2)/10
α∞ [−] 0.7 1.0 p4 = (α∞ − 0.7)/0.3

Table 1: Bounds for affinity model parameters.

When hydration proceeds under varying temperature, maturity principle expressed via
Arrhenius equation scales the affinity to arbitrary temperature T

ÃT = Ã25 exp

[
Ea
R

(
1

273.15 + 25
− 1

T

)]
, (9)

where R is the universal gas constant (8.314 Jmol−1K−1). For example, simulating isother-
mal hydration at 35◦C means scaling Ã25 with a factor of 1.651 at a given time. This means
that hydrating concrete for 10 hours at 35◦C releases the same amount of heat as concrete
hydrating for 16.51 hours under 25◦C. Note that setting Ea = 0 ignores the effect of tem-
perature and proceeds the hydration under 25◦C.

The integration of (7) needs to be carried out numerically. The predictor-corrector scheme
is implemented as follows

α
(1)
0 = α(0) + ÃT (α(0)) ·∆t , (10)

α
(1)
n+1 = α(0) +

[
ÃT (α(0))− ÃT (α(1)

n )
]
· ∆t

2
. (11)

5. Sensitivity analysis

Since the ANN training needs a preparation of a set of training data, it is also worthy
to use these data for a sampling-based sensitivity analysis [29, 30] and obtain some infor-
mation about importance of particular observations or significance of each parameter for a
system behaviour. To achieve some reliable information from sensitivity analysis as well as
a good approximation by an ANN, one has to choose the training data carefully according
to a suitable design of experiments, see e.g. [31] for a competitive comparison of several
experimental designs.

Since the bounds for model parameters vary in orders, one can employ the expert knowl-
edge about the parameter meanings and before preparation of the training data transform
them into standardised parameters pi ∈ [0; 1]. The bounds for the affinity model parameters
together with their relations to the standardised parameters pi are given in Table 1.

The affinity hydration model was chosen not only for its nonlinearity, but especially for
its relatively simple interpretation and computationally fast simulation. Hence, we assume
that the model is eligible to illustrate typical features of particular identification strategies.
In order to understand the influence of the model parameters to its response more deeply,
Figure 3 demonstrates the changes of the response induced by changes in a chosen param-
eter while the other parameters are fixed. On the other hand, to illustrate the spread of the
model response corresponding to the parameters varying within the given domain, we pre-
pare a design of experiments (DoE) havingNDoE = 100 samples in the space of standardised
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B1 = {0.1, 0.2, . . . , 1} B2 = {10−6, 11.2−5, . . . , 10−3}
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Figure 3: Influence of model parameters to model response α.

parameters. The DoE is generated as Latin Hypercube Sampling optimised with respect to
the modified L2 discrepancy. In [31] it is shown that such an experimental design has a good
space-filling property and is nearly orthogonal. For each design point we perform a model
simulation to obtain a bundle of NDoE curves for the degree of hydration α(t), see Figure 4a.
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Figure 4: Bundle of degree of hydration curves obtained for design points (a) and sensitivity analysis for
input-output pairs (b).

Since the model response is represented by the degree of hydration being a function of the
time, the time domain is discretised into 1161 steps uniformly distributed with the logarithm
of the time. Hence, the model input vector p = (p1, p2, p3, p4) consists of 4 parameters
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and the output vector α = (α1, . . . , αNtime
) consists of Ntime = 1161 components. In order

to quantify the influence of the model parameters to particular response components, we
evaluate Spearman’s rank correlation coefficient ρ for each (pi,αi) pair using all the i ∈
{1, . . . , NDoE} simulations. The results of such a sampling-based sensitivity analysis [29]
are plotted in Figure 4b.

In the inverse mode of identification, the model output vector α consisting of Ntime =
1161 components is too large for usage as an input vector for the ANN. Hence, we performed
the principal component analysis (PCA) in order to reduce this number to NPCA = 100 com-
ponents ᾱ = (ᾱ1, . . . , ᾱ2) with non-zero variance (this number is related to the number of
simulations involved in PCA, i.e. NPCA = NDoE). The components are ordered accord-
ing to their relative variance, see Figure 5a for the nine most important ones. Resulting
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ᾱ20 ᾱ40 ᾱ60 ᾱ80 ᾱ100
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p1
p2
p3
p4

(a) (b)

Figure 5: Variance explained by the first nine principal components (a) and sensitivity analysis for model inputs
pi - principal components ᾱi (b).

principal components are technically new quantities obtained by a linear combination of the
original model outputs ᾱ = Ā(α). This transformation has of course an influence to sensi-
tivity analysis and thus we computed correlations between the model inputs pi and principal
components ᾱi, see Figure 5b.

6. Implementation of approximation strategies

Results of the described simulations are also used as training simulations for ANNs, i.e.
Dtrain = {(pi,αi) | i ∈ {1, 2, . . . , Ntrain}, Ntrain = NDoE = 100}. Particular approximation
strategies, however, process the training simulations in a different way.

The strategy of the forward model approximation can be formulated in two ways, which
differ in handling the high dimensionality of the model output α. In the first formulation,
we can consider the time step tk as the fifth model parameter (i.e. the fifth model input)
and thus the model output reduces into only one scalar value of the hydration degree αk
corresponding to the given time tk. As the objective of the ANN is thus to span the parameter
as well as the time space, we called this strategy as Forward Complex (ForwComp). In
such a configuration, the results of Ntrain training simulations turns into Ntrain × Ntime =
116, 100 training samples. Evaluation of so many samples at every iteration of ANN training
process is, however, very time-consuming. Therefore, only every m-th time step is included
for ANN training and thus the training set is given as DForwComp

train = {((pi, tk), αi,k) | i ∈
{1, 2, . . . , Ntrain}, k ∈ {1, 1+m, 1+2m, . . . , Ntime}}. In our particular implementation, we
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selected m = 10 leading to |DForwComp
train | = 11, 700 samples. Note that in all other strategies,

the number of training samples equals the number of training simulations, see Table 2, where
the significant parameters of particular approximation strategies are briefly summarised.

Strategy NANN Inputs Outputs |Dtrain|
Forward Complex 1 p1, p2, p3, p4, tk αk | k ∈ {1, 11, . . . , 1161} 11700
Forward Split 9 p1, p2, p3, p4 α300;α400; . . . ;α1100 100
Forward Split II 22 p1, p2, p3, p4 α100;α150; . . . ;α1150 100
Forward Split III 43 p1, p2, p3, p4 α100;α130;α150;α170; . . . ;α1150 100
Error F1 1 p1, p2, p3, p4 F1 100
Error F2 1 p1, p2, p3, p4 F2 100
Inverse Expert 4 α300, α400, . . . , α1100 p1; p2; p3; p4 100
Inverse Expert II 4 α200, α300, . . . , α1100 p1; p2; p3; p4 100
Inverse PCA 4 ᾱ1, ᾱ2, . . . , ᾱ9 p1; p2; p3; p4 100

Table 2: Parameters of approximation strategies

The second way of the model output approximation is based on training an independent
ANN for every time step tk. Here, the particular ANN approximates simpler relation and
span only the parameter space. A training data set for ANN approximating the response
component αk is thus given as DForwSpli,αk

train = {(pi, αi,k) | i ∈ {1, 2, . . . , 100}} having only
|DForwSpli,αk

train | = 100 samples. A disadvantage of such an approach consists in training a large
number NANN of smaller ANNs. As training of NANN = Ntime = 1161 different ANNs
can be almost unfeasible, we select only a few of the time steps, where the approximation
is constructed and thus, the model output approximation is more rough. The choice of the
important time steps and their number can be driven by the expert knowledge or results of the
sensitivity analysis. Hence, we present three different choices so as to illustrate its influence,
see Table 2. We further call these strategies as Forward Split (ForwSpli), Forward Split II
(ForwSpliII) and Forward Split III (ForwSpliIII).

The error function approximation is the only strategy where the high dimensionality of
the model output does not impose any complications. The model output is used for eval-
uation of the error function and the ANN is trained to approximate the mapping from the
parameter space to a single scalar value of the error function, i.e. DError,Fa

train = {(pi, Fa) | i ∈
{1, 2, . . . , Ntrain}} and |DError,Fa

train | = 100, where Fa stands for a chosen error function. As
we already mentioned in Section 3, there are two very common error functions given by
Eqs. (3) and (4) and thus we investigate both considering the two strategies further called as
Error F1 and Error F2, respectively.

In case of the inverse relation approximation, the high dimensionality of the model output
needs again some special treatment so as to keep the number of ANN inputs and thus the
ANN complexity reasonable. An intuitive approach is a simple selection of a limited number
of output values a = A(α). Here, one ANN is trained to predict one model parameter pj
and thusDInvExp,pj

train = {(ai, pi,j) | i ∈ {1, 2, . . . , Ntrain}} and |DInvExp,pj
train | = 100. A particular

choice of components in the vector ai defined by the operator A should take into account not
only the results of sensitivity analysis, but also a possible measurement error in experimental
data as well as any other expert knowledge. Hence we present again two different choices
in order to illustrate its influence, see Table 2 and we further call these configurations as
Inverse Expert (InvExp) and Inverse Expert II (InvExpII).
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In order to reduce the influence of the expert choice, the principal components ᾱ com-
puted as described in the previous section can be used as ANN inputs and one has to
choose only their number. To compare the information contained in the same number
of inputs selected by an expert, we have chosen the same number of principal compo-
nents as the number of inputs in the Inverse Expert configuration and thus DInvPCA,pj

train =

{((ᾱi,1, . . . , ᾱi,9), pi,j) | i ∈ {1, 2, . . . , Ntrain}} and |DInvPCA,pj
train | = 100. The principal com-

ponents based strategy is further called Inverse PCA (InvPCA).
Then, the last preparatory step concerns the generation of testing data for a final assess-

ment of the resulting ANNs consisting of Ntest = 50 simulations for randomly generated
sets of input parameters. The obtained data are then processed by particular approximation
strategies in the same way as the training data described above.

7. Neural network training algorithm and topology choice

The quality of the ANN-based approximation estimated on a given data set D can be
expressed as the mean relative prediction error εMRP(D) given as

εMRP(D) =

∑|D|
i=1 |Oi − Ti,D|

|D|(Tmax,Dtrain
− Tmin,Dtrain

)
, (12)

where Oi is the ANN output corresponding to the target value Ti,D contained in the data set
D, which consists of |D| samples. Tmax,Dtrain

and Tmin,Dtrain
are the maximal and minimal

target values in the training data set Dtrain, so the error εMRP(D) is always scaled by the
same factor for any chosen data set D and this factor corresponds to the range of the training
data.

The conjugate gradient-based method [32] was applied as a training algorithm for synap-
tic weights computation and the cross-validation method was employed to determine the
number of hidden neurons. In V -fold cross-validation we break the training data set Dtrain

into V approximatelly equisized subsets Dtrain = Dtrain,1 ∪Dtrain,2 ∪ · · · ∪ Dtrain,V and then
we perform V training processes, each time leaving out one of the subsets Dtrain,i and using
the rest of the training data set Dtrain \ Dtrain,i.

The criterion for stopping the training process is governed by the prediction errors ratio
rPEk computed at the k-th iteration of the training algorithm given as

rPEk (Dtrain \ Dtrain,i) =

∑k
j=k−J ε

MRP
j (Dtrain \ Dtrain,i)∑k−J−1

j=k−2J ε
MRP
j (Dtrain \ Dtrain,i)

, (13)

where εMRP
j (Dtrain\Dtrain,i) is the mean relative prediction error obtained at the j-th iteration

of the training algorithm obtained on the training data set without its i-th partition. J is the
chosen number of iterations considered for computing the ratio rPEk for its smoothing effect
on rPEk . The training process is stopped either when the number of iterations achieves its
chosen maximal value K or if the prediction errors ratio rPEk exceeds a chosen critical value
rPEmax.

Once the training process is completed, the ANN is evaluated on the remaining part of
the training data Dtrain,i, which was not used in the training process. The quality of the ANN
with a particular number of hidden neurons h is assessed by the cross-validation error εCV

h ,
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which is computed as a mean of the errors obtained for the ANNs trained on the subsets
Dtrain \ Dtrain,i and then evaluated on the remaining subset Dtrain,i , i.e.

εCV
h =

1

V

V∑

i=1

εMRP(Dtrain,i) . (14)

We start with an ANN having hmin hidden neurons and we compute the corresponding cross-
validation error. Then, one hidden neuron is added and after all the training processes on
training data subsets, the new cross-validation error is evaluated. We compute the cross-
validation error ratio rCVE

h as
rCVE
h = εCV

h /εCV
h−1 . (15)

We count the situations when the ratio rCVE
h exceeds a chosen critical value rCVE

max . If this
happened W times, the addition of hidden neurons is stopped. Then we choose the architec-
ture having the smallest cross-validation error εCV

h and the particular ANN with the synaptic
weights having the smallest training error εMRP.

Number of subsets in cross-validation V 10
Number of iteration considered in rPEk J 100
Maximal number of training iterations K 5000
Maximal value of prediction errors ratio rPEmax 0.999
Starting value of hidden neurons hmin 1
Maximal value of cross-validation error ratio rCVE

max 0.99
Maximal value of rCVE

max exceeding W 3

Table 3: Parameters of ANN training algorithm and cross-validation method

The resulting ANNs are tested on an independent testing data setDtest. Since some of the
approximation strategies consist of a high number of ANNs, the resulting number of hidden
neurons and achieved errors on training and testing data for all the trained ANNs are listed
in Appendix A. Brief summary of these results is presented in Table 41.

Strategy h εMRP(Dtrain)[%] εMRP(Dtest)[%]
Forward Complex 7 2.03 2.67
Forward Split 3 to 10 0.06 to 1.06 0.06 to 1.27
Forward Split II 4 to 13 0.06 to 1.42 0.07 to 2.04
Forward Split III 3 to 13 0.03 to 1.50 0.03 to 1.98
Error F1 10 0.40 to 0.54 0.57 to 0.74
Error F2 9 to 11 0.78 to 1.36 0.96 to 1.56
Inverse Expert 5 to 8 1.14 to 5.74 1.31 to 6.43
Inverse Expert II 4 to 6 1.38 to 5.79 1.36 to 6.52
Inverse PCA 4 to 8 0.28 to 10.50 0.33 to 16.73

Table 4: Architecture of particular ANNs in inverse strategies and their errors on training and testing data.

1The error function approximation strategies are intrinsically related to particular experimental curve. The
results here are obtained for experimental ”Mokra” data described in Section 9 in more detail.
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Regarding the number of hidden neurons, the results point to higher complexity of the er-
ror function relationships. Nevertheless, the differences in hidden neurons among particular
strategies are relatively small.

The quality of the resulting ANNs in approximation of the given relationships is mea-
sured by the obtained errors on all the training εMRP(Dtrain) and testing εMRP(Dtest) data.
Small differences between the training and testing errors refer to well-trained ANNs and to
the good quality of the training method as well as the method for topology estimation. Note
that overtrained ANNs usually lead to significantly higher errors on testing data.

Comparing the approximation quality of the particular strategies, we can point out good
results of the forward model approximation and error function approximation, where the
errors did not exceed the value of 3 %. The good approximation of the forward model is
not surprising since the relationship is well-defined, smooth and relatively simple. The good
results of the error function approximation are more unexpected, because the relationship
here is probably more nonlinear and complex. One possible explanation is a large spread of
error function values on the training data, which is used to scale the errors (see Eq. (12)).
While the error functions converge to zero near the optimal parameter values, they quickly
rise to extremely high values for parameter values more distant from the optimum. Hence,
we presume that the small errors obtained in the error function approximation do not promise
comparably good results in the final parameter identification.

The results of the inverse relation approximation are not very good, but it was foreseen
due to unknown and probably ill-posed relationship. Nevertheless, the obtained errors are
actually the final errors of the whole identification process for the training and testing data,
since there is no other following step concerning any optimisation as in the case of other
identification strategies. Hence, further comments on these results are presented in the fol-
lowing section concerning verification of the overall identification strategies on the testing
data.

8. Verification of model calibration

Since the errors in Table 4 represent only the quality of the constructed ANNs, we have
to also investigate the quality of the identification procedures. This section is devoted to
verification of model calibration, where the goal is to predict the model parameters’ values
corresponding to the simulated data, which are not perturbated by any noise. The advan-
tage of verification is that we also know the true values of the parameters and thus, we can
easily evaluate the quality of their estimation by each strategy. In particular, the calibra-
tion strategies were applied to estimate the parameters’ values for all the training and testing
simulations.

As mentioned, in case of the inverse relation approximation, the outputs of ANNs are
directly the predicted values of the identified parameters p̂. In case of the forward model
approximation, we have to run a subsequent optimisation process. Here, the evolutionary
algorithm GRADE, see [9] for details about this method2, is applied to find a set of parame-
ters’ values p̂ minimising the square distance δ between components of the model response

2The parameters of GRADE algorithm were set to pool rate = 4, radioactivity = 0.33 and cross limit = 0.1.
The algorithm was stopped after 10000 cost function evaluations.
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αk and their corresponding ANN-based approximated counterparts α̃k, i.e.

δ =
∑

k

(αk − α̃k)2 , (16)

where k corresponds to selected approximated components defined for particular identifica-
tion strategies in Table 2. In such a way, the parameters p̂ are predicted for all the training as
well as testing data. As the true values of parameters p are known in the verification process,
the mean prediction errors ε̂ are computed relatively to the spread of the training data, i.e.

ε̂(p̂j) =

∑|D|
i=1 |pi,j − p̂i,j|

|D|(pmax(Dtrain),j − pmin(Dtrain),j)
, (17)

and the obtained errors for particular identification strategies are listed in Table 5. In applica-

ε̂(p̂1) ε̂(p̂2) ε̂(p̂3) ε̂(p̂4) ε̂(α̂)
train test train test train test train test train test

Forward Complex16.78 17.09 52.20 47.91 6.06 5.45 3.67 2.69 1.08 1.09
Forward Split 9.48 11.62 30.18 38.45 3.14 4.65 1.17 3.10 0.31 0.37
Forward Split II 5.09 6.47 13.34 15.03 1.69 2.60 0.67 1.02 0.14 0.21
Forward Split III 4.12 4.84 10.73 10.65 1.49 1.63 0.57 0.64 0.12 0.16
Inverse Expert 5.74 6.43 5.15 6.21 1.99 2.16 1.14 1.31 0.49 0.49
Inverse Expert II 5.79 6.23 5.60 6.52 2.60 3.18 1.38 1.36 0.44 0.53
Inverse PCA 3.86 5.10 10.50 16.73 1.25 1.89 0.28 0.33 0.38 1.21

Table 5: Results of verification of particular identification strategies in terms of mean relative prediction errors
ε̂ [%].

tion of identification strategy to real experimental data, the parameter values are not known,
but the success of the identification process is quantified by quality of fitting the data by the
model response obtained for the identified parameters. Hence, the model simulations were
performed for all the identified parameter sets and prediction errors ε̃ in terms of predicted
responses α̃ are computed analogously to the Eq. (17). Their values averaged also over all
the response components are then listed in Table 5.

The results for strategies based on an approximation of the error function are missing
here, because they require to build a particular ANN for every curve of the hydration degree
and for each require to run an additional minimisation procedure. This is overwhelming and
thus these strategies are only validated on experimental data as described in the following
section.

One can see that among the forward strategies, the complex variant provided the worst
results in the training process as well as in the final identification. The complex relationship
covering the time domain cause apparently certain difficulties to the training process. We can
conclude that training of a set of neural networks means more work, but offers significantly
better quality of the model approximation. We can also point out the large differences in
errors of particular parameters, which correspond to influence of particular parameters to
the model response. As demonstrated in Figure 3, the largest spread of the model response
is related namely to change in the parameters p4 and p3, while the parameter p1 and even
more p2 seem to be almost negligible. The sensitivity analysis illustrated in Figure 4b shows
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very high sensitivity of the model response to the parameter p2 at early stage of hydration,
nevertheless, at this stage the spread of the model response is almost negligible and even a
very small error in the response approximation can be fatal for identification of the parameter
p2. On the other hand, it is not surprising that the identification accuracy is significantly
improved with an increasing number of approximated response components, i.e. increasing
number of trained ANNs.

Despite the worse results in training of ANNs, the inverse strategies achieved comparably
good results with the forward strategies in parameter identification and also in fitted measure-
ments. More precisely, the results of measurements fitting are slightly worse, but the errors in
parameter prediction are smaller. Especially the Inverse Expert strategies provided surpris-
ingly small errors in p2 prediction and the errors in parameters are generally more balanced.
This phenomenon can be possibly explained by fact that each ANN is trained to predict
each parameter separately, thus automatically selecting and emphasizing the combinations
of model response critical for the parameter. In the strategy Inverse Expert II, the usage of
one additional input at the early stage of hydration caused no improvement of the resulting
prediction, which is probably caused again by fact that the responses at this stage have negli-
gible spread and almost no predictive value. Last interesting result concerns the application
of principal component analysis. The Inverse PCA strategy provided again significantly dif-
ferent errors in prediction of particular parameters, similarly to the forward strategies. The
reason resides possibly in fact that PCA emphasize the most important components, while
it can mix the effects of the less significant parameters. Nevertheless, when compared with
strategies Forward Split and Inverse Expert using the same number of response components,
the Inverse PCA provided the best results in prediction of all the parameters except p2. Its
quality of measurement fitting is, however, the worst among those strategies.

From this thorough comparison we may conclude that all the inverse strategies provide
very good results, which makes them highly promising considering their very simple im-
plementation which does not include any additional optimisation process except the only
training of ANNs. Moreover, the Inverse Expert strategies can be especially recommended
for identification of less significant parameters.

9. Validation of model calibration

The previous section was focused on mutual comparison of the presented identification
strategies on simulated data. However, a complete comparison has to include their valida-
tion on experimental data. To that purpose we used the four experimental data obtained by
isothermal calorimetry: one for cement “Mokra” CEM I 42.5 R taken directly from Heidel-
berg cement group’s kiln in Mokrá, Czech Republic [33] and three others from the following
literature: “Boumiz” [34], “Hua” [35] and “Princigallo” [36].

In parameter identification from experimental data, one often face to difficulties related
to (i) experimental errors and (ii) model imperfections. Especially in case of models with
parameters having a specific physical meaning – like affinity hydration model – it happens
that the experimental data seems to lie beyond the physically meaningful values of the model
parameters. This is exactly what we face in case of the four experimental curves depicted in
Figure 6. The grey curves represent the training samples generated in an optimised fashion so
as to maximally cover the parameter space. Nevertheless, it is visible that all the experimental
curves lie out of the bundle of the training samples. Applying the identification strategies to
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Figure 6: Corrections of experimental curves.

these data will require the ANNs to extrapolate and it will probably lead to unphysical and
wrong predictions of the model parameters. Such results were presented for “Mokra” in [37].
Looking in more detail on the experimental curves, one can see that the difference between
the experimental data and simulations can be explained by wrong estimation of the origin
of hydration. Correction of the starting time moves the curves into the bundle of response
simulations. As a matter of fact, the correction in orders of hours is negligible comparing to
the duration of the whole hydration process lasting often days or weeks. Moreover, the goal
of this paper is not to argue against the correctness of the model or data, but to demonstrate
the properties of particular identification strategies which can be better illustrated in situation,
where the observed data are not outliers w.r.t. sampled parameter domain. For an interested
reader about the identification of outliers we refer to [37].

In general, validation does not allow for a comparison in terms of parameters’ values, be-
cause these are not known a priori. Nevertheless, the simplicity and the fast simulation of the
affinity hydration model permit a direct optimisation of the model parameters so as to fit the
measured data without any incorporated approximation. The resulting optimal solutions can
be then compared with the results obtained using the ANN approximations. To that purpose,
we employ again the error functions given in Eqs. (3) and (4) and the GRADE algorithm
with the same setting as in the previous section to minimise the both error functions. The
obtained results are referred to as Direct1 and Direct2, respectively.
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Subsequently, the identification strategies were applied to the experimental data using
the prepared ANNs. Since the ANNs are constructed for specific time steps of the hydration
degree, the experimental curves are interpolated to the time steps required by the particular
ANNs. If necessary, the data are extrapolated beyond the last measured time step assuming
the further progress of hydration to be constant at the last measured value. The identified pa-
rameters together with the parameters’ values obtained by the direct optimisation are written
in Tables 6 and 7. The identified parameters were used as inputs for simulations, whose

“Mokra” “Boumiz”
Method p1 p2 p3 p4 ε̂(α̂) p1 p2 p3 p4 ε̂(α̂)
Direct1 0.84 0.99 0.18 0.05 0.70 0.93 1.00 0.02 0.36 2.37
Direct2 0.82 0.98 0.18 0.05 0.65 0.93 1.00 0.02 0.35 2.70
Forward Complex 0.81 1.00 0.18 0.03 1.35 1.00 0.61 0.08 0.36 12.67
Forward Split 0.82 1.00 0.19 0.05 1.15 0.96 1.00 0.08 0.35 5.44
Forward Split II 0.78 1.01 0.18 0.05 0.83 1.00 1.00 0.08 0.35 4.11
Forward Split III 0.80 1.00 0.19 0.05 0.91 0.98 1.00 0.05 0.35 3.03
Error F1 0.78 0.73 0.09 0.07 3.89 - - - - -
Error F2 1.00 1.19 0.15 -0.06 2.73 - - - - -
Inverse Expert 1.16 -0.18 0.29 0.03 6.83 0.78 -0.24 0.22 0.30 35.11
Inverse Expert II 1.21 -0.06 0.19 0.16 4.68 1.27 -0.14 0.20 0.13 25.94
Inverse PCA 0.75 0.83 0.18 0.06 1.82 0.78 0.87 0.02 0.35 10.82

Table 6: Results of identification strategies obtained for “Mokra” and “Boumiz”: identified values of model
parameters and mean relative error in degree of hydration ε̂(α̂) [%].

“Hua” “Princigallo”
Method p1 p2 p3 p4 ε̂(α̂) p1 p2 p3 p4 ε̂(α̂)
Direct1 1.00 0.94 0.20 0.11 2.24 1.00 0.85 0.19 0.14 3.46
Direct2 0.99 0.96 0.21 0.11 2.46 1.00 0.88 0.21 0.15 3.27
Forward Complex 1.00 0.64 0.22 0.08 4.10 1.00 0.58 0.23 0.14 6.21
Forward Split 0.87 1.00 0.19 0.11 2.84 0.78 0.98 0.18 0.15 4.39
Forward Split II 0.93 0.96 0.21 0.11 2.92 0.92 0.82 0.20 0.14 4.44
Forward Split III 0.87 1.01 0.18 0.10 2.71 0.89 0.92 0.18 0.14 3.75
Inverse Expert 0.94 -0.29 0.26 0.12 10.64 1.07 -0.16 0.22 0.15 9.02
Inverse Expert II 1.26 -0.27 0.19 0.02 6.23 1.52 -1.38 0.13 -0.24 15.05
Inverse PCA 1.00 0.89 0.15 0.12 2.41 1.13 0.74 0.19 0.15 3.62

Table 7: Results of identification strategies obtained for “Hua” and “Princigallo”: identified values of model
parameters and mean relative error in degree of hydration ε̂(α̂) [%].

results are compared with the experimental data in Figures 7 and 8. To quantify the quality
of obtained fits, Tables 6 and 7 contain also the mean relative error ε̂(α̂) [%] computed in the
same manner as in Table 5 for an easy comparison of the verification and validation results.

The strategies based on the error function approximation are illustrated on parameter
identification from “Mokra” data, which are used to define the error functions, which are
approximated by ANNs. Trained ANNs are then optimised by GRADE algorithm so as to
provide the optimal set of identified parameters. As we presumed, the identification results
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Figure 7: Comparison of corrected experimental data “Mokra” and “Boumiz” and corresponding results of
calibration strategies.

are not satisfactory despite ostensibly very good results of the ANNs’ training processes, see
Table 4. The training and testing errors are small relatively to the spread of error functions’
values, which increase quickly with the distance from the optimal solution. The strategy,
however, requires high precision of the ANN’s approximation near the optimal solution,
which can be hardly achieved due the overall complex shape of the error functions.

The worst results on all the experimental curves were obtained by the inverse strategies
based on selected components of the model response used as ANNs’ inputs. The results
pointed out the high sensitivity of this strategy to measurement noise and to specific choice
of the inputs. Both drawbacks are overcome by employing principal component analysis,
which allows to employ high number of response components and filter the measurement
noise out of the several first principal components. The Inverse PCA strategy thus achieved
significantly better results.

The forward strategies provided generally the best results consistent with the results of
the verification on simulated data. These strategies thus proved to be rather immune to the
noise in experimental data.

10. Conclusions

The presented paper reviews and compares several possible applications of artificial neu-
ral networks in calibration of numerical models. In particular, the feedforward layered neural
network is employed in three basic schemes to surrogate: (i) response of a model, (ii) inverse
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Figure 8: Comparison of corrected experimental data “Hua” and “Princigallo” and corresponding results of
calibration strategies.

relationship of model parameters and model response and (iii) error function quantifying how
well the model response fits the experimental data. Their advantages and drawbacks are il-
lustrated on calibration of four parameters of the affinity hydration model. The model is
chosen for its nonlinearity, difference in sensitivities to particular parameters on one hand
and simplicity and very fast numerical evaluation on the other. The later allow for model cal-
ibration based on stochastic evolutionary algorithm without any involved approximation and
thus better quantification of calibration results provided by particular strategies. Investigated
calibration strategies are verified on 50 simulated curves of hydration degree and validated
on four experimental ones.

Strategy NANN optimisation new data errors
Forward Complex 1 yes optimisation middle
Forward Split Nα yes optimisation low
Error F 1 yes traininng + optimisation high
Inverse Expert Np no - high
Inverse PCA Np no - middle

Table 8: Simplified summary of calibration strategies. Nα stands for a number of approximated components
of model response, Np is a number of model parameters.

Simplified summary of the obtained results is written in Table 8. One of the simplest
strategies from the implementation point of view is based on approximation of the error
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function (Error F ), where only one neural network needs to be trained for the prediction of
the error function values. This simplicity, however, does not hold in case of multiple exper-
imental measurements, where the whole identification process including the neural network
training as well as its optimisation needs to be done all over again for any new experiment.
Moreover, the presented examples revealed that the complexity of the error function may
cause difficulties for neural network training resulting in high errors in identified parameters.
The potential of the neural network is wasted on approximating the whole domain, while
the accurate predictions are required only in the vicinity of the optimal values of parameters.
Hence, this strategy is more suited for surrogate models based on radial basis function net-
works or kriging, which can be trained along with the optimisation of the error function thus
allowing to improve the precision in the promising area, see e.g. [20].

Equally simple strategy is based on the approximation of the model response, where time
or space variables are included among the neural network inputs (Forward Complex). This
strategy is better suited for layered neural networks, which is trained only once and then can
be used repeatedly for any new observations. The effort invested into the approximation of
the whole domain is thus not wasted. The application to new data requires only one new
optimisation process. The results obtained by this strategy were not excellent, but can be
considered as satisfactory solution at a low price.

The best results were achieved by separate approximations of particular response com-
ponents, where a higher number of neural networks is trained to approximate rather simple
relationship defined by the calibrated model (Forward Split). This procedure requires more
work on networks preparation, which is compensated by high accuracy of the obtained re-
sults. The accuracy is proportionally increasing with the number of approximated response
components and can be thus influenced by work invested to the surrogate construction. More-
over, the constructed approximations can be then used again for any new data, where only
the optimisation of model parameters needs to be repeated.

The worst results were obtained by strategy approximating the inverse mapping from the
response components to the model parameters (Inverse Expert). Such relationship does not
have to exist and can be hardly approximated. Moreover, if the inputs for neural network are
not properly selected and thus highly sensitive to measurement error, the procedure provide
unsatisfactory results. Nevertheless, using an expert knowledge for proper selection of inputs
as presented in [22], this strategy gives good results at a very low price, since neither training
nor optimisation process, but only simple evaluation of the trained networks is needed for
parameter identification from new data.

The necessity of the expert knowledge and sensitivity to measurement error can be easily
circumvented by employing principal component analysis on model response components
(Inverse PCA). Then only the number of components entering as inputs in the neural net-
work needs to be selected. The strategy thus represents a compromise solution providing
satisfactory results at a low price especially in repeated application to new observed data.
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de Mécanique et Technologie (2007).

[10] K. N. Gurney, An introduction to neural networks, UCL Press, London, 2002.

[11] S. S. Haykin, Neural networks and learning machines, 3rd Edition, Prentice
Hall/Pearson, New York, 2009.

[12] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal
approximators, Neural Networks 2 (1989) 359–366.

[13] K. Hornik, Some new results on neural network approximation, Neural Networks 6
(1993) 1069–1072.

[14] U. Anders, O. Korn, Model selection in neural networks, Neural Networks 12 (2)
(1999) 309–323.

[15] J. Moody, Prediction risk and architecture selection for neural networks, From Statistics
to Neural Networks, NATO ASI Series 136 (1994) 147–165.

Artificial neural networks in calibration of nonlinear mechanical models 136



[16] M. Abendroth, M. Kuna, Identification of ductile damage and fracture parameters from
the small punch test using neural networks, Engineering Fracture Mechanics 73 (2006)
710–725.

[17] B. Pichler, R. Lackner, H. A. Mang, Back analysis of model parameters in geotechnical
engineering by means of soft computing, International journal for numerical methods
in engineering 57 (2003) 1943–1978.

[18] H. Aguir, H. BelHadjSalah, R. Hambli, Parameter identification of an elasto-plastic
behaviour using artificial neural networks–genetic algorithm method, Materials and
Design 32 (2011) 48–53.

[19] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, P. K. Tucker, Surrogate-
based analysis and optimization, Progress in Aerospace Sciences 41 (2005) 1–28.
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[21] D. Novák, D. Lehký, ANN inverse analysis based on stochastic small-sample training
set simulation, Engineering Applications of Artificial Intelligence 19 (2006) 731–740.
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Appendix A. Configurations and results of particular neural networks

The particular choice of ANN inputs and outputs are presented in Tables A.9 and A.11
for forward and inverse mode strategies, respectivelly.
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Strategy Inputs h Output εMRP(Dtrain)[%] εMRP(Dtest)[%]
Forward p1, p2, p3, p4, tk 7 αk 2.03 2.67
Complex
Forward p1, p2, p3, p4 7 α300 0.06 0.06
Split p1, p2, p3, p4 8 α400 0.07 0.12

p1, p2, p3, p4 7 α500 0.08 0.11
p1, p2, p3, p4 2 α600 0.62 1.01
p1, p2, p3, p4 7 α700 0.79 1.01
p1, p2, p3, p4 6 α800 1.06 1.27
p1, p2, p3, p4 8 α900 0.28 0.32
p1, p2, p3, p4 10 α1000 0.22 0.27
p1, p2, p3, p4 9 α1100 0.21 0.30

Forward p1, p2, p3, p4 7 α100 0.52 0.88
Split II p1, p2, p3, p4 4 α150 0.86 1.39

p1, p2, p3, p4 4 α200 0.08 0.11
p1, p2, p3, p4 8 α250 0.68 0.80
p1, p2, p3, p4 4 α300 0.44 0.60
p1, p2, p3, p4 5 α350 0.48 0.95
p1, p2, p3, p4 4 α400 0.06 0.07
p1, p2, p3, p4 6 α450 0.07 0.10
p1, p2, p3, p4 6 α500 0.07 0.13
p1, p2, p3, p4 9 α550 0.15 0.22
p1, p2, p3, p4 6 α600 1.42 2.04
p1, p2, p3, p4 5 α650 0.84 1.19
p1, p2, p3, p4 6 α700 0.55 0.73
p1, p2, p3, p4 8 α750 0.60 1.18
p1, p2, p3, p4 7 α800 0.46 0.62
p1, p2, p3, p4 9 α850 0.75 1.09
p1, p2, p3, p4 7 α900 0.20 0.23
p1, p2, p3, p4 13 α950 0.28 0.43
p1, p2, p3, p4 9 α1000 0.73 1.16
p1, p2, p3, p4 6 α1050 0.10 0.17
p1, p2, p3, p4 9 α1100 0.10 0.19
p1, p2, p3, p4 7 α1150 0.08 0.14

Error F1 p1, p2, p3, p4 10 F1 for Mokra 0.54 0.74
p1, p2, p3, p4 10 F1 for shifted Mokra 0.40 0.57

Error F2 p1, p2, p3, p4 9 F2 for Mokra 0.78 0.96
p1, p2, p3, p4 9 F2 for shifted Mokra 1.36 1.56

Table A.9: Architecture of particular ANNs constructed in forward strategies and their errors on training and
testing data.
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Strategy Inputs h Output εMRP(Dtrain)[%] εMRP(Dtest)[%]
Forward Split III p1, p2, p3, p4 7 α100 0.07 0.08

p1, p2, p3, p4 4 α130 0.56 0.45
p1, p2, p3, p4 4 α150 1.03 0.95
p1, p2, p3, p4 8 α170 0.08 0.06
p1, p2, p3, p4 4 α200 0.76 0.74
p1, p2, p3, p4 5 α230 0.44 0.41
p1, p2, p3, p4 4 α250 0.49 0.45
p1, p2, p3, p4 6 α270 0.07 0.06
p1, p2, p3, p4 6 α300 0.07 0.05
p1, p2, p3, p4 9 α330 0.07 0.11
p1, p2, p3, p4 6 α350 0.16 0.37
p1, p2, p3, p4 5 α370 1.47 1.90
p1, p2, p3, p4 6 α400 0.84 1.06
p1, p2, p3, p4 8 α430 0.59 0.96
p1, p2, p3, p4 7 α450 0.71 0.92
p1, p2, p3, p4 9 α470 0.54 0.55
p1, p2, p3, p4 7 α500 0.89 0.98
p1, p2, p3, p4 13 α530 0.23 0.40
p1, p2, p3, p4 9 α550 0.30 0.44
p1, p2, p3, p4 6 α570 0.73 0.63
p1, p2, p3, p4 9 α600 0.12 0.20
p1, p2, p3, p4 7 α630 0.11 0.18
p1, p2, p3, p4 7 α650 0.07 0.08
p1, p2, p3, p4 4 α670 0.55 0.49
p1, p2, p3, p4 6 α700 0.07 0.09
p1, p2, p3, p4 8 α730 0.06 0.06
p1, p2, p3, p4 9 α750 0.07 0.06
p1, p2, p3, p4 8 α770 0.03 0.03
p1, p2, p3, p4 8 α800 0.05 0.04
p1, p2, p3, p4 5 α830 0.09 0.10
p1, p2, p3, p4 5 α850 0.77 0.42
p1, p2, p3, p4 3 α870 0.23 0.27
p1, p2, p3, p4 6 α900 1.06 0.99
p1, p2, p3, p4 7 α930 1.50 1.88
p1, p2, p3, p4 8 α950 0.37 0.49
p1, p2, p3, p4 7 α970 1.38 1.98
p1, p2, p3, p4 7 α1000 0.93 1.05
p1, p2, p3, p4 8 α1030 0.26 0.35
p1, p2, p3, p4 7 α1050 0.83 0.87
p1, p2, p3, p4 6 α1070 1.12 1.04
p1, p2, p3, p4 8 α1100 0.31 0.36
p1, p2, p3, p4 11 α1130 0.13 0.20
p1, p2, p3, p4 7 α1150 0.14 0.20

Table A.10: Architecture of particular ANNs constructed in forward strategies and their errors on training and
testing data.
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Strategy Inputs h Output εMRP(Dtrain)[%] εMRP(Dtest)[%]
Inverse Expert 9 values: α300, α400, . . . , α1100 5 p1 5.74 6.43

9 values: α300, α400, . . . , α1100 7 p2 5.15 6.21
9 values: α300, α400, . . . , α1100 8 p3 1.99 2.16
9 values: α300, α400, . . . , α1100 5 p4 1.14 1.31

Inverse Expert II 10 values: α200, α300, . . . , α1100 5 p1 5.79 6.23
10 values: α200, α300, . . . , α1100 4 p2 5.60 6.52
10 values: α200, α300, . . . , α1100 6 p3 2.60 3.18
10 values: α200, α300, . . . , α1100 5 p4 1.38 1.36

Inverse PCA 9 values: ᾱ1, ᾱ2, . . . , ᾱ9 6 p1 3.86 5.10
9 values: ᾱ1, ᾱ2, . . . , ᾱ9 4 p2 10.50 16.73
9 values: ᾱ1, ᾱ2, . . . , ᾱ9 8 p3 1.25 1.89
9 values: ᾱ1, ᾱ2, . . . , ᾱ9 8 p4 0.28 0.33

Table A.11: Architecture of particular ANNs in inverse strategies and their errors on training and testing data.
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Abstract
Recent developments in the field of stochastic mechanics and particularly regarding the
stochastic finite element method allow to model uncertain behaviours for more complex
engineering structures. In reliability analysis, polynomial chaos expansion is a useful tool
because it helps to avoid thousands of time-consuming finite element model simulations
for structures with uncertain parameters. The aim of this paper is to review and compare
available techniques for both the construction of polynomial chaos and its use in comput-
ing failure probability. In particular, we compare results for the stochastic Galerkin method,
stochastic collocation, and regression method based on Latin hypercube sampling with pre-
dictions obtained by crude Monte Carlo sampling. As an illustrative engineering example,
we consider a simple frame structure with uncertain parameters in loading and geometry
with prescribed distributions defined by realistic histograms.

Keywords: Uncertainty quantification, Reliability analysis;, Probability of failure, Safety
margin, Polynomial chaos expansion, Regression method, Stochastic collocation method,
Stochastic Galerkin method, Monte Carlo method

1. Introduction

Reliability analysis and modelling of structures in general need to take into account all
relevant information as well as any uncertainties in environmental conditions, loading, or
structural properties. Input uncertainties influence the behaviour of an investigated system,
which thus also becomes uncertain. Description of this phenomenon is provided with an
uncertainty quantification process. Extensive development of efficient methods for stochastic
modelling enables uncertainty quantification, even for complex models.
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Methods quantifying uncertainties can be classified into two groups: (i) reliability anal-
ysis methods such as the first- and second-order reliability method (FORM/SORM [8])
for computing the probability of failure related to limit states; (ii) higher moment analy-
sis focused on estimation of higher-order statistical moments of structural response such as
stochastic finite element methods (SFEM), see [24, 30, 14] for a review. SFEM is a powerful
tool in computational stochastic mechanics extending the classical deterministic finite ele-
ment method (FEM) to the stochastic framework involving finite elements whose properties
are random [13].

In this contribution, we concentrate on SFEM based on polynomial chaos expansion
(PCE) [31]. PCE is used to accelerate reliability analysis by replacing time-consuming FEM
simulations within the Monte Carlo (MC) sampling of failure probability [20, 21, 27, 17]. To
this end, PCE can be employed in two ways: (i) as an approximation of the model response
– typically displacements (subsequently referred to Variant A) or (ii) as an approximation
of the resulting safety margin (Variant B). While statistical moments for any approximated
quantity can then be computed analytically from the PCE coefficients, failure probability
still needs to be estimated from MC simulations. The acceleration of the latter case comes
from replacement of an FEM simulation with rapid evaluation of the constructed PCE. The
efficiency of SFEM thus depends on the computational requirements of PCE construction
and its consequent accuracy.

There are several methods for constructing PCE-based surrogates: the regression method
[4, 5, 7], stochastic collocation methods [3, 34], and the stochastic Galerkin method [13, 2,
23, 9]. The principal differences among these methods are outlined. The regression method
constructs the polynomial approximation of a response by using the least squares method. It
is a stochastic method based on a set of model simulations performed for a stochastic design
of experiments, usually obtained using Latin Hypercube Sampling. PCE coefficients are then
obtained by regression of the model outputs at the design points. This leads to a solution of a
system of equations. In contrast, the stochastic collocation method is a deterministic method
involving a set of model simulations on a sparse grid constructed for a chosen level of accu-
racy. The computation of PCE coefficients is based on an explicit formula. The stochastic
Galerkin method leads to a solution of a large system of deterministic equations and requires
an intrusive modification of the numerical model itself [11, 29]. These methods were com-
pared within the uncertainty quantification of stiff systems in [6]. The aim of this paper is to
extend the previous work presented in [19] devoted to a comparison of these methods in the
prediction of failure probability in reliability analysis. In particular, we compare the three
methods in terms of computational requirements and resulting accuracy for failure proba-
bility of a simple frame structure, where uncertain parameters occur in the geometry of a
structure and its loading [12]. The underlying random variables are described by discrete
histograms to illustrate a common situation in engineering practice.

Methods for construction of PCE-based surrogates are briefly recalled in the following
section. The selected example of a frame structure with uncertain parameters is described in
Section 3, followed by numerical study in Section 4. The obtained results are then summa-
rized in Section 5.
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2. Polynomial chaos expansion

In order to accelerate the sampling procedure for an uncertainty quantification process,
the evaluations of a numerical model

r = g(m), (1)

where r = (r1, . . . , rnr)
T is a vector of model responses and m = (m1, . . . ,mnm)T is a

vector of random model input parameters, can be replaced with evaluations of a model sur-
rogate. In the stochastic model problem, we assume the model parameters m to be random
variables defined over some probability space (Ω,A,P), where Ω is the basic probability set
of elementary events, A a σ-algebra of subsets of Ω, and P a probability measure.

In particular, we search for an approximation of response r using polynomial chaos ex-
pansion (PCE) [24, 30]. PCE can be used to approximate response with respect to the prob-
ability distribution of random variables. For example, Hermite polynomials are associated
with Gaussian distribution, Legendre polynomials with uniform distribution, and so on.

In the case of model variablesm having another distribution, new standard random vari-
ables ξ with the appropriate distribution defined by joint probability density function wξ

must be introduced. Once we have expressed model parameters m as functions of standard
variables ξ = (ξ1, . . . , ξnξ)

T, the model response also becomes a function of these variables.
In this paper, we assume particular components of m as well as ξ as independent random
variables. When we use PCE-based approximation such that each model input is expressed
as a polynomial with one standard variable (i.e. mj is a univariate function of ξj), then the
number of newly introduced standard variables nξ equals nm. Let the random model out-
put r be approximated by a PCE r̃ whose polynomials are orthogonal with respect to the
probability density function of the distribution of ξ. We write

r̃(ξ) =
∑

α

βαψα(ξ), (2)

where α = (α1, . . . , αnξ) is a vector of nξ non-negative integer components that indicates
degrees of multivariate ponynomial ψα(ξ1, . . . , ξnξ) = ψα1(ξ1) · . . . · ψαnξ (ξnξ) with ψαj(ξj)
being univariate polynomials with a degree αj . The vector βα is a vector of PCE coefficients
βα,i corresponding to a particular component of system response ri.

Expansion (2) is usually truncated to a limited number of terms, often related to nξ and
np, the number of random variables and the maximal degree of polynomials, respectively
[34]. Denoting |α| =

∑nξ
j=1 αj and considering |α| ≤ np, the number of all terms is nβ

given as follows:

nβ =
(np + nξ)!

np!nξ!
. (3)

Polynomial chaos-based surrogate modelling enables computation of statistical moments
for an approximated model response r̃i analytically from the PCE coefficients [35]. In par-
ticular, the mean value can be computed as

µr̃i = E[r̃i] =

∫
. . .

∫

︸ ︷︷ ︸
nξ

∑

|α|≤np

βα,iψα(x)wξ(x)dx1 . . . dxnξ = β0,i (4)
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and the standard deviation as

σr̃i =
√
E[(r̃i − µr̃i)2] =

√ ∑

0<|α|≤np

E[ψ2
α(ξ)]β2

α,i, (5)

where

E[ψ2
α(ξ)] =

∫
. . .

∫

︸ ︷︷ ︸
nξ

nξ∏

j=1

(ψ2
αj

(xj))wξ(x)dx1 . . . dxnξ . (6)

Specifically, the expected value of the product of Hermite polynomials, which are employed
in this paper, is

E[ψ2
α(ξ)] =

nξ∏

j=1

αj!, (7)

where α
j

is a polynomial degree of variable ξj in a polynomial ψα.
The efficiency of this method thus depends mainly on the computational demands of

the PCE construction and its accuracy, likewise connected with the method chosen for the
construction of the surrogate model [28, 25, 1].

2.1. Regression method
A very general method of computing PC coefficients in Eq. (2) is a well-known regres-

sion method [4]. The underlying assumption of this method is that surrogate r̃ is a linear
combination of multivariate polynomials ψα, but does not have to be linear in the indepen-
dent variables ξ. The application is based on the following three steps:

i Preparation of data X ∈ Rnξ×nd obtained as nd samples {xk, k = 1, . . . , nd} of pa-
rameter vector ξ

ii Evaluation of the model for samples {xk, k = 1, . . . , nd} resulting in response samples
{rk, k = 1, . . . , nd} organised into matrix R ∈ Rnr×nd , where nr is the number of
response components, and

iii Computation of PCE coefficients βα organised into matrix B ∈ Rnr×nβ using e.g. the
ordinary least square method.

Since the most time-consuming part of this method consists in evaluating the model for
samples of random variables, the choice of these samples represents a crucial task with the
highest impact on computational time requirements. The simplest way is to choose samples
using the Monte Carlo method, i.e. to draw them randomly from a prescribed probability
distribution. However, the accuracy of the resulting surrogate depends on the quality with
which the samples cover the defined domain [16]. The same quality can be achieved with a
smaller number of samples when drawn according to a stratified procedure called design of
experiments (DoE). Latin hypercube sampling (LHS) is a well-known DoE able to respect
the prescribed probability distributions. There also exist more enhanced ways of optimising
LHS (see e.g. [18]), but these are out of scope for this paper. Here, the simplest version of
unoptimised LHS is employed. Each computation of a response sample rk then includes an
evaluation of the transformations between model variables m and standard variables ξ and
evaluation of model (1).
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The computation of PCE coefficients B starts with an evaluation of all polynomial terms
ψ for all samples {xk, k = 1, . . . , nd} and saving them in matrix Z ∈ Rnd×nβ . The ordinary
least square method then leads to

ZTZBT = ZTRT, (8)

which is nr linear systems of nβ equations.

2.2. Stochastic collocation
The stochastic collocation method [33, 26, 22, 10] is based on an explicit expression of

the PCE coefficients of orthogonal polynomials with respect to the probability distribution:

βα,i =
1

E[ψ2
α(ξ)]

∫
. . .

∫

︸ ︷︷ ︸
nξ

ri(x)ψα(x)wξ(x)dx1 . . . dxnξ , (9)

which can be calculated numerically using an appropriate integration rule (quadrature) on
Rnξ . Eq. (9) then becomes

βα,i ≈
1

E[ψ2
α(ξ)]

nd∑

l=1

ri(xl)ψα(xl)vl , (10)

where xl stands for an integration node and vl is a corresponding weight. Here we em-
ploy versions of the Smolyak quadrature rule, in particular quadratures with Gaussian rules
(GQN) and nested Kronrod-Patterson quadrature rules (KPN) derived for normal distribu-
tion, see [15].

It is clear that the stochastic collocation method is similar to the regression method, be-
cause in both cases the evaluation of a set of model simulations requires the most computa-
tional effort. The principal difference can be seen in sample generation, where the stochastic
collocation method uses preoptimised sparse grids while the regression method is based on
stochastic LHS.

2.3. Stochastic Galerkin
The stochastic Galerkin method is principally different than the previous ones based on

a set of independent model simulations. This method spreads the classical finite element
method into stochastic space given by equation

K(m)r = f(m), (11)

where K is a nr × nr stiffness matrix, f is a nr × 1 loading vector, and r is an nr × 1
unknown displacement vector. The stochastic Galerkin method is an intrusive method, i.e.
it requires reformulation of this governing equation. To this end, we rewrite Eq. (2) using a
matrix notation

r̃(ξ) = (I⊗ψT(ξ))β, (12)

where I ∈ Rnr×nr is the identity matrix,⊗ is the Kronecker product,ψ(ξ) is a nβ-dimensional
column vector of polynomials, and β is a (nβ ·nr)-dimensional column vector of PCE coeffi-
cients organised here as β = (βT

1 , . . . ,β
T
i , . . . ,β

T
nr)

T, where βi = (. . . , βα,i, . . . )
T consists

of PCE coefficients corresponding to the i-th response component.
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Substituting model response r in Eq. (11) with its PCE approximation r̃ given in Eq. (12)
and applying the Galerkin projection, we obtain
∫
. . .

∫

︸ ︷︷ ︸
nξ

ψ(x)⊗K(x)⊗ψT(x)wξ(x)dxβ =

∫
. . .

∫

︸ ︷︷ ︸
nξ

ψ(x)⊗ f(x)wξ(x)dx , (13)

which is a linear system of (nβ · nr) equations with unknowns in the vector β. Integration
can be performed numerically or analytically. The analytical solution is available e.g. when
all terms in the stiffness matrix and in the loading vector are polynomials with respect to ξ.
In such cases, the method is called fully intrusive. In other cases, a numerical integration
leading to a semi-intrusive Galerkin method is inevitable and can be again solved with the
help of the Smolyak integration rule, namely GQN [15].

3. Description of a frame structure with uncertain parameters

The goal of the work presented here is to compare the methods described for approx-
imating model response and accelerating Monte Carlo (MC) sampling performed in order
to estimate the probability distribution of the safety margin and the probability of structural
failure.

In order to demonstrate the performance of the methods described on an engineering
structure, we have chosen a simple frame with two beams (cross-section HEB 100) and a
column (cross-section HEB 120) presented in [12]. To keep the comparison study clear,
the geometry, loading conditions, input material parameters, random variables, and their
corresponding notations are preserved as in [12]. As an illustration, the initial geometry and
loading conditions are displayed in Figure 1.

G

q 3

1 2
D A B

C

3.0 m 2.5 m 2.5 m

uA
wA

ϕA

4.
0
m

HEB 100 HEB 100

HEB 120

uD
ϕD

Figure 1: Scheme of the frame structure.

The frame is made of steel with Young’s modulus E = 210 [GPa] and uncertain yield
stress fy obtained by the product of the nominal value fy,µ and dimensionless variation fy,σ
defined by a prescribed histogram (see Figure 2). The geometrical parameters of particular
beams are considered to be uncertain and defined as products of the corresponding nominal
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Variable Nominal Dimensionless
value variation

Yield stress fy,µ = 235 [GPa] fy,σ [−]

Moment of inertia I1 = 449.5 [cm4] Iσ1 [−]

Cross-sectional area A1 = 26.04 [cm2] Iσ1 [−]

Moment of inertia I2 = 449.5 [cm4] Iσ2 [−]

Cross-sectional area A2 = 26.04 [cm2] Iσ2 [−]

Moment of inertia I3 = 864.4 [cm4] Iσ3 [−]

Cross-sectional area A3 = 34.01 [cm2] Iσ3 [−]

Elastic section modulus W3 = 144.1 [cm3] Iσ3 [−]

Length l1 = 3.0 [m] lσ [−]

Length l2 = 5.0 [m] lσ [−]

Length l3 = 4.0 [m] lσ [−]

Dead load D1 = 11 [kNm−1] Dσ1 [−]

Short-lasting load S1 = 9 [kNm−1] Sσ1 [−]

Long-lasting load L1 = 5.5 [kNm−1] Lσ1 [−]

Dead load D2 = 3.5 [kN] Dσ2 [−]

Short-lasting load S2 = 2.2 [kN] Sσ2 [−]

Long-lasting load L2 = 1.7 [kN] Lσ2 [−]

Table 1: Material, geometrical, and loading data with corresponding variations.

values and dimensionless variations given in [12] and listed in Table 1. Particular histograms
are also depicted in Figure 2.

The prescribed loading conditions are linear combinations of dead, long-lasting, and
short-lasting load given as:

q = D1Dσ1 + S1Sσ1 + L1Lσ1 [kNm−1], (14)

and
G = D2Dσ2 + S2Sσ2 + L2Lσ2 [kN], (15)

where particular loads are statistically independent and described by random variables with
nominal values (D1, S1, L1, D2, S2, L2) and variations (Dσ1, Sσ1, Lσ1, Dσ2, Sσ2, Lσ2) de-
fined in Table 1 and by the histograms depicted in Figure 2.

Let us simplify the notation and denote all random variables as mi,

m = (m1, . . . ,mnm)T = (Iσ1, Iσ2, Iσ3, lσ, Dσ1, Sσ1, Lσ1, Dσ2, Sσ2, Lσ2)
T. (16)

None of these variables has a continuous probability density function (PDF), which is neces-
sary for constructing PCE-based approximation, but their distribution is described by discrete
histograms. For this reason, we introduce new standard random variables ξ = (ξ1, . . . , ξnξ)

T,
nξ = nm, with a continuous PDF. The variables mj can be then expressed by transformation
functions tj with variables ξj , i.e.

mj = tj(ξj) . (17)
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Figure 2: Histograms of uncertain parameters and corresponding cumulative density functions.

For discrete histograms, the transformation functions are non-smooth. Particular examples
of transformation functions will be discussed in Section 4.

Since the axial force in the column does not achieve critical intensity, instability does
not play any role and thus the column has only one failure mode determined by material
yield stress. The maximal internal forces will appear in the column at support ‘C’ and can
be computed from the displacement and rotation of joint ‘A’. The unknown displacements
r = (uD, ϕD, uA, wA, ϕA) can be – for the geometrical and material linearity considered here
– computed using the finite element method or displacement method, both of which are very
well-known. Hence, we start directly with the latter method with a discretised form of the
equilibrium equations given in Eq. (11), which – after applying the boundary conditions –
comprises a system of five linear equations for unknown vector r = (uD, ϕD, uA, wA, ϕA).
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The stiffness matrix is given as

K = 12E
lσ
·




A1Iσ1
12l1

0 −A1Iσ1
12l1

0 0

0 I1Iσ1
3l1

0 I1Iσ1
2l21lσ

I1Iσ1
6l1

−A1Iσ1
12l1

0 k33 0 I3Iσ3
2l23lσ

0 I1Iσ1
2l21lσ

0 k44
I1Iσ1
2l21lσ
− I2Iσ2

2l22lσ

0 I1Iσ1
6l1

I3Iσ3
2l23lσ

I1Iσ1
2l21lσ
− I2Iσ2

2l22lσ
k55



, (18)

where k33 = A1Iσ1
12l1

+ A2Iσ2
12l2

+ I3Iσ3
l33l

2
σ

, k44 = I1Iσ1
l31l

2
σ

+ I2Iσ2
l32l

2
σ

+ A3Iσ3
12l3

, k55 = I1Iσ1
3l1

+ I2Iσ2
3l2

+ + I3Iσ3
3l3

and the loading vector as

f =




0

0
(D1Dσ1+S1Sσ1+L1Lσ1))l3lσ

2
D2Dσ2+S2Sσ2+L2Lσ2

2

− (D2Dσ2+S2Sσ2+L2Lσ2)l2lσ
8

+ (D1Dσ1+S1Sσ1+L1Lσ1)(l3lσ)3

12



. (19)

Safety margin M of the column is the difference between yield stress fy and stress σ
produced by external load and given as

σ = −wAE + (
ql23l

2
σ

12Iσ3
+

2EI3
l3lσ

ϕA +
6EI3
l3lσ

uA)/W3. (20)

Failure F occurs when σ exceeds fy. The probability of failure Pr(F ) is then estimated to
be the number of failures divided by the total number of performed simulations n:

Pr(F ) =
1

n

n∑

s=1

I[fy − σs ≤ 0], (21)

where I[fy − σ ≤ 0] is an indicator function with a value one if fy − σ ≤ 0, and zero
otherwise.

In this numerical study, two variants of a model response are considered. For the first
variant, the safety margin is calculated from the vector r̃ that approximates the displace-
ments r (Variant A). In the second case, the approximated random output is directly safety
margin M (Variant B). In the first variant, the stochastic Galerkin method can be applied
and compared with the other two methods described in Section 2.

The results for constructed surrogate models are compared with reference results ob-
tained by MC sampling with n = 107 samples. For Variant A, the relative errors [%] in an
estimation of the mean of particular response components are defined as

εµi =
|µi,PCE − µi,MC|

µi,MC

· 100, i = 1, . . . , nr, (22)

where µi,MC is the MC-based estimation of mean and µi,PCE is the mean computed for a par-
ticular surrogate model. Analogical expression is also used to evaluate errors in estimating
standard deviation.
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In both variants of model response, the relative errors [%] in predicting the safety margin
are obtained with

εM =
1

n

n∑

s=1

|MPCE,s −MMC,s|
maxMMC −minMMC

· 100, (23)

where MMC stands for the samples of the safety margin estimated using the MC method.
MMC,s resp. MPCE,s stands for a particular sample of the safety margin obtained by the MC
method with the full numerical model or a chosen surrogate model respectively.

4. Numerical study

We assume that the components of ξ are standard Gaussian variables and thus we em-
ploy Hermite polynomials for the model surrogate. The study involves several variants of
distributions for model parametersm.

At first, each model parameter mj is distributed according to the prescribed histogram
and the corresponding transformation to the standard variable ξj consists of two steps. The
variable ξj is transformed using the cumulative distribution function of the standard normal
distribution

Φ(ξj) =

∫ ξj

−∞

1√
2π
e− t2/2dt (24)

to the uniformly distributed variables on the interval 〈0; 1〉. Then, the final transformation
step is based on piecewise linear inverse cumulative distribution functions arising from the
prescribed histogram.

For transformation functions, the stochastic Galerkin method can be applied in its semi-
intrusive form. In our particular example, we multiply the governing Eq. (11) involving
expressions in Eq. (18) and (19) by (lσ)3 so as to obtain polynomials in terms of model
parameters m. However, we will not obtain polynomials in terms of ξ due to non-smooth
transformations (Eq. (17)) produced by the discrete nature of the histograms prescribed to
m.

Table 2 contains results of uncertainty quantification for response components in terms
of their means and standard deviations. These results are obtained for Variant A, where one
PCE is used to approximate each response component. The presented methods are compared
here in this specific form: the regression method (LHS), the stochastic collocation method
in two variants (KPN, GQN), and semi-intrusive Galerkin method based on GQN quadra-
ture rules (GM GQN) for four polynomial degrees np. The results show good predictions
obtained using the regression method, while stochastic collocation based on KPN rules leads
to significant errors in estimating standard deviations, with the method based on GQN rules
appearing to be even divergent. The semi-intrusive Galerkin method achieves better results
in estimating standard deviations than stochastic collocation based on the same quadrature
rules. Estimated PDFs for displacement uA depicted in Figure 3 are not sufficient, even for
the regression method.

Moreover, the PCE-based approximations are compared to the polynomial approxima-
tion (PA) without orthogonality of the polynomial basis with respect to the input distribution.
In this case, the polynomials approximate directly the relations between model parameters
m and model responses r. The PA coefficients are computed by the regression method based
on LHS design respecting the prescribed histograms of the model parameters. The benefit
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Method np nd Time [s]
µuA

σuA
µwA

σwA
µϕA

σϕA

[mm] [mm] [mm] [mm] [mrad] [mrad]

MC − 107 22191 0.207 0.033 0.009 0.002 4.090 0.795

εµuA
εσuA

εµwA
εσwA

εµϕA
εσϕA

[%] [%] [%] [%] [%] [%]

LHS

1 21 0 0.18 11.96 0.32 60.63 0.20 14.20

2 201 0 0.26 4.76 0.36 2.49 0.34 4.41

3 1201 3 0.08 1.36 0.01 0.02 0.10 1.54

4 5301 19 0.02 1.31 0.09 0.98 0.04 1.21

KPN

1 21 0 4.81 9.34 4.26 8.42 4.90 9.38

2 201 0 4.81 5.54 4.26 4.32 4.90 5.53

3 1201 3 2.26 7.37 1.98 3.73 2.31 5.18

4 5301 13 0.30 11.36 0.29 6.20 0.30 7.96

GQN

1 21 0 6.68 22.99 6.06 15.52 6.78 23.00

2 221 0 4.81 73.94 4.25 50.93 4.90 58.21

3 1581 4 3.11 59.73 2.81 37.07 3.16 46.92

4 8761 21 1.13 187.92 1.10 129.41 1.14 147.83

GM GQN

1 21 1 0.37 17.50 1.28 16.47 0.29 19.82

2 221 0 0.37 1.81 1.28 6.67 0.29 7.90

3 1581 3 0.37 1.24 1.28 4.97 0.29 4.13

4 8761 41 0.37 6.51 1.28 5.44 0.29 1.29

PA

1 21 302 0.01 0.41 0.17 1.32 3 · 10−3 0.36

2 201 377 3 · 10−4 0.01 1 · 10−4 5 · 10−3 2 · 10−4 2 · 10−3

3 1201 540 5 · 10−6 2 · 10−4 2 · 10−5 2 · 10−4 1 · 10−6 3 · 10−5

4 5301 1117 4 · 10−6 9 · 10−5 1 · 10−6 7 · 10−5 2 · 10−6 1 · 10−5

Table 2: Time requirements and errors in predicting means and standard deviations of displacement vector
components for the prescribed histograms with model parametersm.
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Figure 3: Probability density functions of displacement uA for different np for the prescribed histograms
with model parametersm.

of this approach is elimination of the nonlinear transformation functions from the approxi-
mated relations which enables to reach a higher accuracy with the same polynomial degree
in comparison with PCE, see Table 2. On the other side, there are disadvantages associated
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with the computational aspects. No restrictions to the model parameters’ distribution can
lead to ill-conditioned system of equations in the least square method as it is in this investi-
gated case. On top of that, the polynomial coefficients cannot be used to compute statistical
moments of the approximated model response analytically, but for this purpose the Monte
Carlo samples of PA have to be employed which increases the computation time.

Predictions of safety margin M and failure probability Pr(F ) are summarised in Ta-
ble 3 for Variant A as well as for Variant B, where PCE is used as a direct surrogate for
safety margin M . One can see that the estimations of failure probability are unsatisfactory
for all methods examined. Predictions of the safety margin seems better in both variants,
but Variant A significantly outperforms Variant B, see Figure 4. The number of random
variables involved in the PCEs constructed appears to be a crucial factor here. The total
number of random variables for Variant B is eleven, including uncertain yield stress fy,
missing from Variant A PCEs except during sampling of failure probability. Therefore,
even though Variant B requires construction of only one PCE, the additional variable causes
an enormous increase in complexity because of an increasing polynomial degree, which also
quickly increases computational times.

Variant B Variant A
Method np nd Time [s] Pr(F ) [−] εM [%] nd Time [s] Pr(F ) [−] εM [%]

MC − 107 23825 7 · 10−5 − 107 22191 7 · 10−5 −

LHS

1 23 32 7 · 10−7 4.20 21 473 3 · 10−5 1.33

2 243 164 16 · 10−5 2.66 201 549 6 · 10−5 0.63

3 1607 757 157 · 10−5 2.12 1201 772 18 · 10−5 0.44

4 7767 2702 138 · 10−5 1.79 5281 1416 18 · 10−5 0.37

KPN

1 23 31 1 · 10−6 4.31 21 487 2 · 10−5 0.88

2 243 164 49 · 10−5 3.11 201 547 9 · 10−5 0.64

3 1607 760 113 · 10−5 2.98 1201 801 13 · 10−5 0.59

4 7767 2701 84 · 10−5 3.43 5281 1416 11 · 10−5 0.65

GQN

1 23 31 0 3.51 21 475 4 · 10−6 0.71

2 265 164 5 · 10−5 9.75 221 549 4 · 10−5 1.78

3 2069 764 719 · 10−5 6.98 1581 759 62 · 10−5 1.29

4 12453 2713 3229 · 10−5 15.74 8761 1404 93 · 10−5 2.75

GM GQN

1 − − − − 21 500 1 · 10−5 0.67

2 − − − − 221 586 5 · 10−5 0.48

3 − − − − 1581 807 15 · 10−5 0.38

4 − − − − 8761 1461 15 · 10−5 0.37

PA

1 23 467 4 · 10−5 0.14 21 328 7 · 10−5 0.03

2 243 583 7 · 10−5 2 · 10−3 201 382 8 · 10−5 2 · 10−4

3 1607 916 7 · 10−5 4 · 10−5 1201 713 8 · 10−5 3 · 10−6

4 7767 5604 7 · 10−5 6 · 10−5 5281 1420 8 · 10−5 6 · 10−6

Table 3: Time requirements, probability of failure and errors in predicting safety margin for the prescribed
histograms with model parametersm.

The overall unsatisfactory results of PCE approximations are a result of a highly non-
linear transformation (Eq. (17)). This hypothesis is supported by the good results of PA.
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Figure 4: Probability density functions of safety margin M for different np for the prescribed histograms
with model parametersm.

The most problematic relations are likely transformation of parameters with the prescribed
histograms Sσ1, Sσ2 and Lσ1, Lσ2, respectively, to standard normal variables, as shown in
Figure 5. In order to test this assumption, we have replaced these two prescribed histograms
with new ones closer to normal distribution, see Figure 6. The new histograms respect the
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Figure 5: Transformation relations for prescribed histograms.
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Figure 6: New histograms of model parameters with corresponding cumulative density functions and transfor-
mation relations.

initial values of means and standard deviations from the prescribed histograms.
Results obtained for the case of the new histograms and Variant A are listed in Table 4.

One can see that the replacement of the two histograms led to a significant improvement in
results achieved for all methods. GQN based collocation yields the worst results and the
method still suffers from problems with convergence. The regression method LHS provides

Method np nd Time [s]
µuA

σuA
µwA

σwA
µϕA

σϕA

[mm] [mm] [mm] [mm] [mrad] [mrad]

MC − 107 21874 0.206 0.033 0.009 0.002 4.056 0.789

εµuA
εσuA

εµwA
εσwA

εµϕA
εσϕA

[%] [%] [%] [%] [%] [%]

LHS

1 21 0 0.01 0.91 0.13 3.06 0.02 0.02

2 201 0 0.01 0.08 0.02 0.16 0.01 0.09

3 1201 3 0.00 0.13 0.03 0.34 0.00 0.13

4 5301 19 0.01 0.00 0.01 0.06 0.01 0.00

KPN

1 21 0 0.05 0.13 0.04 0.06 0.05 0.11

2 201 0 0.05 0.09 0.04 0.00 0.05 0.09

3 1201 3 0.01 0.27 0.01 0.19 0.01 0.26

4 5301 13 0.01 0.13 0.01 0.13 0.01 0.13

GQN

1 21 0 0.08 0.21 0.06 0.20 0.08 0.20

2 221 0 0.05 0.07 0.04 0.01 0.05 0.07

3 1581 4 0.03 0.47 0.03 0.30 0.03 0.47

4 8761 21 0.01 0.20 0.01 0.21 0.01 0.20

GM GQN

1 21 1 0.07 0.31 0.01 0.09 0.01 0.32

2 221 0 0.07 0.35 0.01 0.15 0.01 0.28

3 1581 3 0.07 0.35 0.01 0.16 0.01 0.21

4 8761 41 0.07 0.36 0.01 0.17 0.01 0.07

Table 4: Time requirements and errors in predicting means and standard deviations for displacement vector
components for the new histograms with model parametersm.
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the worst estimation for polynomials of the first degree, but the error here decreases with
increasing polynomial degree. The behaviour of the semi-intrusive Galerkin method and
stochastic collocation is very similar due to numerical integration based on GQN rules.

The same improvement can be seen also in the prediction of the whole probability density
function for safety margin M . The corresponding errors in predicting safety margin and
failure probability are listed in Table 5.

We can also notice that GQN-based collocation provides the worst results for the re-
sponse corresponding to safety margin. The semi-intrusive Galerkin method delivers the
worst prediction. The resulting estimation of failure probability is now satisfactory; in Vari-
ant A, it is excellent.

In both previous examples, the discrete nature of prescribed histograms led to the neces-
sity of numerical integration in the stochastic Galerkin method resulting in its semi-intrusive
variant. In order to investigate the performance of the fully intrusive stochastic Galerkin
method avoiding all the numerical approximations, we have changed the prescribed distri-
butions for model parameters once more. This time, we assume all the parameters to be nor-
mally distributed with the original values of means and standard deviations. In such cases,
the transformation (17) becomes a 1st order polynomial and hence, analytical integration is
available.

Figure 7 shows the functional dependence of safety margin M for considered types of
probability distribution prescribed to model parameters. Figure 7(a) shows that the relation
betweenM and model parametersm is linear, while high nonlinearity appears in the relation
to standard variables ξ for the prescribed histograms, see Figure 7(b). Replacement of the

Variant B Variant A
Method np nd Time [s] Pr(F ) [−] εM [%] nd Time [s] Pr(F ) [−] εM [%]

MC − 107 23833 5 · 10−7 − 107 21874 5 · 10−7 −

LHS

1 23 32 9 · 10−7 2.86 · 10−1 21 479 5 · 10−7 3.20 · 10−2

2 243 165 6 · 10−7 7.98 · 10−2 201 537 5 · 10−7 1.42 · 10−2

3 1607 753 3 · 10−7 8.26 · 10−2 1201 782 5 · 10−7 1.43 · 10−2

4 7767 2701 15 · 10−7 2.00 · 10−1 5281 1437 5 · 10−7 2.75 · 10−2

KPN

1 23 31 10 · 10−7 2.59 · 10−1 21 475 5 · 10−7 2.02 · 10−2

2 243 164 6 · 10−7 8.21 · 10−2 201 551 5 · 10−7 1.32 · 10−2

3 1607 758 1 · 10−7 1.66 · 10−1 1201 778 5 · 10−7 2.41 · 10−2

4 7767 2786 8 · 10−7 1.30 · 10−1 5281 1425 5 · 10−7 2.20 · 10−2

GQN

1 23 31 10 · 10−7 2.41 · 10−1 21 484 5 · 10−7 2.12 · 10−2

2 265 164 6 · 10−7 1.47 · 10−1 221 560 5 · 10−7 2.35 · 10−2

3 2069 763 1 · 10−7 1.98 · 10−1 1581 781 5 · 10−7 3.39 · 10−2

4 12453 2714 2 · 10−7 2.94 · 10−1 8761 1418 5 · 10−7 3.48 · 10−2

GM GQN

1 − − − − 21 491 5 · 10−7 1.99 · 10−2

2 − − − − 221 575 5 · 10−7 2.67 · 10−2

3 − − − − 1581 782 5 · 10−7 4.03 · 10−2

4 − − − − 8761 1446 6 · 10−7 4.45 · 10−2

Table 5: Time requirements, probability of failure and errors in predicting safety margin for the new his-
tograms with model parametersm.
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two histograms Sσ1, Sσ2 and Lσ1, Lσ2, respectively, with new ones more similar to normal
distributions leads to an almost linear M − ξ relation, namely in the high probability region,
see Figure 7(c). Finally, prescription of the normal distribution to model parameters leads to
a linear M − ξ relation as shown in Figure 7(d).

Results for normally distributed model parameters m and Variant A are shown in Ta-
ble 6. The results prove that the uA−ξ relation is now linear and thus the 1st order polynomi-
als are sufficient for constructing an excellent surrogate. The differences among the various
methods here are negligible in terms of accuracy and time requirements.

Figure 8 compares achieved accuracy in estimating the mean of displacement uA for all
the variants of the presented distribution of the parameters. The graphs show convergence of
the mean estimation with help of the Monte Carlo method with 102 to 107 simulations for the
full numerical model compared to the estimations obtained with coefficients of polynomials
of the 4th degree.

The most accurate estimation in the variant of the prescribed histograms (Figure 8(a)) is
obtained with a surrogate model based on the regression method, while stochastic colloca-
tion based on GQN rules yields the worst result. For the new histograms (Figure 8(b)), all
methods except the semi-intrusive Galerkin method provide very accurate results. The last
graph in Figure 8(c) shows excellent estimations for all methods investigated.

The errors in prediction of safety margin and failure probability are given in Table 7. The
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Figure 7: Functional dependence of safety margin M on model parameters m (a), on standard variables ξ for
the prescribed histograms (b), new histograms (c), and normal distribution (d).
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Method np nd Time [s]
µuA

σuA
µwA

σwA
µϕA

σϕA

[mm] [mm] [mm] [mm] [mrad] [mrad]

MC − 107 3692 0.207 0.033 0.009 0.002 4.090 0.795

εµuA
εσuA

εµwA
εσwA

εµϕA
εσϕA

[%] [%] [%] [%] [%] [%]

LHS

1 21 0 5.2 · 10−2 0.2800 5.8 · 10−2 0.5300 6.6 · 10−2 0.5800

2 201 0 7.9 · 10−3 0.0140 6.8 · 10−3 0.0042 7.5 · 10−3 0.0059

3 1201 2 7.9 · 10−3 0.0069 5.5 · 10−3 0.0032 7.9 · 10−3 0.0029

4 5301 10 7.9 · 10−3 0.0069 5.5 · 10−3 0.0032 7.9 · 10−3 0.0029

KPN

1 21 0 7.9 · 10−3 0.0490 5.5 · 10−3 0.0530 7.9 · 10−3 0.0260

2 201 0 7.9 · 10−3 0.0069 5.5 · 10−3 0.0032 7.9 · 10−3 0.0029

3 1201 0 7.9 · 10−3 0.0069 5.5 · 10−3 0.0032 7.9 · 10−3 0.0029

4 5301 3 7.9 · 10−3 0.0069 5.5 · 10−3 0.0032 7.9 · 10−3 0.0029

GQN

1 21 0 7.9 · 10−3 0.0050 5.5 · 10−3 0.0530 7.9 · 10−3 0.0260

2 221 0 7.9 · 10−3 0.0069 5.5 · 10−3 0.0031 7.9 · 10−3 0.0029

3 1581 1 7.9 · 10−3 0.0069 5.5 · 10−3 0.0032 7.9 · 10−3 0.0029

4 8761 5 7.9 · 10−3 0.0069 5.5 · 10−3 0.0032 7.9 · 10−3 0.0029

GM

1 − 0 7.9 · 10−3 0.0045 5.5 · 10−3 0.0500 7.9 · 10−3 0.0170

2 − 0 7.9 · 10−3 0.0069 5.5 · 10−3 0.0031 7.9 · 10−3 0.0029

3 − 3 7.9 · 10−3 0.0069 5.5 · 10−3 0.0032 7.9 · 10−3 0.0029

4 − 45 7.9 · 10−3 0.0069 5.5 · 10−3 0.0032 7.9 · 10−3 0.0029

Table 6: Time requirements and errors in predicting mean and standard deviation of displacement vector com-
ponents for normal distribution with model parametersm.
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Figure 8: Comparison of predicted mean of displacement uA based on PCE and MC with different numbers of
simulations for the prescribed histograms (a), new histograms (b), and normal distribution (c).

M−ξ relation is now linear and thus the 1st order polynomials are sufficient for constructing
an excellent surrogate using all the particular methods.

5. Conclusion

The paper presents a survey and comparison of three methods for construction of a poly-
nomial chaos-based surrogate for a numerical model assuming random model parameters.
The methods investigated include the regression method based on Latin Hypercube Sam-
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pling, stochastic collocation, and the stochastic Galerkin method. Particular features of these
methods are discussed in the paper. The quality of obtained surrogates in terms of accuracy
and time requirements is demonstrated using a comparison to the traditional Monte Carlo
method with a frame structure serving as a simple illustrative example.

To obtain a PCE-based surrogate model, specific orthogonal polynomials corresponding
to the probability distribution of the underlying variables must be used. The orthogonality
enables to compute statistical moments of approximated model response analytically so PCE
can be used very efficiently in uncertainty quantification as well as in sensitivity analysis. In
this study, Hermite polynomials are employed to approximate a model response as a function
of standard normal variables. The regression method provides the most accurate PCE-based
approximation and thus the best results for uncertainty quantification. The stochastic colloca-
tion method has a problem with convergence. The semi-intrusive stochastic Galerkin method
behaves similarly to the collocation method because the same quadrature rules are used for
numerical integration in both methods. The stochastic Galerkin method is also employed
in its fully intrusive form, where all numerical estimations are eliminated and integration is
performed analytically. Results of this form of the stochastic Galerkin method are good, but
it is worth mentioning that the application of this method is more complicated than for the
other methods because reformulation of the full numerical model is required.

In terms of time requirements, all the methods investigated are comparable and, in com-
parison to the Monte Carlo method, they are significantly less time-consuming. The goal of
the example presented is to predict the probability of failure of a simple engineering struc-
ture. For this, two variants of PCE applications are analyzed: A) approximation of selected
structural displacements and rotations, B) approximation of safety margin. It is worth men-

Variant B Variant A
Method np nd Time [s] Pr(F ) [−] εM [%] nd Time [s] Pr(F ) [−] εM [%]

MC − 107 3819 12 · 10−7 − 107 3773 12 · 10−7 −

LHS

1 23 32 12 · 10−7 1.14 · 10−1 19 439 12 · 10−7 2.49 · 10−2

2 243 179 12 · 10−7 2.10 · 10−3 163 515 12 · 10−7 2.50 · 10−4

3 1607 802 12 · 10−7 4.17 · 10−5 871 738 12 · 10−7 3.05 · 10−6

4 7789 2987 12 · 10−7 1.35 · 10−6 3481 1374 12 · 10−7 4.88 · 10−8

KPN

1 23 38 12 · 10−7 7.42 · 10−2 19 447 12 · 10−7 1.34 · 10−2

2 243 214 12 · 10−7 1.30 · 10−3 163 521 12 · 10−7 1.49 · 10−4

3 1607 875 12 · 10−7 3.32 · 10−5 871 725 12 · 10−7 2.21 · 10−6

4 7789 2997 12 · 10−7 1.00 · 10−6 3481 1362 12 · 10−7 4.08 · 10−8

GQN

1 23 31 12 · 10−7 7.42 · 10−2 19 444 12 · 10−7 1.34 · 10−2

2 265 212 12 · 10−7 1.30 · 10−3 181 520 12 · 10−7 1.49 · 10−4

3 2069 848 12 · 10−7 3.32 · 10−5 1177 734 12 · 10−7 2.21 · 10−6

4 12453 2796 12 · 10−7 9.98 · 10−6 5965 1376 12 · 10−7 4.08 · 10−8

GM

1 − − − − − 456 12 · 10−7 1.34 · 10−2

2 − − − − − 551 12 · 10−7 1.49 · 10−4

3 − − − − − 746 12 · 10−7 2.21 · 10−6

4 − − − − − 1425 12 · 10−7 4.07 · 10−8

Table 7: Time requirements, probability of failure and errors in predicting safety margin for normal distribu-
tion with model parametersm.
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tioning that for Variant B, where PCE approximates the safety margin, PCE involves one
additional random variable - yield stress - and the dimension of PCE is thus by one higher
than for Variant A. On the other hand, for Variant A, we approximate a set of five displace-
ments and rotations by constructing five PCEs. From Tables 2, 4 and 6 we can conclude
that the time required for construction of the PCEs (including the evaluation of model sim-
ulations for LHS or stochastic collocation) is negligible and the most computational time is
needed for repeated evaluations of PCE within the sampling of failure probability. Compu-
tational time grows exponentially with the number of variables and polynomial order. We
can thus point out that evaluating of five ten-dimensional PCEs is faster than the evaluation
of one eleven-dimensional PCE up to the second order. With the third order, the computa-
tional time needed for evaluation of one eleven-dimensional PCE becomes increasingly more
demanding.

The paper also demonstrates the practical aspects of PCE application related to nonlin-
earity of the approximated relationship. Results in Table 7 correspond to a utopian situation,
where the approximated relationship is linear (see Fig. 7d). The approximation is thus exact
even in the case of the first order PCE for both variants A and B. This leads to significant
time savings.

In order to benefit from the orthogonality of polynomial basis w.r.t. distribution of ran-
dom variables, we have to involve some transformation from some chosen standard distri-
bution in the case of the random variables defined by histograms. The nonlinearity of the
approximated relationship thus consists not only of nonlinearity of the relationship between
model responses and random inputs, but also the transformation from standard random vari-
ables. Results in Tables 4 and 5 correspond to such a situation, with random inputs defined by
histograms very close to normal distribution and a nearly linear underlying transformation,
see Fig. 7c. Nevertheless, the predictions of failure probability are remarkably worse for
Variant B; for Variant A, they are still precise. This is because of the yield stress involved
in the Variant B PCE. Its transformation is nonlinear only in the low probability region, but
this small nonlinearity is important due to high sensitivity of the safety margin for this input
(according to Fig. 7c, it belongs among the three most important inputs). We can conclude
that nonlinearity, even in only low probability regions, is significant for predicting failure
probability.

Finally, an even more significant difference between both variants is demonstrated in
Table 3 for the prescribed histograms taken from the literature. Fig. 2 reveals that the his-
tograms prescribed to short- and long-lasting loads are far from exhibiting normal distri-
butions, and the corresponding transformation from normal variables depicted in Fig. 5 is
highly nonlinear. This nonlinearity is thus remarkable, also in the approximated relationship
of the safety margin as visible in Fig. 7b. This nonlinearity is present equally in both vari-
ants, but predictions for Variant B worsened more significantly (even in terms of orders),
although the difference in both variants did not change and consists only of an additional
variable - yield stress - for Variant B. Therefore, significantly worse results for Variant B
compared to Variant A are caused only by a slightly higher dimension for the approximated
relationship.

We thus conclude that failure probability is extremely sensitive to approximation errors.
This is related namely to nonlinearity and dimensionality of the approximated relationship.
The results presented show that - regarding the computational time and accuracy of predic-
tions - it is more efficient to construct a set of five ten-dimensional approximations than one
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approximation with eleven dimensions. Moreover, when applying orthogonal polynomial
chaos, it is important to be careful when introducing nonlinear transformations to standard
random variables.
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[12] A. Fülöp, M. Iványi, “Safety of a column in a frame”, In P. Marek, J. Brozzetti & M. Guštar
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Kučerová, A., Lepš, M., and Zeman, J. (2007). Back analysis of microplane model param-
eters using soft computing methods. CAMES: Computer Assisted Mechanics and Engi-
neering Sciences, 14(2):219–242.

Book chapters
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