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Czech Technical University in Prague

Abstract

Modelling of Microstructure-Informed Fluctuation Fields for Generalized
Finite Element Methods

Jan Novák

Understanding physical processes taking place in heterogeneous materials at scales where
the heterogeneity is perceptible as clearly separated regions, here called inhomogeneities,
is important when seeking for phenomena accompanied by abrupt changes in materials in-
tegrity, e.g. crack initiation. Macroscopic crack is usually preceded and/or initiated by the
presence of stress concentrations at subscale levels, e.g. at notches induced by manufacturing
imperfections, stress perturbations among precipitates at metals due to cooling or annealing
protocols, or at solid-solid interfaces in composites.

In this collection, it is therefore presented, an approach towards the analysis of fine scale
mechanical fields in inhomogeneous media based on Finite Element formulation and classi-
cal micromechanics with microstructural modeling strategy backed by Wang tiling’s Periodic
Unit Cell generalization. In particular, after the short overview on state of the art in the field
made in the first chapter, the second chapter deals with a micromechanics-enhanced finite
element formulation that accurately captures the mechanical behavior at the media with an-
alytically defined inhomogeneities, yet in a computationally efficient manner. The strategy
imprints the closed-form Eshelby solution for ellipsoidal inhomogeneity problem into the so
called T-complete Trefftz approximation functions to augment the coarse scale solution by
its subscale counterpart. A key feature of this approach is that it does not call for the explicit
resolution of the inhomogeneities to the merit of the computational overhead.

The third chapter elaborates in detail the theoretical and computational basis of the mi-
cromechanical solutions to be fed into the coarse scale Finite Element formulation and
presents implementation issues related to the in-house library developed to this purpose.
The chapter also discusses the limitations of micromechanical solutions, namely from the
viewpoint of Gibbs effects nearby the inclusion boundaries related to the chosen strategy of
the so called self-compatible fields.

The fourth chapter paves the path from solvers at the subscale level on the subscale-size
domains, no matter whether these are semi/analytical as in the previous chapter or purely nu-
merical, to generating realizations of microstructure-informed functions on structural-scale-
size supports. In particular it presents a stochastic Wang tiling based technique to compress
and reconstruct inhomogeneity distribution that is statistically consistent with underlying
subscale geometry across several length scales. Unlike the approaches based on the above
mentioned Periodic Unit Cell concept, the proposed method works with finite sets of patches,
so called tiles, assembled by a stochastic tiling algorithm, thereby eliminating by definition
the periodic unit cell’s incapability to accurately reproduce long-range orders.

The fifth chapter then extends the Wang tiling approach into the realm of microstructure-
informed enrichment functions such that it suits the coarse scale Finite Element formulation
presented in the first Chapter. It again deals with a concept of aperiodic tilings, this time,
designed to produce not only microstructures morphologically similar to original media but
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also the enrichment functions that satisfy up to some extent the traction continuity across the
tiles.

The work encloses with a brief overview on works directly following out of the outcomes
presented within the previous fourth chapters.

Keywords: Micromechanics; Finite Element Method; Microstructural Modeling; Microstructure-
Informed Enrichment Functions; Trefftz Method
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Abstrakt

Modelovánı́ mikrostrukturálnı́ch fluktuačnı́ch polı́ pro zobecněné metody
konečných prvků

Jan Novák

Pochopenı́ fyzikálnı́ch procesů probı́hajı́cı́ch v heterogennı́ch materiálech na měřı́tcı́ch, kde
jsou heterogenity vnı́mány jako zřetelně oddělené souvislé oblasti, tzv. nehomogenity, je
důležité zejména při posuzovánı́ jevů doprovázených náhlými změnami integrity materiálu,
např. vznikem trhlin. Vznik makroskopických trhlin je obvykle řı́zen koncentracı́ napětı́ na
nižšı́ch měřı́tcı́ch, jako jsou vruby způsobené výrobnı́mi imperfekcemi, precipitáty vzniklé v
důsledku zchlazovánı́ či žı́hánı́ při výrobě a zušlechťovánı́ kovů, nebo rozhranı́ jednotlivých
složek v kompozitech.

V předkládané habilitačnı́ práci je proto prezentován přı́stup k detailnı́ analýze mechan-
ických polı́ v nehomogennı́ch materiálech, který je založený na formulaci konečných prvků,
klasické mikromechanice a strategii mikrostrukturnı́ho modelovánı́ založeného na zobecněnı́
konceptu periodické jednotkové buňky pomocı́ Wangova dlážděnı́.

Prvnı́ kapitola práce uvádı́ stručný výčet pracı́ na které je v této práci odkazováno a na
nichž jsou prezentované přı́stupy založeny. Druhá kapitola práce se zabývá obohacenou for-
mulacı́ konečných prvků pro určenı́ mechanické odezvy materiálu s analyticky definovanými
nehomogenitami. Tato metoda využı́vá Eshelbyho řešenı́ pro problém elipsoidálnı́ neho-
mogenity jı́mž obohacuje T-kompletnı́ Trefftzovy aproximačnı́ funkce a tak zahrnuje detaily
z mikroúrovně do řešenı́ na makroúrovni. Klı́čovým rysem tohoto přı́stupu je, že nevyžaduje
detailnı́ diskretizaci nehomogenit na mikroúrovni a tı́m nezvyšuje celkovou výpočetnı́ náročnost.

Třetı́ kapitola podrobně rozvádı́ teoretický a výpočtový základ pro řešenı́ mikromechan-
ických polı́, která jsou vkládána do výše uvedené formulace konečných prvků. Představuje
implementačnı́ náležitosti souvisejı́cı́ s programovou knihovnou vyvinutou specielně pro tyto
účely. Kapitola dále komentuje nevýhody mikromechanických řešenı́, a to z pohledu Gibb-
sových jevů v blı́zkosti hranic inkluzı́, které souvisı́ se zvolenou strategiı́ pro zajištěnı́ kom-
patibility obohacujı́cı́ch polı́.

Čtvrtá kapitola poodhaluje zvolenou strategii generovánı́ obohacujı́cı́ch funkcı́, bez ohledu
na to, zda jsou řešeny analyticky, semianalyticky či čistě numericky, na definičnı́ch oborech
o velikostech srovnatelných s úlohami řešenými na makroúrovni. Představuje stochastickou
metodu pro kompresi a rekonstrukci distribuce nehomogenit založenou na Wangově dlážděnı́,
která z definice zajišťuje statisticky konzistentnı́ realizace mikrostrukturálnı́ geometrie napřı́č
několika korelačnı́mi délkami. Narozdı́l od přı́stupu založeném na metodě periodické jed-
notkové buňky, pracuje v této práci navržená metoda s konečnými množinami dlaždic ses-
tavovanými stochastickým algoritmem, právě za účelem eliminace neschopnosti periodické
jednotkové buňky přesně reprodukovat korelačnı́ délky většı́ než jsou jejı́ rozměry.

Pátá, kapitola pak rozšiřuje tento přı́stup do oblasti generovánı́ mikrostrukturálnı́ch obo-
hacujı́cı́ch funkcı́ tak, aby vyhovovaly formulaci konečných prvků zvolené v úvodnı́ kapi-
tole. Opět se tedy zabývá konceptem neperiodických dlážděnı́, tentokrát navržených tak,
aby popisovaly nejen mikrostruktury morfologicky podobné cı́lovému materiálu, ale také
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obohacujı́cı́ funkce, které do určité mı́ry splňujı́ spojitost vektoru napětı́ mezi jednotlivými
dlaždicemi.

Práce je zakončena šestou kapitolou, ve které je stručně uveden výčet pracı́ navazujı́cı́ch
na zde prezentované výsledky a postupy.

Klı́čová slova: Mikromechanika; Metoda Konečných prvků; Mikrostrukturálnı́ modelovánı́;
Mikrostrukturálně informované obohacujı́cı́ funkce, Trefftzova metoda



Chapter 1

A BRIEF SUMMARY OF ADOPTED APPROACHES

The title of this work abbreviates modeling of fluctuations fields in heterogeneous mate-
rials with complex microstructures, which may find the use as enrichments in Generalized
Finite Element formulations or in the Hybrid Trefftz Finite Element method augmented by
Eshelby fields. This work thus stems from Finite Element techniques, Micromechanics,
Microstructural modeling and compression and synthesis formalism based on Wang tiling
method. As each of the mentioned approaches may be considered as a self-sustained topic, a
brief summary on works that are at the heart of the methodology presented in Chapters 2–4
is given first.



A Brief Summary of Adopted Approaches

Jan Novák
Experimental Centre, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic

1. Microstructure-informed enrichments in Finite Element Methods

The ability of Finite Element Methods to capture the subscale features independently
of the underlying discretization continues to be a challenge in computational mechanics re-
search. Partition of Unity methods [1–4], based on seminal work of Melenk and Babuška [5]
and Babuška and Melenk [6] provide a solution strategy to this problem, without mesh re-
finement, by extending a given solution space with additional functions. The class of similar
algorithms has been called as Generalized Finite Element Methods (GFEM) [7], and as such
has been successfully applied to problems such as e.g. cracks and material interfaces.

As for the incorporation of microstructural details into the solution of linear problems,
Strouboulis et al. [8] introduced a dictionary of pre-computed local solutions to selected mi-
crostructural features, which were then used as enrichment functions within GFEM. Fish
and Yuan [9] proposed a multiscale enrichment method, combining the Partition of Unity
methods with responses of a periodic microstructure representation to unit loading cases
from the computational homogenization [10]. Efendiev et al. [11] developed the Generalized
Multiscale Finite Element Method that extracts local enrichments in problem’s subdomains
from a collection of pre-computed general responses using eigenvalue analyses. In a simi-
lar spirit but without pre-calculations, Plews and Duarte [12] generated the microstructure-
specific enrichments on-the-fly by subjecting subdomains with finer discretization to bound-
ary values obtained from a coarse global solution, building on the local-global enrichment
framework [13]. Outside the GFEM family of approaches, the recently proposed Coarse
Mesh Condensation Multiscale method [14], subsequently extended to non-periodic mi-
crostructures and non-conforming coarse-scale discretization [15], is conceptually similar
to the aforementioned methods as it combines a coarse scale approximation of a strain
field with parallel calculations of localization fields within (potentially overlapping) sub-
domains. In contrast to older works by Zohdi and coworkers, e.g. [16, 17], in which a
domain-decomposition-like approach with a regularized approximation at the interfaces of
subdomains was adopted, the parametrization of the localization fields is linked to the coarse
strain field via an L2-norm projection in [14, 15].

However, Partition of Unity methods or GFEMs increase the solution complexity by ad-
ditional degrees of freedom. Therefore, the focus of this work is centered on an alternative
approach based on the Hybrid-Trefftz stress element formulation (HTFEM) [18, 19] such
that it does not result in additional degrees of freedom (DOFs), at the expense of an ad-
ditional, often non-negligible, computational overhead related to integration of enrichment
functions[18, 20]. The principal difference between GFEM and HTFEM, related to addi-
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tional DOFs, stems from the different approaches to the construction of enrichment func-
tions. In GFEM Langrangian formulations, these functions can be chosen nearly arbitrarily,
its compatibility at the element boundaries is satisfied by their product with conventional
macroscopic basis, though still having a new set of coordinates for the enrichment basis.
However, in HTFEM the subscale fields must satisfy, like their coarse-scale counterparts
do [21, 22], the governing differential equation (Cauchy stress equilibrium in the case of
linear elasticity), and as such do not need to be weighted by macroscopic bases but only
simply added to it. The compatibility constraints in the Trefftz methods are satisfied only in
a weak/weighted sense, see e.g. Herrera [23, 24] and references therein.

2. Modeling random microstructures

One of the approaches for modeling heterogeneous materials rests on an extension of
Periodic Unit Cell (PUC) generated such that its spatial statistics match that of a reference
microstructure, see e.g. [25, 26]. This procedure appears in the literature under various names
such as Statistically Optimal Representative Unit Cell coined by Lee et al. [27], Repeating
Unit Cell given by Yang et al. [28], Statistically Similar Representative Volume Element
that first appeared in [29], or Statistically Equivalent Periodic Unit Cell (SEPUC) by Ze-
man and Šejnoha [30], to name but a few. The spatial statistics, key paradigm in statistics-
based microstructural modeling methods, involved range from Minkowski functionals [31]
to multi-point probability functions [32], out of which the two-point probability [25, 26, 33],
two-point cluster [34], and lineal path [30, 35–37] functions have been used most frequently
and as such represent the key paradigm of this work as well.

Following Povirk’s seminal work [38], the majority of cell representations are generated
using optimization procedures, minimizing the discrepancy between the statistical charac-
terization of the reference microstructure and its compressed representation. The particular
choice of optimization algorithm currently varies with several options including simulated
annealing [30, 36, 39], genetic [27, 28, 40, 41] and gradient [38, 42], or phase-recovery [43]
algorithms.

The second approach to microstructure generation utilizes reference samples of the mi-
crostructure. New realizations are then obtained with a Markovian process, taking individual
voxels [44] or a patch of voxels [45] from the provided reference samples according to the
proximity of the spatial statistics computed for their surroundings. Alternatively, searching
for statistics proximity can be replaced with a classification tree-based supervised learning
model [46].

The previous two approaches suffer from high computational costs related either to opti-
mization or to training the learning models. The applicability of their outputs is also sensitive
to the spatial statistics considered, attesting to the ill-conditioning of the microstructure re-
construction problem itself. Achieving a good match in selected statistics does not automat-
ically guarantee similar overall behavior; for instance, Biswal et al. [47] demonstrated that
realizations with similar two-point probability functions could have significantly different
percolation characteristics that govern overall transport properties.

Complementary to the statistics-informed methods, a third approach to generating mi-
crostructural realizations relies on meta-modeling the genesis of a microstructure. These
methods range in complexity and include the Monte-Carlo Potts [48] and phase field mod-
els [49] of grain growth; sedimentation-and-compaction models [47]; and various particle
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packing algorithms, e.g. [50, 51, and references therein], based on either Random Sequential
Adsorption (RSA) [52, 53] or molecular dynamics [54–56].

The relevance of packing algorithms extends beyond simple particle-matrix microstruc-
tures because the resulting packing often serve as initial seeds for tessellation-based mod-
els applicable to polycrystals [57, 58], foams [51], and cell tissues [59, 60]. Due to its
straightforward implementation, Voronoı̈ tessellation is the most common choice; however,
the resulting geometry is oversimplified for many materials. For instance, Voronoı̈-based
models overestimate overall stiffness for high porosity foams [61]. The curvature of the cell
walls [57, 62] and heterogeneity in cell size [51, 58] and wall thickness [58] must be addition-
ally introduced to obtain realistic geometries. Similar effects can be achieved by modifying
the distance measure used during tessellation, e.g. models based on the Laguerre variant
generate microstructures with multi-mode cell size distribution [50, 51, 58, 63]. Inspired by
Laguerre tessellation, Chakraborty et al. [60] proposed Adaptive Quadratic Voronoı̈ Tessel-
lation, attributing a distinct anisotropic metric to each seed and thus allowing for additional
control over the resulting geometry.

The original RSA method [64] suffers from O (N2) complexity for N particles due
to overlap checks and is impractical for generating large, densely packed systems. Con-
sequently, several accelerations have been proposed. For Dart Throwing Algorithm [64],
which is a simplified case of RSA with equisized circular/spherical particles, Dunbar and
Humphreys [65] introduced a scalloped sector representation of non-overlap guaranteed re-
gions. In the same year, Jones [66] proposed an alternative bookkeeping of the regions based
on an adaptively updated Voronoı̈ tessellation. Moreover, both approaches utilize a tree data
structure and improve the algorithm complexity to O(N logN). For general RSA, Yang
et al. [28] proposed an acceleration based on a combination of a spline description of par-
ticle shapes and hierarchically refined bounding boxes of each particle. Recently, Sonon
et al. [67] introduced a method building on an implicit, level-set based description of particle
shapes, achievingO(N) complexity. Moreover, Sonon et al.’s method readily facilitates gen-
erating complex microstructures using linear combinations of the nearest neighbor distance
functions and dedicated morphing operations [67–70]. In a sense, this approach introduces
the anisotropic pseudo-metrics of Chakraborty et al. [60] in a geometrically-motivated way
by considering arbitrarily-shaped particles. As a result, Sonon et al.’s method enables re-
fined control over generated microstructure unattainable with standard Voronoı̈ or Laguerre
tessellations.

Albeit significantly faster than RSA or optimization-based approaches, the latter method
still starts anew every time an additional realization is required, imposing overhead on,
e.g., investigations of the Representative Volume Element (RVE) size that require multiple
microstructural samples to be generated, see Kanit et al. [71], Gitman et al. [72], Dirren-
berger et al. [73]. Alternatively, larger microstructural realizations can be assembled from
(SE)PUC; however, such construction introduces non-physical, long-range, periodic artifacts
in a microstructural geometry and its local response.

3. Micromechanics

The first attempts to the determination of overall material properties of simple compos-
ites, laminates in particular, fall into the realm of the so called rules of mixture and are
attributed to Voigt [74] and Reuss [75, 76]. Currently, micromechanics as it is considered
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here – a sub-field of solid mechanics –, finds applications across different disciplines as bi-
ology [77], civil engineering [78] or analysis of natural and synthetic composites [79]. The
large span of applications of micromechanics principles has been allowed by the essential
discovery of Eshelby [80] who proved the fact that the strain and stress field inside an el-
lipsoidal inclusion subjected to a uniform far field excitation is also uniform. Eshelby’s
analytical results yield the easy estimation of thermomechanical fields in polydisperse media
with ellipsoidal inclusions in terms of Young’s modulus and Poisson’s ratio of each phase,
the so called Eshelby’s (concentration) tensor and given magnitude of remote uniform loads.
For general inclusions, the concentration factors can be derived either by means of rigorous
bounding procedures or by making use of specifically tailored approximation techniques as
e.g. proposed by Maz’ya and Schmidt [81].

The determination of overall elastic properties of heterogeneous materials on the basis
of the well known elasticity energy principles has been contributed by authors as Hashin
and Shtrikman [82], Beran [83] and Milton and Phan-Thien [84] to name few. On top of
that, a variety of another class of approximation methods based on engineering intuition-
assumptions were proposed within the past decades. These include well known and often
used dilute approximation, self-consistent methods [85, 86] or very popular Mori-Tanaka
method [87, 88]. This topic has been also addressed by the author of this collection in terms
of the so called direct integration method presented in Svoboda et al. [89]. Stepping aside
from the realm of random dispersion, thus considering the periodic media, the determination
of local fields inside representative volumes of the composite can be obtained by numerical
procedures as the Finite Element Method or currently very popular Galerkin trigonometric
approximation [90–92].

Recent theoretical-computational developments in the field of micromechanics, have
been motivated by the author’s work [89] and include the direct calculation of coefficients
accounting for the inclusion interactions in multiple non-dilute particulate media [93] and a
Lagragian Finite Element formulation augmented by the Eshelby fields [94, 95].

4. Tiling

Tiling is a complementary term to the notion of tessellation, which stands for covering
an infinite plane by tiles without voids or overlaps. Naturally, decoration is the first purpose
of tiling that comes to everyone’s mind.

However, from the scientific point of view, Johannes Kepler is usually considered to be
the first who systematically investigated tessellations [96]. In the second part of his opus
magnum Harmonice Mundi – the book where he also presented his third law of planetary
motion – Kepler classified eleven tiling types containing only regular polygons that can cre-
ate valid planar tilings (tilings without voids or overlaps). Since Kepler’s time, the amount
of literature on symmetries and tiling has significantly grown as for both theoretical back-
ground and applications. Nowadays, the classical reference in the field is the book “Tiling
and patterns” by Grnbaum and Shephard [97], which contains also an exposition devoted
to aperiodic tilings, the objective of fourth and fifth section of this collection that keeps a
particular focus on Wang tiles and related tiling techniques.

Although the concept of Wang tiles was originally developed for reasons of mathematical
logic, it has found use in different branches of science. For example, in Physics, the tiling
concept has been used in studies of phase transitions of lattice models where individual tiles
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represent the state of interacting particles centered at the lattice cells [98]. The particles in-
teract through the tile edges associated with a prescribed binary energy density of either 0 or
−1. In these models, the particle volume fraction is either fixed, prohibiting vacancies within
the tiling, or ranges from 0 to 1 leading to discontinuous tilings [99]. Regarding predictive
capabilities in modeling phase transitions, the former type of models exhibits high order
continuous phase transitions at positive temperatures and forms quasi-crystalline structures
at low temperatures, while the latter models capture discontinuous first-order transitions be-
tween the disordered substance and a quasi-crystalline one.

Wang tiles or computer models (cellular automata) based on Turing machines, known to
be reproducible with Wang tiles, are also a promising tool in DNA nanotechology. The tiles
represent synthetic units–DNA building blocks–that can be self-assembled into synthetic,
two-dimensional, nanometer-scale DNA crystals by obeying the Watson-Crick complemen-
tarity. Color codes on tile edges are designed to ensure desired relations between neighbor-
ing tiles through the Watson-Crick base pairs, called sticky ends. By a careful tile design
eliminating alternative Watson-Crick associations and conformations, scientists have formed
layer crystals with varying lattice periodicity [100], exotic crystal patterns such as Sierpinski
triangle fractals [101], or a polyhedral mesh for three-dimensional structures [102].

To the best of author’s knowledge, the first application of the tiling concept was in com-
puter graphics, namely in rendering surfaces of virtually visualized objects that can be at-
tributed to Stam [103], who used the Amman aperiodic set of sixteen tiles for texture map-
ping to eliminate artificially looking patterns. Shade et al. [104], modified Stam’s idea by
introducing a set of only eight tiles and a complementary stochastic skyline tiling algorithm
to tile 2D terrains covered by nonperiodic patterns, e.g. sunflowers crop. Hiller et al. [105],
used the same tile set and applied it for fast generation of non-periodic point patterns, includ-
ing those with Poisson’s distribution, with blue noise characteristics. They demonstrated how
to fill the tiles with point patterns and discussed automatic tile design for texture synthesis
and object distribution. Subsequently, Cohen et al. [106], presented an efficient algorithm
for tile design that is based on fusing samples of a reference pattern using the quilting pro-
cedure reported by Efros and Freeman [107]. Kopf et al. [108], extended the concept by
introducing recursive tiling for adaptive point sets. They presented a hierarchical tiling pro-
cedure with finer scale tiles nested within coarser ones; however, the distribution of points
in each tile remains the same irrespective of the scale. At the same time, Lagae and Dutré
[109], introduced a local tiling algorithm, called procedural object distribution function, as
an alternative to Shade et al.’s global skyline tiling algorithm, also allowing for real-time
generation of textures with objects mapped on Poisson’s distribution point sets. Wei [110],
presented a tile-based texture mapping algorithm intended specifically for graphics hardware
based exclusively on Wang tiles.

Contrary to a wide range of strictly aperiodic sets of planar Wang tiles, there has been
published the results on only one set of Wang cubes, a three-dimensional variant of the con-
cept [111]. Stochastic tile set design introduced by Cohen et al. [106] thus enabled also much
greater freedom in cube set design for three-dimensional applications. The third dimension
of Wang cubes can be either temporal for video synthesis or spatial for geometry placement
as in [112]. Lu et al. [113], used Wang cubes to generate 3D pattern textures for scientific
visualization tasks, illustrated with rendering anatomy-related datasets.

Computer graphics’ quest for an efficient synthesis of naturally-looking textures strongly
resembles challenges materials engineers face in modeling heterogeneous materials with
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stochastic microstructures. The seminal results on Wang tiling aided compression and syn-
thesis of microstructural data were presented by the author and coworkers in [114], where
they introduced the basic principles of Wang tiling to the material modeling applications and
combined them with spatial quantification and a priory estimates of spurious long-range or-
der artifacts induced by generalized periodicity constraints. The methodology was compared
against PUC representations and illustrated on isotropic mono-disperse microstructures. The
follow-up work by Doškář et al. [115] dealt with compression and synthesis of complex, real-
world material systems such as sandstone, penetrable mono-disperse media, and aluminum
foam. The efficient synthesis of microstructural samples proved to be particularly appealing
to applications where multiple realizations of microstructure are needed, such as numeri-
cal homogenization of complex microstructures with high contrast in material properties of
their constituents [116]. However, the tiling concept has a potential beyond microstructural
modeling. The regular partitioning behind the assembled tilings can be readily used in for-
mulation criteria in Representative Volume Element size determination and combined with
domain decomposition methods to accelerate pertinent calculations [117]. Moreover, be-
yond the findings presented in Chapter 5, Wang tiles have been further explored as a tool
for efficient synthesis of microstructure-informed enrichment functions in generalized finite
element methods [118].
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[6] I. Babuška, J. Melenk, The partition of unity method, International Journal for Nu-
merical Methods in Engineering 40 (4) (1997) 727–758.

[7] T. Belytschko, R. Gracie, G. Ventura, A review of extended/generalized finite ele-
ment methods for material modeling, Modelling and Simulation in Materials Sci-
ence and Engineering 17 (4) (2009) 043001, ISSN 0965-0393, 1361-651X, doi:
10.1088/0965-0393/17/4/043001.

A Brief Summary on Applied Approaches 7
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[41] N. C. Kumar, K. Matouš, P. H. Geubelle, Reconstruction of periodic unit cells of
multimodal random particulate composites using genetic algorithms, Computational
Materials Science 42 (2) (2008) 352–367, ISSN 09270256, doi:10.1016/j.commatsci.
2007.07.043.

[42] D. Fullwood, S. Kalidindi, S. Niezgoda, A. Fast, N. Hampson, Gradient-based mi-
crostructure reconstructions from distributions using fast Fourier transforms, Mate-
rials Science and Engineering: A 494 (1-2) (2008) 68–72, ISSN 09215093, doi:
10.1016/j.msea.2007.10.087.

A Brief Summary on Applied Approaches 10



[43] D. T. Fullwood, S. R. Niezgoda, S. R. Kalidindi, Microstructure reconstructions from
2-point statistics using phase-recovery algorithms, Acta Materialia 56 (5) (2008) 942–
948, ISSN 13596454, doi:10.1016/j.actamat.2007.10.044.

[44] X. Liu, V. Shapiro, Random heterogeneous materials via texture synthesis, Com-
putational Materials Science 99 (2015) 177–189, ISSN 09270256, doi:10.1016/j.
commatsci.2014.12.017.

[45] P. Tahmasebi, M. Sahimi, Cross-Correlation Function for Accurate Reconstruction of
Heterogeneous Media, Physical Review Letters 110 (7) (2013) 078002, ISSN 0031-
9007, 1079-7114, doi:10.1103/PhysRevLett.110.078002.

[46] R. Bostanabad, A. T. Bui, W. Xie, D. W. Apley, W. Chen, Stochastic microstruc-
ture characterization and reconstruction via supervised learning, Acta Materialia 103
(2016) 89–102, ISSN 13596454, doi:10.1016/j.actamat.2015.09.044.

[47] B. Biswal, C. Manwart, R. Hilfer, S. Bakke, P. ren, Quantitative analysis of exper-
imental and synthetic microstructures for sedimentary rock, Physica A: Statistical
Mechanics and its Applications 273 (3-4) (1999) 452–475, ISSN 03784371, doi:
10.1016/S0378-4371(99)00248-4.

[48] Y. Saito, M. Enomoto, Monte Carlo Simulation of Grain Growth, ISIJ International
32 (3) (1992) 267–274, ISSN 0915-1559, doi:10.2355/isijinternational.32.267.

[49] C. Krill III, L.-Q. Chen, Computer simulation of 3-D grain growth using a phase-
field model, Acta Materialia 50 (12) (2002) 3059–3075, ISSN 13596454, doi:10.1016/
S1359-6454(02)00084-8.

[50] S. Falco, J. Jiang, F. De Cola, N. Petrinic, Generation of 3D polycrystalline mi-
crostructures with a conditioned Laguerre-Voronoi tessellation technique, Com-
putational Materials Science 136 (2017) 20–28, ISSN 09270256, doi:10.1016/j.
commatsci.2017.04.018.

[51] J. Alsayednoor, P. Harrison, Evaluating the performance of microstructure generation
algorithms for 2-d foam-like representative volume elements, Mechanics of Materials
98 (2016) 44–58, ISSN 01676636, doi:10.1016/j.mechmat.2016.04.001.

[52] D. W. Cooper, Random-sequential-packing simulations in three dimensions for
spheres, Physical Review A 38 (1) (1988) 522–524, ISSN 0556-2791, doi:10.1103/
PhysRevA.38.522.

[53] J. Segurado, J. Llorca, A numerical approximation to the elastic properties of sphere-
reinforced composites, Journal of the Mechanics and Physics of Solids 50 (10) (2002)
2107–2121, ISSN 00225096, doi:10.1016/S0022-5096(02)00021-2.

[54] B. D. Lubachevsky, F. H. Stillinger, Geometric properties of random disk packings,
Journal of Statistical Physics 60 (5-6) (1990) 561–583, ISSN 0022-4715, 1572-9613,
doi:10.1007/BF01025983.

A Brief Summary on Applied Approaches 11



[55] A. Donev, S. Torquato, F. H. Stillinger, Neighbor list collision-driven molecular dy-
namics simulation for nonspherical hard particles. I. Algorithmic details, Journal of
Computational Physics 202 (2) (2005) 737–764, ISSN 00219991, doi:10.1016/j.jcp.
2004.08.014.

[56] E. Ghossein, M. Lvesque, Random generation of periodic hard ellipsoids based on
molecular dynamics: A computationally-efficient algorithm, Journal of Computa-
tional Physics 253 (2013) 471–490, ISSN 00219991, doi:10.1016/j.jcp.2013.07.004.

[57] M. De Giorgi, A. Carofalo, V. Dattoma, R. Nobile, F. Palano, Aluminium foams struc-
tural modelling, Computers & Structures 88 (1-2) (2010) 25–35, ISSN 00457949,
doi:10.1016/j.compstruc.2009.06.005.

[58] Y. Chen, R. Das, M. Battley, Effects of cell size and cell wall thickness variations on
the stiffness of closed-cell foams, International Journal of Solids and Structures 52
(2015) 150–164, ISSN 00207683, doi:10.1016/j.ijsolstr.2014.09.022.

[59] H. Mebatsion, P. Verboven, B. Verlinden, Q. Ho, T. Nguyen, B. Nicola, Microscale
modelling of fruit tissue using Voronoi tessellations, Computers and Electronics in
Agriculture 52 (1-2) (2006) 36–48, ISSN 01681699, doi:10.1016/j.compag.2006.01.
002.

[60] A. Chakraborty, M. M. Perales, G. V. Reddy, A. K. Roy-Chowdhury, Adaptive Ge-
ometric Tessellation for 3D Reconstruction of Anisotropically Developing Cells in
Multilayer Tissues from Sparse Volumetric Microscopy Images, PLoS ONE 8 (8)
(2013) e67202, ISSN 1932-6203, doi:10.1371/journal.pone.0067202.
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[117] M. Doškář, J. Zeman, D. Jarušková, J. Novák, Wang tiling aided statistical determina-
tion of the Representative Volume Element size of random heterogeneous materials,
European Journal of Mechanics - A/Solids 70 (2018) 280–295, ISSN 09977538, doi:
10.1016/j.euromechsol.2017.12.002.
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Chapter 2

MICROMECHANICS ENHANCED FINITE ELEMENT
FORMULATION

The trigger for the work presented in this chapter was the analysis and design of par-
ticulate thermoplastic composites with short glass fiber reinforcement that would suit the
injection molding fabrication, with foreseen target applications in automotive industry. The
particular goal of related research agenda was the development of a methodology, experi-
mental plus computational, to design thermoplastics’ smeared reinforcement in such a way
it would allow for earlier demolding of cast products during manufacturing, providing they
will preserve their geometry unchanged. The later requirement was critical, as the earlier
demolding is performed under higher temperatures than the conventional reinforcement-free
thermoplastic products are able to sustain without substantial geometry deterioration. The
motivation behind this development was fulled namely by the quest for energy efficient man-
ufacturing processes and also by the financial saving promises due to the production speedup
related to shorter cooling down periods of the molds. The theoretically and computation-
ally oriented hypotheses on the crucial plastic deformation forming mechanisms were based
on the detailed solution of local thermomechanical fields down to the microlevel, provid-
ing large macrolevel domains to be taken into account. The methodology proposed in the
following chapter stems from the mixed Trefftz Finite Element formulation with local en-
richment functions based on the Eshelby solution to a problem of ellipsoidal inhomogeneity
embedded in infinite media exposed to a far-field strain excitation.
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1. Introduction

In the analysis of materials with complex microstructures, full resolution of the hetero-
geneities using classical numerical approaches such as the Finite Element method can be
computationally prohibitive. To overcome this, one option is to model the macroscale prob-
lem using equivalent properties; however, this can lead to a critical loss of information about
the finer scale behaviour and poor understanding of the heterogeneities’ influence on the
macroscale response. Numerical approaches such as computational homogenization (often
called FE2) provide an alternative strategy [1, 2]. These techniques comprise nested Finite
Element analyses, where each macroscopic material point response is determined via the
numerical solution of an RVE subject to the macroscopic strains. Although such approaches
have significant potential for certain classes of problems, they are still computationally de-
manding and are restricted to situations involving clear separation of scales.

The objective of this work is to develop a Finite Element formulation for modelling the
macroscopic mechanical problem that is enhanced to capture the influence of the underly-
ing heterogeneities. In our approach, the Finite Element mesh is not required to explicitly
resolve the heterogeneities. Closed-form expressions for the perturbation of the mechanical
fields due to the presence of the heterogeneities are determined and these are then utilised to
enhance the Finite Element formulation.

The ability to capture the effect of microstructural features independently of the underly-
ing finite element mesh has been an ongoing challenge in computational mechanics research.
Partition of Unity methods [3, 4, 5, 6] provide a potential solution to this problem, without
mesh refinement, by extending a given solution space with additional functions and has been
successfully applied to problems such as cracks and material interfaces. The application
of this approach in the context of the current work will be briefly discussed in this paper,
whereby the closed-form solutions derived for the mechanical perturbation fields are used to
extend the classical finite element method. However, it will be shown that there are some dis-
advantages to this approach for the particular problem at hand and an alternative approach,
centred on the Hybrid-Trefftz stress element formulation [7], represents the main focus of
this paper. This method does not result in additional degrees of freedom, although it does
involve an additional, albeit relatively minor, computational overhead.

The heterogeneities, although currently restricted to simple shapes (ellipsoids), can be
randomly sized and randomly distributed without reference to the finite element mesh. There-
fore, the proposed approach has the potential to be applicable to a wide range of composite
materials, such as fibre reinforced composites [8], porous media [9, 10], functionally graded
materials [11], etc. Moreover, it can be extended to general inclusion shapes by evaluating
the perturbation functions numerically [12, 13].

The paper is structured as follows. The methodology of the proposed strategy is described
in Section 2. Construction of the perturbation approximation functions for Finite Element
Analysis is derived in Section 3. The implementation into the Hybrid-Trefftz stress element
formulation containing an arbitrary number of inclusions is presented in Section 4. Sec-
tion 5 comprises examples demonstrating the model’s performance. Finally we present the
conclusions as well as a discussion on future research directions. An appendix is included
that highlights some important, but rather technical, aspects of the proposed technique in
order to keep the paper self-contained.
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2. Micromechanics approach

This section outlines the strategy to calculate the perturbation of mechanical fields due to
a heterogeneous microstructure, exploiting the Equivalent Inclusion Method [14] in conjunc-
tion with analytical micromechanics. Our objective is to convert the heterogeneous problem
into an equivalent homogeneous problem and to derive analytical expressions for the pertur-
bations of the stress, strain and displacement fields that we can then utilise within a finite
element formulation.

Consider a body consisting of clearly distinguishable heterogeneities in a matrix (Fig. 1a)
subjected to a displacement u and traction t field. The stiffness of such a material is decom-
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Figure 1: Principle of Equivalent Inclusion Method: a) composite body with inclusions, b) homogeneous
reference body with additional equivalent eigenstrains

posed as follows [14, 13]
C = C0 + VC∗ (1)

where C0 is the stiffness tensor of a homogeneous matrix Ω0 and C∗ =
∑N

i [Ci−C0] is due
to the presence of N inclusions. C∗ is nonzero only within the domain Ω = Ω1 ∪ · · · ∪ ΩN ,
so that

V =

{
0 in Ω0

1 in Ω
(2)

As a result of the heterogeneities, the mechanical fields (displacement, strains, stresses) ex-
perience a perturbation for which we will derive closed-form expressions based on analytical
micromechanics. Symbolically, we can express the decomposition of the mechanical fields
as follows:

u = u0 + u∗, ε = ε0 + ε∗, σ = σ0 + σ∗ (3)

where, the superscript ·0 indicates the macroscopic component of the fields in the absence
of heterogeneities and superscript ·∗ indicates the perturbation (or microscopic) component
due to the presence of the heterogeneities. It is worth noting that, traditionally, in analyti-
cal micromechanics, the macroscopic fields are assumed to be uniform across the domain,
e.g. [15, 16]. Here it is assumed that they can be position dependent functions of the Neu-
mann and Dirichlet boundary conditions.

The perturbation fields are determined by employing the equivalent inclusion method
for a single heterogeneity embedded in a matrix and then extended here for multiple het-
erogeneities. In the equivalent inclusion method, the heterogeneous solid is replaced by an
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equivalent homogeneous solid with uniform material stiffness C0 everywhere (Fig. 1a, b)
and suitable stress-free eigenstrains ετi applied in the inclusions Ωi so that the homogeneous
equivalent solid has the same mechanical fields as the original heterogeneous solid.

2.1. Equivalent inclusion method for single heterogeneity problem
Consider first a single heterogeneity embedded in a matrix. Following Eshelby’s funda-

mental work [17], this problem can be decomposed into two problems of known solution
and then assembled back via superposition [14, 17], see Fig. 2. In brief, the solution of the
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Figure 2: Equivalent Inclusion Method: a) inhomogeneity problem, b) infinite homogeneous body, c) homoge-
neous inclusion problem

inhomogeneity problem requires the determination of the transformation eigenstrain ετi that
induces the identical local mechanical response as the original heterogeneous body.

In the original heterogeneous body, the stress state can be expressed as

σ = σ0 + σ∗ = C : [ε0 + ε∗] (4)

In the homogeneous solid, we add a stress-free eigenstrain ετ inside the domain of the inclu-
sion, which has the same material stiffness C0 as the matrix such that

σ = C0 : [ε0 + ε∗ − ετ ] (5)

It should be noted that ετ = 0 in the matrix.
Given that the macroscopic stress is σ0 = C0 : ε0, it can be see from equating Eqs. (4)

and (5), that the stress perturbation in the homogeneous solid can be expressed as

σ∗ = C0 : [ε∗ − ετ ] (6)

Furthermore, equating Eqs. (4) and (5) also results in the following expression:

C : [ε0 + ε∗] = C0 : [ε0 + ε∗ − ετ ] (7)

where the transformation eigenstrain is as yet unknown. Eshelby’s solution of the homo-
geneous inclusion problem [17], relates the eigenstrain to the perturbation strain as follows

ε∗ = S : ετ (8)
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where S denotes the Eshelby tensor and is a function of the heterogeneity’s geometry and
the material stiffness of both the matrix and heterogeneity. Substituting this expression into
Eq. (7) and rearranging yields

[
C−C0

]
: ε0 =

[
C0 : S−C : S−C0

]
: ετ (9)

This can be recast in a compact form to give an expression for the eigenstrain ετ which
depends on the homogeneous strain ε0, the material stiffness of both the matrix and hetero-
geneity and the Eshelby tensor as

ετ = B : ε0 (10)

where the tensor B is provided by:

B = −
[
C∗ : S + C0

]−1
: C∗ (11)

Once the transformation eigenstrain has been determined, the stress perturbation can be com-
puted from Eq. (6) in the form

σ∗ = C0 : [S− I] : B : ε0 (12)

It can be seen that the stress perturbation depends on stiffness of the different material phases,
the macroscopic strain field and the geometry of the heterogeneity. This closed-form expres-
sion for the stress perturbation is at the heart of the proposed finite element enrichment to
be discussed later in this paper. It is also useful to derive an expression for the displacement
perturbation field as follows

u∗ = L : ετ = L : B : ε0 (13)

where the operator L is a third order tensor, mapping ετ → u∗. For the sake of conciseness
and to keep the paper self-contained, the detailed derivation of this operator can be found
in Appendix Appendix A.

2.2. Multiple inclusion problem via Self-balancing algorithm
In the case of multiple inclusions, the mechanical perturbation fields are essentially de-

termined from the Eshelby solution for each individual inclusions, as described above. How-
ever, it is also necessary to introduce an iterative self-balancing procedure (Tab. 1) to ensure
that the solution correctly reflects the influence of multiple inclusions.

This procedure iteratively modifies the eigenstrain inside any given inclusion i, to ac-
count for the influence of the remaining inclusions N\i. First, the eigenstrain ετi for each
inclusion i is calculated (Eq. 10) without reference to the other inclusions (Line 2). Next,
the associated perturbation strain ε∗i for each inclusion i is evaluated (Eq. 8) at the centre of
all other inclusions (Line 3).

The mutual interaction of inclusions is then taken into account via a correction of the
eigenstrain (∆ετi ). For each inclusion i, this correction is calculated (Line 8) from the inverse
of the inclusion’s Eshelby tensor S−1

i and the perturbation strains of all other inclusions,
evaluated at the centroid of inclusion i. The perturbation strain resulting from inclusion
j at the centre of inclusion i is denoted as ε∗i,j . This is demonstrated in Fig. 3 for a two
inclusion problem in 1D. The eigenstrain correction is then used to calculate the correction
to the perturbation strains (Line 11). Finally, the perturbation strain is updated (Line 12).
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The algorithm continues until a small Euclidean norm between the last two iterations of the
total eigenstrains is achieved. At convergence, the corresponding stress and displacement
perturbations are recalculated from the corrected transformation eigenstrains.

The computational complexity of this algorithm is O(N2). However, this can be im-
proved by taking into account only those inclusions which have a non-negligible influence to
the inclusion of interest i. This has been found to give a significant computational speed-up.

Self Balancing Algorithm (ε0
i ,Bi,Si,S

−1
i , N)

1 For (i ≤ N)
2 ετi = Bi : ε0

i (Eq. 10)
3 ε∗i = Si : ετi (Eq. 8)
4 Set ∆ε∗i = ε∗i
5 EndFor
6 Do
7 For (i ≤ N)

8 ∆ετi =
∑N

j\i S
−1
i : ∆ε∗i,j (Eq. 8)

9 ετi = ετi + ∆ετi
10 ∆ε∗i = Si : ∆ετi
11 EndFor
12 While

(∑N
i ‖∆ε∗i ‖ > η

)

Table 1: Self-balancing algorithm. Note, that η stands for an acceptable error.

Figure 3: Principle of self-balancing algorithm for double inclusion problem in 1D.

3. Construction of perturbation approximation functions for FEA

The above methodology can be utilised to formulate an enhanced Finite Element for-
mulation. The primary task is to determine appropriate approximation functions for the
mechanical perturbation fields u∗, ε∗ and σ∗ based on the analytical micromechanics devel-
oped above and which can then augment the standard macroscopic field approximations. It
should be noted that the Voigt-Mandel notation is exclusively used in the forthcoming text.

The perturbation field approximation functions are determined a priori as a linear combi-
nation of the perturbation fields evaluated analytically for six load cases, with self-equilibrium
enforced by means of the self-balancing algorithm outlined above (Tab. 1). Each load case
corresponds to a unit component of the macroscopic strain vector ε0i , i = 1, . . . , 6 and the
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resulting analytically determined stress, strain and displacement perturbation fields are ar-
ranged, column-by-column into s∗6×6, e∗6×6 and u∗3×6 matrices, respectively:

s∗ =
[

1σ∗ . . . 6σ∗
]
, e∗ =

[
1ε∗ . . . 6ε∗

]
(14)

u∗ =
[

1u∗ . . . 6u∗
]

(15)

where the left superscript refers to a specific load case, 1 to 6.

3.1. Partition of unity method
Partition of Unity (PU) Methods (for example the eXtended Finite Element Method)

extend the underlying basis functions used for interpolating the displacement field by adding
an appropriate set of additional functions. Following [18, 19] it has been shown that the
displacement field u(x) within an element can be interpolated by

u(x) =
n∑

i=1

(
Ni(x)ai + NiNγ(x)bi

)
(16)

where n is the number of nodes per element, Ni(x) = N i(x)I is the standard matrix of
element shape functions for node i, I is the identity matrix and ai the standard displacement
degrees of freedom at node i. Nγ is a matrix containing the additional basis terms and bi are
the associated additional degrees of freedom at node i. It is important to recognise that the
element shape functions form a partition of unity, i.e.

n∑

i=1

N i(x) = 1 (17)

The six analytically derived displacement perturbation functions contained in u∗ can be used
as the additional functions Nγ to augment the standard basis functions. Thus

Nγ(x) =




1u∗1(x) . . . 6u∗1(x) 0 . . . 0 0 . . . 0
0 . . . 0 1u∗2(x) . . . 6u∗2(x) 0 . . . 0
0 . . . 0 0 . . . 0 1u∗3(x) . . . 6u∗3(x)


 (18)

With this at hand, the PU-based finite element formulation can be derived, see for exam-
ple [20]. PU methods are particularly useful in problems where the extension of the basis
functions is introduced on a node by node basis, so that additional degrees of freedom are
only introduced at nodes where the basis is extended. One obvious example of such a local
feature that can be modelled in this way is discrete cracks [20]. However, this favourable
property is not exploited here because we wish to model a large number of heterogeneities
throughout the domain. In 3D problems, there are 3 standard displacement degrees of free-
dom per node; this would be extended by an additional 18 degrees of freedom per node with
the proposed approach.

It is also worth noting that for standard finite elements, the volume integration of the
discrete system of equations is relatively straightforward. However, extension of the basis
functions to include the perturbation functions in Eq. (18) makes this process significantly
more arduous. For these reasons, an alternative Finite Element approach using Hybrid Trefftz
Stress elements [21, 7] is considered where the standard basis function is not extended, as
with PU methods, but enhanced such that no additional degrees of freedom are introduced.
This is described in the next section.
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4. Hybrid-Trefftz stress element formulation

In this section a finite element formulation based on an enhancement of a hybrid-Trefftz
stress (HTS) element formulation [7] is presented. The problem requires a solution to the dis-
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Figure 4: Elastic body representing HTS element

placement u and stress σ fields as a result of given boundary displacements u and tractions
q on Γeu and Γeσ, respectively. The displacement and stress fields must fulfil the following
governing equations:

LTσ = 0 in Ωe . . . Cauchy equilibrium equation
Lu = ε in Ωe . . . compatibility equation
σ = Cε in Ωe . . . constitutive equation
Nσ = t on Γeσ . . . equilibrium equation on Γeσ
u = u on Γeu . . . compatibility equation on Γeu

(19)

where σ and ε are the column matrix representation of the second order stress and strain
tensor, respectively, u represents the displacement vector, C is the matrix representation of
fourth order stiffness tensor and finally u and t represent the applied displacements and
tractions, respectively. The gradient operator L and the matrix of directional cosines N of
the outward normal to element boundary Γe have the following forms [22]

L =




∂/∂x 0 0
0 ∂/∂y 0
0 0 ∂/∂z

∂/∂y ∂/∂x 0
0 ∂/∂z ∂/∂y

∂/∂z 0 ∂/∂x



, N =



nx 0 0 0 nz ny
0 ny 0 nz 0 nx
0 0 nz ny nx 0


 (20)

4.1. Stress, strain and displacement approximations
The macroscopic stress field within the HTS element is approximated as

σ0 = S0
vv in Ωe (21)

where v is the vector of generalised stress degrees of freedom, S0
v denotes the matrix of stress

approximation functions chosen so as to automatically satisfy the equilibrium conditions
Eq. (19)1,4. Thus,

LTS0
vv = 0 in Ωe (22)
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and
t = NS0

vv on Γe (23)

where t represents the traction vector induced by the macroscopic stress approximation field.
The macroscopic strain and displacement fields are expressed analogously to Eq. (21) as

ε0 = E0
vv and u0 = U0

vv (24)

where E0
v and U0

v are directly associated with the stress approximation by means of the com-
patibility equation (19)2 and constitutive equation (19)3 as

S0
v = C0E0

v = C0LU0
v (25)

Since the stress approximation functions S0
v are typically polynomial functions, the integra-

tion of E0
v to get U0

v is relatively straightforward.
Rather than extend the solution space to capture the influence of the heterogeneities, as

was briefly described in Section 3.1, here we enhance the macroscopic approximations to
include the influence of the heterogeneities, thereby not increasing the number of unknowns.
The total stress (macroscopic plus perturbation) field within the HTS element is approxi-
mated, following Eq. (3), as

σ = σ0 + σ∗ =
(
S0
v + S∗v

)
v in Ωe (26)

where S∗v is the perturbation counterpart to S0
v. S

∗
v can be constructed from Eq. (14):

σ∗ = s∗ε0 (27)

where s∗ is the set of analytically defined stress perturbations for six load cases, each one
representing a unit component of the macroscopic strain Eq. (14). For the purposes of con-
structing S∗v, we approximate the macroscopic strain field as constant within each finite el-
ement and computed as the volume average of the actual macroscopic strain field. From
Eq. (24),

ε0,ave =
1

|Ωe|

∫

Ωe
ε0 dΩe =

1

|Ωe|

∫

Ωe
Ev dΩev = Eave

v v (28)

Substituting ε0,ave for ε0 into Eq. (27) leads to

σ∗ = s∗Eave
v v (29)

Thus, the matrix of stress perturbation approximation functions is:

S∗v = s∗Eave
v (30)

Analogously, the approximation of total strain and displacement fields within the element
domain is given by

ε =
(
E0
v + E∗v

)
v and u =

(
U0
v + U∗v

)
v (31)

where the perturbation approximation matrices U∗v and E∗v are, as with their macroscopic
counterparts, directly associated with the stress approximation as

S∗v = C0E∗v = C0LU∗v (32)

It is worthwhile noting that the stress perturbation fields and the corresponding traction per-
turbation fields, approximated as σ∗ = S∗vv and t∗ = NS∗vv, remain in self-equilibrium.
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4.2. Static boundary conditions
Contrary to general condition in Eq. (19)4, the equilibrium on the element traction bound-

ary is imposed only in the weighted residual sense as:
∫

Γeσ

WT
1

[
N
(
σ0 + σ∗

)
− t
]

dΓe = 0 (33)

along with W1 representing the matrix of weighting functions. Replacing the total stress field
in Eq. (33) by its approximation from Eq. (26), the traction boundary condition becomes

∫

Γeσ

WT
1 N
(
S0
v + S∗v

)
v dΓe =

∫

Γeσ

WT
1 t dΓe (34)

4.3. Kinematic boundary conditions
Compatibility inside the element domain Ωe is also enforced in a weighted residual sense,

such that: ∫

Ωe
WT

2

(
ε0 + ε∗ − Lu

)
dΩe = 0 (35)

Next, utilising integration by parts and applying Green’s theorem to WT
2 Lu, Eq. (35) results

in
∫

Ωe
WT

2

(
E0
v + E∗v

)
v dΩe +

∫

Ωe
(LTW2)Tu dΩe

−
∫

Γeσ

(NW2)T u dΓe =

∫

Γeu

(NW2)T u dΓe (36)

With the current formulation, it is not necessarily possible to find a solution to both Eqs. (34)
& (36) that satisfies both traction and kinematic boundary conditions acting on the element
boundary. As a consequence, Eq. (36) is relaxed by introducing an additional and indepen-
dent approximation of displacements on the element traction boundary:

uΓ = UΓq in Γeσ (37)

where q stands for the set of displacement unknowns and UΓ is the matrix of boundary
displacement approximation functions. Such a formulation of the stress element leads to a
hybrid approach [7, 21].

Given the above consideration, introducing Eq. (37) into Eq. (36) results in
∫

Ωe
WT

2

(
E0
v + E∗v

)
v dΩe +

∫

Ωe
(LTW2)Tu dΩe

−
∫

Γeσ

(NW2)T uΓ dΓe =

∫

Γeu

(NW2)T u dΓe (38)

4.4. Weighting functions
In order to achieve an energy-consistent formulation, it is required that all weighted terms

within the integrals defined above have the dimension of work. The weighting functions then
directly follow from the integrands in Eq. (33) and Eq. (35) representing the increment of
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internal work of strains within Ωe and external work of tractions on Γeσ, respectively. These
functions thus admit the following forms:

W1 = UΓ, W2 = S0
v (39)

First, introducing Eq. (39)2 into Eq. (38) and taking into account condition (22) yields
∫

Ωe

(
S0
v

)T (
E0
v + E∗v

)
v dΩe −

∫

Γeσ

(
NS0

v

)T
UΓq dΓe =

∫

Γeu

(
NS0

v

)T
u dΓe (40)

Second, introducing Eq. (39)1 into the traction boundary condition (34) yields
∫

Γeσ

UT
ΓN(S0

v + S∗v)v dΓe =

∫

Γeσ

UT
Γt dΓe (41)

Combining Eqs. (40) & (41) results in a coupled system of linear equations that can be
expressed in compact form as

[
F −AT

−(A + A∗) 0

] [
v
q

]
=

[
pu
−pσ

]
(42)

where the submatrices on the left-hand side follow from Eqs (40, 41) and are given by the
following integrals

F =

∫

Ωe

(
S0
v

)T (
E0
v + E∗v

)
dΩe =

∫

Γe
N
(
S0
v

)T (
U0
v + U∗v

)
dΓe (43)

A =

∫

Γeσ

UΓNS
0
v dΓe and A∗ =

∫

Γeσ

UΓNS
∗
v dΓe (44)

and for the terms on the right-hand side it holds

pu =

∫

Γeu

(
NS0

v

)T
u dΓe, and pσ =

∫

Γeσ

UT
Γt dΓe (45)

Note that Eq. (43) illustrates that the F matrix can be evaluated via a boundary rather than
volume integral. Thus all terms in Eq. (42) can be evaluated using boundary integrals only.
The size of the system of equations to be solved simultaneously can be reduced via static
condensation, representing a significant reduction in computational effort. First, from the
first equation in Eq. (42), the generalised stress degrees of freedom v are expressed in terms
of the displacement degrees of freedom q as

v = F−1(pu + ATq) (46)

This is then substituted into the second equation of Eq. (42) to yield:

((A + A∗)F−1AT)q = pσ − (A + A∗)F−1pu (47)

This sparse system of equations is then solved for the displacement degrees of freedom q.
Subsequently, the stress degrees of freedom v can then be calculated on an element-by-
element basis.

Our implementation of these HTS elements for composite materials (C-HTS elements)
utilises displacement degrees of freedom that are associated with element faces rather than
vertices. This has the advantage that the bandwidth of the stiffness matrix is minimised, as
is interprocessor communication.
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5. Numerical Examples

The performance of the key components of the proposed strategy (micromechanical so-
lution, self-balancing algorithm, finite element analysis convergence, etc.), in terms of effi-
ciency and accuracy, have been explored through two numerical examples.

5.1. Three ellipsoidal inclusions in matrix
This example comprises three ellipsoidal inclusions embedded in a cube of matrix. The

geometry of the problem is illustrated in Fig. 5 and details of the ellipsoids are given in
Table 2, including the semi-axes’ dimensions, centroid coordinates and Euler angles φ, ν
and ψ, which are successive rotations of the semi-axes a1, a2 and a3 about global coordinate
axes z, x and z, respectively. The cube has side lengths of 600. The displacement boundary
conditions were prescribed on faces x = 300, y = 300 and z = 300 as ux = 0, uy = 0 and
uz = 0, respectively. The remaining faces at x = −300, y = −300 and z = −300 were
subject to uniform normal unit tractions. The Young’s modulus for the homogeneous matrix
was chosen as E = 1 and for the heterogeneities as E = 2. Poisson’s ratio was chosen as
ν = 0.1 for both materials. All units are consistent.

It is worthwhile noting that the small contrast in stiffness between the two materials was
chosen deliberately to maximise the extent of the perturbation fields emanating from the
heterogeneities. Large contrasts in stiffness between the matrix and heterogeneities lead to
perturbation fields that decay rapidly with distance from the heterogeneities. The close prox-
imity of the three ellipsoidal heterogeneities to each other was also chosen deliberately in
order to demonstrate the ability of the formulation to capture the interaction of multiple het-
erogeneities. Furthermore, the close proximity of one of the ellipsoids to a traction boundary
was chosen to demonstrate the ability of the formulation to capture boundary effects.

z

y

x

Figure 5: Geometry and topology of triple inclusion problem

Incl. Centroid coordinates Semiaxes dim. Euler angles of max ai
x y z a1 a2 a3 φ ν ψ

1 -48.07 78.27 14.81 50 75 100 74.21 48.44 -48.07
2 16.45 178.64 -154.51 50 100 75 37.27 22.27 -25.51
3 127.93 -65.94 -27.32 100 75 50 46.74 11.17 -26.30

Table 2: Topology and geometry of ellipsoidal inclusions of triple inclusion problem

The problem was analysed using two three-dimensional finite element meshes with dif-
ferent densities, comprising C-HTS elements. The coarse mesh comprised 24 elements and
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540 DOFs (Fig. 6a) and the second, refined, mesh comprised 192 elements and 3888 DOFs
(Fig. 6b). Results from the two enhanced finite element analyses are plotted in the yz-plane

(a) (b)

Figure 6: Triple inclusion task discretization by C-HTS elements: a) Coarse mesh with 24 enhanced elements
(540 DOFs) b) Finer mesh with 1,536 enhanced elements (29,376 DOFs)

(at x = 0). Fig. 7a and Fig. 8a show the two meshes in this plane. The σyy stress component
for both analyses are shown in Fig. 7b and Fig. 8b.

In addition, a reference finite element analysis of the same problem was undertaken for
comparison sake. The reference analysis utilised HTS elements but without the proposed
enhancement. Unlike the other two analyses, the reference analysis utilised a mesh that
explicitly resolved the three ellipsoidal heterogeneities and comprised 309, 406 tetrahedrons
with 5, 596, 776 DOFs (Fig. 9a). The corresponding mesh and stress results of the reference
analysis are shown in Fig. 9. Comparison of the stress results from the enhanced formulation
and the reference analysis leads to the relative error plots shown in Fig. 7c and Fig. 8c. It
can be seen that even the very coarse mesh with the enhanced formulation results in good
agreement.

Further comparison of the stress results is shown in Fig. 10, where it can been seen
that along the traction boundary, the finer mesh of enhanced elements is able to capture the
imposed constant stress field more accurately than the very much finer reference mesh.

(a) (b) (c)

Figure 7: Coarse mesh solution: a) Enhanced finite element mesh in yz plane at x = 0, b) σyy in yz plane, c)
error calculated as (σref

yy − σyy)2/σ2
yy

The perturbation fields are based on the assumption of a heterogeneity in an infinite medium
but the enhanced formulation still exhibits convergence in the regions strongly influenced by
the traction boundary.
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(a) (b) (c)

Figure 8: Finer mesh solution: a) Enhanced finite element mesh in yz plane at x = 0, b) σyy in yz plane, c)
error calculated as (σref

yy − σyy)2/σ2
yy

(a) (b)

(c) (d)

Figure 9: Reference analysis: a) discretization of entire body containing 309,406 tetrahedra, b) mesh refinement
on surface of heterogeneities, c) Reference finite element mesh in yz plane at x = 0, d) σref

yy in yz plane.

5.2. L-shaped specimen
The proposed modelling strategy is also demonstrated on an example with a large number

of inclusion. A 3D L-shaped specimen with fully fixed boundary conditions on the right
surface of the right-hand arm and normal traction applied on the top surface of the left-hand
arm is analysed, see Fig. 11. The length of the plate is 300 in both x and y direction, the
depth is 150 in z direction. The Young moduli were chosen as E = 1 and E = 2 for
matrix and inclusion respectively. Poisson’s ratio was ν = 0.1 for both material phases. The
microstructure comprised 2,523 spherical inclusions varying in size between 4 and 8 with a
uniform spatial distribution (Fig. 11b). All units are consistent.

The solution for three different mesh densities (Fig. 11c, d & e) are compared in Fig. 12.
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(a) (b)

(c) (d)

Figure 12: Solution of L-shaped specimen on x-y mid-plane. a) microstructure. Plots of σxy resulting from b)
coarse mesh, c) medium mesh and d) fine mesh.

6. Conclusions

A new micromechanics-enhanced finite element formulation has been presented for mod-
elling the influence of a large number of heterogeneities in composite materials in a compu-
tationally efficient manner. The strategy exploits closed form solutions derived by Eshelby
for ellipsoidal inclusions in order to determine the mechanical perturbation fields as a re-
sult of the underlying heterogeneities. Approximation functions for these perturbation fields
are then incorporated into a finite element formulation to augment those of the macroscopic
fields. A significant feature of this approach is that the finite element mesh does not explicitly
resolve the heterogeneities.

The proposed technique has been implemented into a hybrid-Trefftz stress (HTS) element
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formulation and it has been shown that the resulting enhanced elements (C-HTS) require
significantly fewer degrees of freedom to capture the detailed mechanical response compared
to standard finite elements. The paper also demonstrates how the proposed micromechanics
approach could be used within a Partition-of-Unity (PoU) formulation, although we conclude
that this does not fully exploit the advantages of PoU methods and that the proposed hybrid-
Trefftz formulation is most appropriate.

A self-balancing algorithm is used to determine the mutual interactions between inclu-
sions, assuming that the eigenstrain fields are uniform within the domain of each inclusion.
It was found that even for topologies exhibiting extremely small distances between the in-
clusions, this assumption is sufficient. Furthermore, it has been shown that boundary effects,
that are not accounted for by the classical micromechanical solution due to the assumption
of an infinite medium, can be captured through local mesh refinement.

We have implemented this formulation into our FE code that is optimized for parallel
computing. Additional parallelization of the micromechanical aspects of the formulation
needs to be investigated for increased efficiency. Further research is required in order to
incorporate other improvements such as nonuniform eigenstrains [14] and debonding ef-
fects [23].
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Appendix A. Detailed solution of perturbation displacements

The displacement perturbation field in an infinite homogeneous material due to an uni-
form eigenstrain ετij applied to an ellipsoidal region Ω is provided by the following integral
equation [14, Eq. (11.30)]

u∗i =
1

8π(1− ν)
[Ψjk,jki − 2νΦkk,i − 4(1− ν)Φik,k] (A.1)

where ν denotes the Poisson ratio and the elliptic potentials Ψij and Φij are defined as [14,
Eq. (11.32)]

Ψij = ετij

∫

Ω

|x− x′| dx′ = ετijψ, and Φij = ετij

∫

Ω

1

|x− x′| dx
′ = ετijφ (A.2)

The integrals φ and ψ in Eq. (A.2) are the harmonic and bi-harmonic potentials respectively.
Note that in Eq. (A.1) and thereafter, standard index notation is employed, together with
the generalised summation convection due to Mura [14]. Thus, a repeated index is summed
according to the Einstein summation rule (e.g. aibij =

∑3
i=1 aibj), whereas a non-repeated

upper-case index equals to the lower-case equivalent (e.g. aibicIj =
∑3

i=1 aibicij). The
symbol ajk,i denotes the partial derivative of ajk with respect to the coordinate xi.
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By combining Eq. (A.1) and Eq. (A.2), we obtain

u∗i =
1

8π(1− ν)

[
ετjkψ,jki − 2νδjkε

τ
jkφ,i − 4(1− ν)δijε

τ
jkφ,k

]
(A.3)

Similarly to Eshelby’s approach [17] , the displacement perturbations are expressed in com-
pact form:

u∗i = Lεijkε
τ
jk, Lεijk =

1

8π(1− ν)
[ψ,jki − 2νδjkφ,i − 4(1− ν)δijφ,k] (A.4)

where the third-order operator Lijk maps a transformation eigenstrain ετjk to the displacement
perturbation field u∗i . It is therefore analogous to the well-known Eshelby tensor [17], which
relates a transformation eigenstrain to the strain perturbation field.

The operator Lijk can be conveniently expressed in terms of the Ferrers-Dyson elliptic
integrals, e.g. [14, Eq. (11.36)]

I(λ) = 2πa1a2a3

∫ ∞

λ

ds

∆(s)
,

Ii(λ) = 2πa1a2a3

∫ ∞

λ

ds

(a2
i + s)∆(s)

,

Iij(λ) = 2πa1a2a3

∫ ∞

λ

ds

(a2
i + s)(a2

j + s)∆(s)
(A.5)

where ai stands for the i-th semi-axis of ellipsoid Ω and ∆(s) is obtained from

∆2(s) =
3∏

i=1

(ai + s)2 (A.6)

The variable λ is the largest positive root of equation [14, Eq. (11.37)]

xixi
(aI + λ)2

= 1 (A.7)

Notice that λ and is generally position dependent and non-zero for the points xi placed
outside the inclusion domain Ω, hence called the exterior points. Contrary, λ = 0 for interior
points.

All integrals in (A.5) admit a closed-form expression in terms of the Legendre-Jacobi
integrals of the first and second kind, defined as a fuction of an auxiliary angle θ, [14,
Eq. (12.17)]. It is worth noting that its definition via [14, Eq (11.18)]

θ = sin−1

√
1− a2

3

a2
1

(A.8)

is valid for interior points only and and not everywhere as stated in [14]. Thus, it needs to be
replaced with a general formula:

θ = sin−1

√
a2

1 − a2
3

a2
1 + λ

(A.9)
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available, e.g. in [24, 25]. Moreover, the following identity [14, Eq. (11.40.4)]

[xnxnIi...jN(λ)],p = 2xpIi...jP + Ii...j,p(λ) (A.10)

will be repeatedly proved useful in the sequel.
It follows from Eq. (A.4) that to express operator Lεijk, we need to evaluate the first-order

derivatives of the potential φ and the third-order derivatives of ψ. To this end, we start with
expressions [14, Eq. (11.38)]

φ(λ) = 1
2

[I(λ)− xnxnIN(λ)] (A.11)

and
ψ,i(λ) = 1

2
xi

{
2φ(λ)− a2

I [II(λ)− xnxnIIN(λ)]
}

= 1
2
xiQ(λ) (A.12)

Employing Eq. (A.10), the first derivative of φ becomes

φ,i(λ) = 1
2

{
I,i(λ)− [xnxnIN(λ)],i

}
= 1

2
[I,i(λ)− 2xiII(λ)− I,i(λ)] = −xiII(λ) (A.13)

The third derivative of potential ψ is expressed from Eq. (A.12) as

ψ,ijk(λ) = 1
2

[δijQ,k(λ) + δikQ,j(λ) + xiQ,jk(λ)] (A.14)

With the help of Eqs. (A.13) and (A.10), the term Q,j can be evaluated from

Q,j(λ) = 2φ,j(λ)− a2
I [II(λ)− xnxnIIN(λ)],j = 2xj

[
a2
IIIJ(λ)− IJ(λ)

]
(A.15)

This provides the second derivatives of Q in the form

Q,jk(λ) = 2
{
δjk
[
a2
IIIJ(λ)− IJ(λ)

]
+ xj

[
a2
IIIJ,k(λ)− IJ,k(λ)

]}
(A.16)

After utilising the derivatives of Q(λ) and re-ordering the indices, Eq. (A.14) becomes

ψjki(λ) = xiδjk
[
a2
JIJI(λ)− II(λ)

]
+ xkδji

[
a2
JIJK(λ)− IK(λ)

]

+ xjδki
[
a2
JIJK(λ)− IK(λ)

]
+ xjxk

[
a2
JIJK,i(λ)− IK,i(λ)

]
(A.17)

with IIJ,k and II,j provided by [14, Eqs. (11.40.1, 11.40)]

Ii...jk,p(λ) =
−2πa1a2a3

(a2
i + λ) . . . (a2

j + λ)(a2
k + λ)∆(λ)

λ,p,

λ,p =
2xp

a2
P + λ

(a2
I + λ)2

xixi
(A.18)

Now we are in a position to evaluate Lεijk in terms of the Ferrers-Dyson integrals. Intro-
ducing Eqs. (A.13) and (A.17) into Eq. (A.4) gives

[8π(1− ν)]Lεijk = xiδjk
[
a2
JIJI(λ)− II(λ)

]
+ (xkδji + xjδki)

[
a2
JIJK(λ)− IK(λ)

]

+ xjxk
[
a2
JIJK,i(λ)− IK,i(λ)

]
+ 2νδjkxiII(λ) + 4(1− ν)δijxkIK(λ)

}

(A.19)
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Since λ = 0 for the points inside the inclusion, recall Eq. (A.7), all derivatives of Ii...j vanish
as well. Therefore, Eq. (A.19) yields

[8π(1− ν)]Lε,int = xiδjk
[
a2
JIJI(λ)− II(λ)

]
+ (xkδji + xjδki)

[
a2
JIJK(λ)− IK(λ)

]

+ νδjkxiII(λ) + 4(1− ν)δijxkIK(λ) (A.20)

and Eq. (A.4) receives its final form

Lεijk = Lε,int
ijk +

1

8π(1− ν)
xjxk

[
a2
JIJK,i(λ)− IK,i(λ)

]
(A.21)

For implementation purposes, it is worth noting that Eq. (A.4) admits the Voigt representa-
tion:





u∗1
u∗2
u∗3



 =



L111 L122 L133 L112 L123 L113

L211 L222 L233 L212 L223 L213

L311 L322 L333 L312 L323 L313








ετ11

ετ22

ετ33

2ετ12

2ετ23

2ετ13





(A.22)
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Chapter 3

EFFICIENT EVALUATION OF MICROMECHANICAL FIELDS

To incorporate as many microstructural details as possible into the coarse scale finite
element analysis we focused on the development of analytical or semi-analytical technique
that would be computationally robust, capable of treating thousands of inclusions, and yet
feasible to implement. As for the solution strategy, we adopted Eshelby’s closed form so-
lution to ellipsoidal inclusion in infinite media exposed to uniform eigenstrains. Regarding
the implementation architecture, no hardware specific operations as e.g. GPU computing
or binary operation based speed-ups were desirable besides conventional CPU and memory
manipulation based coding, all this with respect to expected needs by the members of Com-
putational Mechanics/Micromechanics community and foreseen open source license regu-
lations of the developed library. As for the quest for the later mentioned feedback from
Micromechanics community, it is worth noting, that, besides the developed algorithms to
account for interactions among multiple inclusions, the library was also equipped by rather
conventional homogenization strategies based on Mean Field Theories and, as we called
it, the Direct Integration Method to asses the overall material properties from both, self-
compatible/equilibriated local fields inside and outside the inclusions.
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Abstract

The paper presents the project of an open source C/C++ library of analytical solutions to
micromechanical fields within media with ellipsoidal heterogeneities. The solutions are
based on Eshelby’s stress-free, in general polynomial, eigenstrains and equivalent inclu-
sion method. To some extent, the interactions among inclusions in a non-dilute medium
are taken into account by means of the self-compatibility algorithm. Moreover, the library
is furnished with a powerful I/O interface and conventional homogenization tools. Advan-
tages and limitations of the implemented strategies are addressed through comparisons with
reference solutions by means of the Finite Element Method.
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1. Introduction

In this paper we present a C/C++ library of analytical solutions to classical microme-
chanical problems. In particular, the library µMECH provides users with routines evaluating
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perturbations of local mechanical fields as strains, stresses, and displacements within a com-
posite medium consisting of isolated ellipsoidal inhomogeneities embedded in an infinite
matrix. The implemented, purely analytical solutions to both internal and external fields, i.e.
inside and outside inclusion domains, are based on the influential J. D. Eshelby work [1]
and are accomplished in two and three dimensions. The library deals with the heterogeneity
problem by means of the equivalent inclusion method. It substitutes heterogeneities with
appropriate inclusions subjected to transformation stress free eigenstrains consistent with
applied far-field strains [1]. Both, constant and polynomial transformation eigenstrains are
allowed. The latter is conveniently used to deal with the interacting multiple inclusions. In
particular, the interactions among inclusions in a non-dilute media are taken into account by
means of the so called self-compatibility algorithm, the fixed version of its ill-posed prede-
cessor reported in [2]. In multiple inclusion problems, contact points among inclusions are
allowed however penetrations are not.

µMECH was principally designed as a subroutine of Finite Element packages (FEM),
justifying so a generic structure of the code and I/O interfaces. It is capable providing
Generalized Finite Element environments with subscale enrichment functions to take into
account perturbations in macro-field patterns due to microstructural details so as to avoid
homogenization based upscaling [2]. Nonetheless, in order to comply with expectations of
the micromechanics community, the library has been equipped with several homogenization
routines based on direct numerical integration of local fields or conventional techniques as
dilute approximation [1], Mori-Tanaka [3], and Self-consistent schemes [4].

The paper is structured as follows. In Section 2 we introduce the theoretical background
of implemented techniques. In particular, we start with the definition of perturbation fields,
give some basics to the Equivalent inclusion method, continue with a brief exposition to
the aspects of Eshelby solution due to polynomial stress-free eigenstrains, self-compatibility
algorithm and conclude with a summary on homogenization schemes. In Section 3 we com-
ment on the architecture of µMECH, the structure of I/O interfaces, and license regulations.
Numerical examples compared with reference solutions by means of FEM are discussed
in Section 4. Final remarks concluding the exposition are given in Section 5.

2. Background

In what follows, we give a very brief introduction to theoretical background of imple-
mented strategies in µMECH library. The entire Section 2 can be omitted by readers versed
in classical micromechanics. As for the notation used throughout the section, we mostly use
the compact tensorial form denoted by different font styles in bold depending on particular
order of the tensors. However, where the exposition requires, we resort to standard tensorial
notation with indices. For instance,

ci = Aijklaklbj = A : a · b = c

Also, note that the superscripts over state variables do not stand for power indices. In the case
of stiffness or concentration tensors, in general fourth order tensors, analogical indices are
written as subscripts and superscripts are reserved e.g. for •−1 inverse operator. In addition,
i, j, k, l,m, q are reserved for tensorial indices, r, s denote the inclusion enumerators, and p
stands for the iteration loop increment.
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2.1. Perturbation fields
Let assume an infinite isotropic homogeneous body with separated heterogeneities, Fig. 1.

Moreover, consider the body be the subject to some macroscopic excitation, e.g. a remote
strain induced by a combination of displacement and traction fields u(x), t(x) applied to the
boundary ∂Ω0 at infinity. The stiffness of such a composite can be decomposed as [5, 6]

Ω2

C2

Ω1
C1

Ω3

C3

Ω5

C4
Ω4

C5

Ω0,C0

∂Ω0

x

y

u(x), t(x)

Figure 1: Infinite composite body with ellipsoidal inhomogeneities.

C(x) = C0 + C(x) (1)

where C0 represents the fourth order tensor of elastic constants of the matrix Ω0 and C(x) =
C(x)−C0 is its piecewise constant complement to C(x) due to the presence of 1, . . . , n het-
erogeneities. Note, C(x) is nonzero only for x ∈ ⋃n

r=1 Ωr. As a result of applied loads, the
heterogeneous body experiences local fields that can be decomposed by analogy to Eq. (1)
as

u(x) = u0(x) + u(x), ε(x) = ε0 + ε(x), σ(x) = σ0 + σ(x) (2)

Here, the superscript •0 indicates the homogeneous (macroscopic) component of the state
variables in the absence of heterogeneities and • stands for its perturbation (microscopic)
counterpart induced by their presence. Determination of the perturbation fields is based on
the equivalent inclusion method as proposed by Eshelby in [1]. Here, we first limit the expo-
sition to a single ellipsoidal heterogeneity embedded in a homogeneous matrix undergoing
a uniform remote strain excitation and then explore some possibilities to take into account
interactions among multiple heterogeneities.

2.2. Equivalent inclusion method for single heterogeneity problem
When seeking for local fields by means of the equivalent inclusion method, we replace

the heterogeneity problem, Fig. 2a, by an equivalent inclusion problem consisting of the
homogeneous matrix exposed to a suitable stress-free eigenstrain ετ (x) which vanishes ev-
erywhere except for x ∈ Ω1, Fig. 2c, supplement to external loads applied at infinity, Fig. 2b,
see [1] for further details. The solution of the inclusion problem then primarily requires the
determination of the transformation eigenstrain ετ (x) that induces identical perturbation to
the homogeneous fields as it would occur due to the original inhomogeneity. As there are
no other inclusions surrounding that of our concern, ετ (x) remains constant in Ω1, that is
we can write ετ (x ∈ Ω1) = ετ . According to Hook’s law and decompositions in Eq. (2)2,3,
local stresses rendered by the inhomogeneity problem, Fig. 2a, read as

σ(x) = σ0 + σ(x) = C(x) : [ε0 + ε(x)] (3)
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Figure 2: Equivalent inclusion method, a) inhomogeneity problem, b) infinite homogeneous body with allied
loads, c) homogeneous inclusion problem.

For the equivalent problem holds

σ(x) = C0 : [ε0 + ε(x)− ετ (x)] (4)

Given the fact that σ0 = C0 : ε0, it yields from Eq. (2)3 and Eq. (4)

σ(x) = C0 : [ε(x)− ετ (x)] (5)

Now, equating the rhs’s of Eqs. (3–4),

C(x) : [ε0 + ε(x)] = C0 : [ε0 + ε(x)− ετ (x)] (6)

and taking into account the following fundamental solution for ε(x)

ε(x) = S(x) : ετ (7)

where S(x) denotes the Eshelby tensor evaluated at an arbitrary point x, results

[C(x)−C0] : ε0 = [C0 : S(x)−C(x) : S(x)−C0] : ετ (8)

The definition of S(x) tensor is as in Eq. (14) and Eq. (16)1 while the detailed derivation
can be found e.g. in [1, 5]. Finally, Eq. (8) gives rise the sought stress free transformation
eigenstrain ετ in the form

ετ = Q : ε0 (9)

where tensor Q reads as

Q = −
[
C1 : S(0) + C0

]−1
: C1 (10)

Once the transformation eigenstrain has been determined, Eq. (9), the stress perturbation can
be computed from Eq. (5) and displacement perturbations as

u(x) = L(x) : ετ = L(x) : Q : ε0 (11)

where the operator L(x) is the third order Eshelby tensor-like operator mapping ετ 7→ u(x)
whose detailed derivation can be found in [2].
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2.3. Single inclusion problem for polynomial eigenstrains
The solution to a single inclusion in the infinite matrix loaded by a constant eigenstrain

stated formally in equation Eq. (7) was generalized by Sendeckyj (1967) and Moschovidis
(1975) for eigenstrains prescribed in a general polynomial form [5, and references therein].
For a simpler exposition, here we summarize only the solution to the single inclusion under
linear eigenstrain excitation, though the solution to the problem with quadratic eigenstrains
is also implemented to some extent in current version of µMECH. Going back to index based
Einstein summation convention, the prescribed linear eigenstrain field that is nonzero only
for x ∈ Ω1, is defined as

ετij(x) = ετij + ετijkxk (12)

where ετij is the constant part of the imposed eigenstrain identical to that from the previ-
ous paragraph, and ετijk contains its gradient complements in k-th coordinate direction. By
analogy to Eq. (7), it holds

εij(x) = Sijkl(x)ετkl + Sijklm(x)ετklm (13)

The solution thus reduces to seeking for components of tensors Sijkl and Sijklm, which de-
pend only on the proportions of the semi-axes of Ω1 and matrix Poisson’s ratio ν0. In partic-
ular, for exterior points, i.e. x /∈ Ω1, the following definitions hold [5]

Sijkl(x) = [ψ,klij − 2ν0δklφ,ij

− (1− ν0)(φ,kjδil + φ,kiδjl + φ,ljδik + φ,liδjk)]/[8π(1− ν0)] (14)

Sijklm(x) = [ψm,klij − 2ν0δklφm,ij

− (1− ν0)(φm,kjδil + φm,kiδjl + φm,ljδik + φm,liδjk)]/[8π(1− ν0)] (15)

On the other hand, for all points x inside Ω1, the above tensors read as

Sijkl(x) = Sijkl(0), Sijklm(x) = Sijklm,q(0)xq (16)

Symbol δij denotes the Kronecker delta and •,i stands for the first derivative in i-th direction.
The potentials φ and φi and the first derivative of potential ψ and ψi are defined as

φ(x) = V (x), φi(x) = a2
ixiVi(x), ψ,i(x) = xi[V (x)− a2

iVi(x)]

ψi,j(x) = −1

4
δija

2
i {V (x)− x2

kVk(x)− a2
i [Vi(x)− x2

kVki(x)]}
+ a2

ixixj[Vj(x)− a2
iVji(x)] (17)

with ai being ellipsoidal semi-axe lengths sorted in descending order and index k being the
summation index. Elliptic integrals V , Vi and Vij , respectively, read

V (x)=
I(λ)−x2

kIk(λ)

2
, Vi(x)=

Ii(λ)−x2
kIik(λ)

2
, Vij(x)=

Iij(λ)−x2
kIijk(λ)

2
(18)

where I , Ii, Iij and Iijk are λ-variable dependent elliptic integrals. The value of λ for a given
point x ∈ Ω1 is the largest positive root of the cubic equation

x2
1

a2
1 + λ

+
x2

2

a2
2 + λ

+
x2

3

a2
3 + λ

= 1 (19)
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and zero otherwise. The elliptic integrals I and Ii are expressed as

I(λ) = b(a2
1−a2

3)−
1
2F (θ, c),

I1(λ) = b(a2
1−a2

2)−1(a2
1−a2

3)−
1
2 [F (θ, c)−E(θ, c)],

I2(λ) = b[(a2
1−a2

2)−1(a2
2−a2

3)−1(a2
1−a2

3)
1
2E(θ, c)−(a2

1−a2
2)−1(a2

1−a2
3)−

1
2F (θ, c)

−(a2
2−a2

3)−1(a2
3+λ)

1
2 (a2

1+λ)−
1
2 (a2

2+λ)−
1
2 ],

I3(λ) = b(a2
2−a2

3)−1(a2
1−a2

3)−
1
2 [(a2

1−a2
3)

1
2 (a2

2+λ)
1
2 (a2

1+λ)−
1
2 (a2

3+λ)−
1
2 ] (20)

with b = 4πa1a2a3, θ = arcsin
√

1− a2
3/a

2
1, and c =

√
(a2

1 − a2
2)/(a2

1 − a2
3). Functions F

and E are the incomplete Legendre elliptic integrals defined as

F (θ, c) =

∫ θ

0

dw√
1− c2 sin2w

, E(θ, c) =

∫ θ

0

√
1− c2 sin2w dw (21)

In addition, higher order integrals Iij and Iijk are expressed by means of those of the lower
orders and by substituting α = (a2

i − a2
j) as follows

Iij(λ) = [Ij(λ)− Ii(λ)]/α, Iiij(λ) = [Iij(λ)− Iii(λ)]/α ∀ i 6= j,

Iii(λ) =
1

3
[

b

(a2
i + λ)2∆(λ)

− Iij(λ)− Iik(λ)], Iijk(λ) = [Ijk(λ)− Iik(λ)]/α,

Iiii(λ) =
1

5
[

b

(a2
i + λ)2∆(λ)

− Iiij(λ)− Iiik(λ)] ∀ i 6= j 6= k 6= i (22)

Finally, ∆(λ) reads as

∆(λ) =
√

(a2
1 + λ)(a2

2 + λ)(a2
3 + λ) (23)

2.4. Multiple-inclusion problem
In the case of an infinite matrix with multiple inclusions, the perturbation fields within Ωr,

Fig. 1, are no longer uniformly distributed as a result of their mutual interactions. In µMECH,
we account for the interactions only approximately by assuming the eigenfields within r-th
inclusion be still constant, however, influenced by local changes of state variables due to the
remaining inclusions, namely those nearby Ωr. In particular, we control the “compatibility”
of the perturbation strain field inside each inclusion calculated by means of Eq. (7). The
key ingredient of these formulas, ε0

r , mapped to ετr through Qr, is recursively increased by
perturbation strains εs→r arising from the presence of s = 1, . . . , n inclusions. That is why,
we have different ε0

r for each of 1, . . . , r, . . . , n inclusions. Individual contributions εs→r to
ε0,tot
r are measured in the center of Ωr, Fig. 3a. Thus, ε0,tot

r in the p-th iteration loop of the
self-compatibility procedure reads as

pε0,tot
r

def
= ε0 +

n∑

s\r

pεs→r (24)

where the contributions pεs→r are evaluated from the previous remote field p−1ε0,tot
r ; the

s\r operation excludes inclusion r from the set of n inclusions. The initial remote strain ε0
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Self Compatibility Algorithm (ε0
r, ε

τ
r ,Qr,Sr, n)

1 Do
2 For (r ≤ n)
3 ετ,prev

r = ετr
4 ε0,tot

r = ε0 +
∑n

s\r εs→r
5 ετr = Br : ε0,tot

r

6 ∆ετr = ετr − ετ,prev
r

7 EndFor
8 While

(∑n
r ‖∆ετr‖ > η

)

Table 1: Self-compatibility algorithm. In principle, within each iteration loop we consider the effect of s-
th inclusion on inclusion r as an additional external load entering the solution to its equivalent stress-free
eigenstrain ετr . This means, in each iteration, we recalculate ε0,totr for every single inclusion as the sum of
the prescribed homogeneous strain ε0 and its perturbations due to remaining inclusions εs→r evaluated in the
centroid of inclusion r, line 4. Next, ετr is updated, line 5. The algorithm continues until an acceptable tolerance
η between the Euclidean norms of the two consecutive stress-free eigenstrains ετr is achieved, line 8.

is imposed to the matrix surrounding all inclusions at the beginning of the procedure, i.e.
1ε0,tot
r = ε0. The line-by-line definition of the iterative algorithm based on Eq. (24) follows

in Tab. 1. At its convergence, the stress and displacement perturbations corresponding to
compatible transformation eigenstrains are recalculated according to Eq. (5) and Eq. (11).
It is worthwhile to note that the algorithm does not depend on a particular sequence of in-
clusions, as follows from the elastic reciprocity theorem [7, and references therein]. The
iterative procedure has been chosen since a closed form solution for the multiple inclusion
problem does not exist and a numerical one would be prohibitively expensive, see e.g. [7].
The computational complexity of the so called full version of the algorithm is O(n2). How-
ever, this can be further reduced by taking into account only inclusions that have a non-
negligible impact on the r-th inclusion of interest, usually those placed very nearby Ωr or
excessively large inclusions in the case of somehow disparate polydisperse. This algorithm
is called optimized in µMECH. Its complexity reduces to O(ξn), where ξ = 1

r

∑
r ξr is the

arithmetic average of the number of inclusions whose cut outs limited by radii1 ρs centered
in xs embrace the r-th inclusion, Fig. 3b. Note, for n → ∞ the complexity of optimized
algorithm is O(n) as ξ = const� n.

2.5. Approximation to perturbation strain concentrations
When dealing with a dilute distribution of inclusions, constant strain and stress fields

are assumed within Ωr and no question on concentrations comes in play. However, the goal
of µMECH is to proceed a few steps beyond, namely to non-dilute dispersions. The con-
centrations arising from mutual inclusion interactions are approximated by the following
procedure, which stems from the approximate solution to the sought non-constant transfor-
mation eigenstrain ετr(x) suitable for the decomposition in Eq. (12) or similar one of a higher
degree.

Consider point a x inside the inclusion domain Ωr, where we calculate the stress free

1A usual choice is 2.5 multiple of the longest semi-axis a1.
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Figure 3: Illustration of self-compatibility algorithm, a) principle for double inclusion problem, b) inclusions
having non-negligible impact on r-th inclusion ξr = ‖Ω1,Ω3,Ω4‖ = 3.

transformation eigenstrain as

ετr(x) ≈ Qr :

[
ε0 +

n∑

s\r
εs→r(x)

]
(25)

Consequently we sample ετr(x) in as many points x as necessary for a polynomial of chosen
degree, three in the case case of Eq. (12). Finally, the solution to perturbation fields for points
x in each domain Ωr are obtained following the exposition given in Paragraph 2.3. For the
points within the matrix, i.e. x outside the union

⋃n
r=1 Ωr, the solutions are obtained by the

sum of individual contributions attributed to each of 1, . . . , n inclusions.
An alternative, and surprisingly well working, approach such that it does not call for

the implementation of polynomial eigenstrain problem is, that the solutions to perturbation
strains in the internal points are calculated by means of the basic Eshelby formula given in
Eq. (7), as

εr(x) ≈ Sr : ετr(x) +
n∑

s\r
εs→r(x) (26)

where ετr(x) is that provided by Eq. (25). By analogy to the latter approach, the solution in
external points is obtained by adding up contributions from all inclusions.

Finally, it is worthwhile to note that the computational complexity can be controlled
by the number of internal points chosen to approximate ετr(x) by either of the approaches
above. In addition, substantial savings can be made by choosing optimized mode running on
the same principles as in the case of the self-compatibility algorithm.

2.6. Homogenization
Assuming non-elastic phenomena be entirely attributed to the microstructure evolution

dynamics, the constitutive behavior of an arbitrary point x at an instant is governed by the
following pair of equations [8],

σr(x) = Cr : εr(x), εr(x) = C−1
r : σr(x) for x ∈ Ωr (27)
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where r = 0, . . . , n. According to Hill’s lemma [9, 8], the averages of the above local
quantities σ(x) and ε(x) are coupled with their macroscopic conjugates Σ,E as

〈σ(x)〉 = 〈C(x) : ε(x)〉 =
n∑

r

crCr : 〈εr(x)〉 =
n∑

r

crCr : εr = C : E,

〈ε(x)〉 = 〈C−1(x) : σ(x)〉 =
n∑

r

crC
−1
r : 〈σr(x)〉 =

n∑

r

crC
−1
r : σr = C−1 : Σ (28)

It is evident, that the effective elastic stiffness and compliance tensors depend on the elastic
properties of each phase Cr and volume fractions cr. In addition, they depend on mutual
interactions given by the intrinsic geometrical arrangement of the phases and the compat-
ibility or equilibrium requirements, encoded in concentration factors Ar,Br for which it
holds [10, 1]

εr = Ar : E, σr = Br : Σ (29)

Plugging the latter definitions in last two terms of Eq. (28) gives

C =
n∑

r

crCr : Ar, C−1 =
n∑

r

crC
−1
r : Br (30)

Now, identifying by r = 0 a matrix phase in which the remaining heterogeneities are fully
embedded, and taking into account the fact that c0A0 = I − ∑n

r=1 crAr, c0B0 = I −∑n
r=1 crBr, where I is the fourth order identity tensor, and considering c0 = 1 −∑n

r=1 cr,
yields

C = C0 +
n∑

r

crCr : Ar, C−1 = C−1
0 +

n∑

r

crC
−1

r : Br (31)

where, according to Eq. (1), it holds

Cr = Cr −C0 (32)

From now on, the central question is how to evaluate the concentration factors Ar and Br

for a medium with multiple inclusions.

2.6.1. Homogenization by direct integration of approximate local fields

Ω0

∂Ω0

u(x), t(x)

Ω�

∂Ω�

Figure 4: Two-dimensional illustration of DIM subdomain Ω� in cluster of inclusions embedded in infinite
matrix Ω0.
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The Direct Integration Method (DIM) stems of the numerical integration of local stresses
and strains in the subregion Ω�, Fig. 4, of a larger cluster of inclusions embedded in the
matrix and arising from the successive load steps by a single unitary component of ε0

ij while
the other vanish, see e.g. [4]. Thus, the set of nine ij-th components2 of the fourth order
tensor of effective stiffness moduli is rendered as

C = E−1 : Σ (33)

where

Σijkl

ε0ij=1
= 〈σkl〉 =

1

|Ω�|

∫

Ω�

σkl dΩ, Eijkl
ε0ij=1
= 〈εkl〉 =

1

|Ω�|

∫

Ω�

εkl dΩ (34)

This homogenization procedure assumes the subregion boundary ∂Ω� be sufficiently far
from the boundary of the cluster of all inclusions entering the analysis in order to guarantee
vanishing boundary effects. In addition, it is considered that the subregion’s volume and
geometry is representative to the solved microstructure. In other words, it should form its
Representative Volume Element (RVE) [9]. It is also worthwhile to note that the shape of
Ω� is completely arbitrary. It does not even need to form a continuous domain.

2.6.2. Dilute approximation
Suppose the dispersion of inclusions distributed in the infinite matrix is low or, say, dilute.

Under such conditions, inclusions do not interact, and as a consequence, the macroscopic
strain E from Eq. (28) and Eq. (29) can be imagined as equal to the remote strain ε0 from
the exposition introduced in Paragraph 2.1. So that, expanding Eq. (2)2 by means of Eq. (7)
gives the local strains inside r-th inclusion in the form

εr = ε0 + Sr : ετr
Eq. (9)

= ε0 + Sr : Qr : ε0 = Adil
r : ε0 (35)

where
Adil
r = (I + Sr : Qr) (36)

By analogy, considering Σ to approach σ0 and taking into account Eq. (4) and Eq. (29)2

gives
Bdil
r = [I + Qr : (Sr − I)] (37)

2.6.3. Mori-Tanaka approximation
The Mori-Tanaka approximation to concentration factors falls into the class of the so

called mean-field theory methods. Namely, the inclusion interactions are accounted for by
making use of the assumption that each inclusion is embedded separately in a large volume
of a matrix which is subjected to a uniform remote stress or strain equal to as yet unknown
averages [3]. In particular, the aim is to arrive at concentration factors AMT

r , BMT
r as func-

tions of the polarization tensors which are equal to dilute concentration factors from Eq. (36)
and Eq. (37). Thus, the strain and stress in the r-th inclusion, respectively, reads as

εr = Adil
r ε0, σr = Bdil

r σ0 (38)

2one column or row in Voight-Mandel notation
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From the strains averaged over the entire spectrum of n inclusions plus that in the matrix
phase, one can deduce, see e.g. [11],

〈ε〉 =

(
c0I +

n∑

r=1

crA
dil
r

)
ε0 ⇒ ε0 =

(
c0I +

n∑

r=1

crA
dil
r

)−1

〈ε〉 (39)

Introducing Eq. (39)2 into Eq. (38)1, we arrive at

εr = Adil
r

(
c0I +

n∑

r=1

crA
dil
r

)−1

〈ε〉 = AMT
r 〈ε〉 = AMT

r E (40)

such that entering back to Eq. (28)1 gives effective stiffness moduli stored in C. By analogy,
starting the above analysis from Eq. (38)2 gives the Mori-Tanaka approximation to stress
concentration factor BMT

r in the form

BMT
r = Bdil

r

(
c0I +

n∑

r=1

crB
dil
r

)−1

(41)

yielding effective compliance moduli by making use of Eq. (28)2.

2.6.4. Self-Consistent approximation
Interactions among r = 1, . . . , n phases are accounted for by assuming that each phase

is an inclusion placed in the homogeneous medium of yet unknown overall properties of the
aggregate of n\r remaining inclusions. It thus falls into the class of the so called effective
medium methods. The Self-Consistent method is known to overestimate the interaction in-
fluence [12], which makes it specifically tailored for particulate media where a matrix phase,
usually formed by fine particles, can not be clearly distinguished. Contrary to the approxima-
tions presented above, the Self-Consistent method results in implicit formulas [13]. Starting
from the dilute approximation one can write

ASC
r = (I + SSC

r : QSC
r ), BSC

r = [I + QSC
r : (SSC

r − I)] (42)

where the superscript •SC denotes explicit dependence of a quantity on material moduli com-
ing from the Self-consistent approximation. In other words, stiffness moduli entering the
formulas for Q, Eq. (10) and S, see e.g. [5], are functions of CCS by substitution for C0,
notice especially Eqs. (1) and (10).

Note, that the so called Cai-Horii approximation is obtained after the first iteration of
the Self-consistent scheme [14] where the quantities on the right-hand sides of both terms in
Eq. (42) are functions of the properties coming out the dilute approximations in Eqs. (36–37).

2.6.5. Differential scheme
The differential scheme also falls into the family of effective medium methods. Contrary

to the Self-Consistent approximation, this method builds the effective medium by incremen-
tally adding inclusions to the matrix of effective properties obtained in previous steps. For
instance, in the first step, µMECH adds the first inclusion to the virgin matrix of stiffness C0.
In the next step, it adds another inclusion from the list to the matrix of effective properties
obtained from the dilute approximation to the first step problem, and so on. It is clear that the
previously homogenized matrix is not isotropic anymore unless the first inclusion was of the
circular or spherical shape. That is why, µMECH performs numerical integration of elliptic
potentials entering Eq. (14) for the Eshelby tensor S, see e.g. [15, 16] for more details.

µMech Micromechanics Library 51



Figure 5: Implementation scheme.

3. Implementation

Recall that the µMECH library was primarily designed as a module of finite element
packages. Its main goal is the evaluation and post-processing of macro-field perturbations,
which may take over the role of microstructure-informed enrichments for partition of unity
strategies. So far, the code is furnished with analytical solutions to two and three dimen-
sional problems with inclusions of ellipsoidal shapes, such as an ellipse or a circle in two
dimensions and an ellipsoid, sphere, oblate spheroid, prolate spheroid, penny, flat ellipsoid,
cylinder, and elliptic cylinder in three dimensions. The 3D and 2D inputs can not be mixed
as the library runs in either of the modes at a single instance. The functions are tuned in a
way that inclusion of an arbitrary shape can be treated as a general ellipsoid with one or more
degenerated semi-axes, e.g. a cylindrical fiber can be modeled as the ellipsoid with excessive
a1 semi-axis. By analogy, 2D plane strain conditions can be simulated as 3D cylinders with
very long semi-axes parallel to global z coordinate. However, in this case, the solution losses
from its computational efficiency and specific shapes should be preferred instead the degen-
erated ones, namely in situations when dealing with large numbers of inclusions (in orders of
millions). Therefore, the inclusions defined as general ellipses/ellipsoids are automatically
assigned relevant shapes according to the particular semi-axes dimensions by default.

A longer term ambition of the µMECH developers is to cover a maximum topics tackled
by the micromechanics community. Therefore, the current release was also equipped with
the classical homogenization techniques as discussed in Section 2. Moreover, to the best of
our knowledge, the presented library is the only of its kind freely available at the time being.
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3.1. Implementation scheme/Data flow structure
The general structure of µMECH is briefly outlined in Fig. 5. Basically, it splits in two

major tasks, conversion of inhomogeneity problem to equivalent inclusion problem and eval-
uation of mechanical fields eventually homogenization. The first step is usually most time-
consuming, however it needs to be performed only once and the appropriate data can be
stored for subsequent analyzes over the same data, geometry and distribution of inhomo-
geneities to be exact3. The second branch of the algorithm can be called repeatedly to eval-
uate fields at different locations or to run different homogenization algorithms. However, in
the single run cases, the code allows analyzes without saving and reading the auxiliary data.

Description of the inhomogeneity problem is required as the input for the first part of
the algorithm. It consists of the geometry definitions (centroids, dimensions and rotation of
semi-axes), material characteristics of the inhomogeneities and the matrix (Youngs modulus
and Poisson’s ratio), and definitions of imposed eigenstrains4 and the remote strain tensors.
The latter mentioned remote strains are handled as individual load cases and as such their
number is arbitrary. The inhomogeneity inputs are converted into the equivalent problem by
making use of Equivalent inclusion method and the self-compatibility procedure presented
in Section 2. The stored data, if required, are the equivalent transformation eigenstrains ετr
and local (say internal) Eshelby tensors Sr.

In the second part of the algorithm, mechanical fields at user-defined points, including
those outside inclusions, are evaluated. Individual x coordinates can be entered one by one
or in arbitrarily large sets, e.g. nodes or integration points of an FE mesh. Calculated fields
may be postprocessed with the in-built post-processor and visualized with tools as Paraview,
MayaVi, etc.[17, 18]. Another in-built feature is the homogenization of calculated local
fields by DIM introduced in Section 2.6. Optionally, users can disable the self-compatibility
algorithm and the evaluation of local fields and use alternative micromechanical approaches
discussed also therein.

3.2. I/O data specification
The library is designed in a way a user or a master program invokes the feedback by using

a set of C++ functions. Despite, the I/O data flow between µMECH and a governing instance
can be realized via parameters of the interface functions, the exchange by means of files is
also possible as it proved to be more practical especially for large number of inclusions. In
both cases, the data have a unified syntax. Symmetric tensors are handled in a non-reduced
form and together with non-symmetric tensors, e.g. S, are stored in row-by-row vectors, in
the so called Iliffe arrays. In 2D mode the input data can be reduced correspondingly, i.e.
coordinates may have only two components, 2-nd order tensors are of dimensions 2× 2, etc.
In particular, following data are handled by means of files, the inhomogeneity and equivalent
homogeneous problem records, grids of point coordinates5 in which the mechanical fields
are evaluated, and finally the sought fields themselves, see Fig. 5. The ASCII Visualization
Tool Kit (VTK) format in both legacy and XML variants has been chosen as the native
file syntax [19], as it is human-readable and can be visualized directly in a modeler or free

3Note again that the primary purpose of µMECH is feeding FE packages with subscale data.
4Due to the induced pore pressure or thermal expansion for example.
5it can be e.g. an FE triangulation
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# vtk DataFile Version 3.0
3D - example, 2 inclusions
ASCII
DATASET UNSTRUCTURED_GRID
POINTS 2 float
-1.0 1.0 0.0
2.0 0.0 0.0

POINT_DATA 2
VECTORS Semiaxes_dimensions float
1.0 1.0 1.0
1.0 0.7 0.4
VECTORS Euller_angles_deg float
0.0 0.0 0.0
35.0 0.0 0.0
SCALARS Youngs_modulus float 1
LOOKUP_TABLE default
5.5
2.4
SCALARS Poissons_ratio float 1
LOOKUP_TABLE default
0.3
0.3
TENSORS Imposed_eigenstrains float
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FIELD unstructured_data 2
Matrix_record 1 2 float
1.0 0.4
Remote_strains 9 3 float
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
2.0 1.5 0.0 1.5 0.0 0.0 0.0 0.0 3.0

Table 2: Double inclusion problem input file in legacy VTK format.

visualization tool-kits [17, 18]. Therefore, the data can be easily controlled at any stage of
the software development, debugging, or most importantly, in a routine use.

An example of the legacy VTK file with a composite media description is shown in Tab. 2.
It describes the 3D matrix with a spherical and an ellipsoidal inclusions loaded by three re-
mote strains. The dimension of the problem is explicitly determined by the “3D” keyword
at the beginning of the second line, which is originally reserved for comments. The num-
ber of inclusions and centroid coordinates are given in the data block following the keyword
“POINTS”. Dimensions and rotation of semi-axes, and material characteristics of each inclu-
sion are listed in the section introduced by “POINT DATA”. Finally, the data describing the
infinite medium are specified in the section preceded by the “FIELD” keyword. In particular,
these are Youngs modulus and Poisson’s ratio of the matrix and the remote strain tensors.

3.3. Interface functions
The class Problem is the central element, better say a type, of the object-oriented source

code and the vast majority of µMECH features is accessed through its public members. A rep-
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1 Problem *p = new Problem;
2 p->read_input_file("inhomogeneity.vtk");
3 p->input_data_initialize_and_check_consistency();
4 p->convert_to_equivalent_problem();
5 p->print_equivalent_problem("equivalent.vtk");
6 delete p;
7 p = new Problem;
8 p->read_input_file("equivalent.vtk");
9 p->input_data_initialize_and_check_consistency();

10 double coords[] = {0.5,0.0,0.0};
11 double **stress = AllocateArray2D(2,9);
12 p->giveFieldsOfPoint(NULL,NULL,stress,coords,’p’,0,2);
13 p->printFieldsOnMeshVTK("results.vtk","mesh.vtk",’t’,2,1);
14 p->print_visualization("visualization.vtk",5);
15 delete p;
16 DeleteArray2D(stress,2);

Table 3: Example code of µMECH interface.

resentative implementation calling crucial functions of the inhomogeneity problem analysis
is listed in Tab. 3.

Line 2 is responsible for importing a complete problem description from the VTK file
listed in Tab. 2. The data initialization and verification follows in line 3. Line 4 converts the
inhomogeneity problem into the equivalent inclusion problem. The data for multiple use of
the problem geometry are stored in line 5, if required. As demonstrated in lines 6-9, imports
of both, the inhomogeneity and equivalent homogeneous problems work in the same fashion.
Clearly, lines 5-9 or 6-9 can be omitted in the case of a single run.

The function giveFieldsOfPoint evaluates mechanical fields at a given point, lines
10-12. Displacement, strain and stress fields are returned by means of the first three param-
eters, respectively. Each of the parameters is a double pointer to the two-dimensional array.
The first dimension is equal to the number of load cases, i.e. remote strains specified at
the end of the input file, Tab. 2. The second dimension equals the length of the vector, in
the case of displacements, or row-by-row stored tensors when recalling strains or stresses.
Passing NULL pointer indicates that the corresponding quantities will not be calculated. The
fourth parameter is a pointer to an array of the point coordinates. The next char parameter
denotes the character of evaluated fields where ’p’ stands for perturbations while ’t’ for their
total counterparts, see Section 2. Finally, the last two parameters determine the index of the
first load case and number of load cases to be comprised in the analysis. In this particular
case, a pair of perturbation stress tensors due to the first (0-th in C-like syntax) and second
remote strain excitations are evaluated in line 12. The data visualized in Paraview are shown
in Fig. 6b.

In line 13, function printFieldsOnMeshVTK reads the FE mesh from mesh.vtk file
and evaluates total fields in element nodes and the third given remote strain. Then the mesh
with results is stored in the file results.vtk. Finally, line 14 performs triangulation of inclusion
surfaces which is written in visualization.vtk file. The data visualized in Paraview are shown
in Fig. 6a.
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A detailed description of other interface functions can be found in tutorial [20] together
with a number of ways how to control the analysis, e.g. functions for running different
homogenization algorithms, the switch parameter between full and optimal version of either
the self-compatibility procedure or evaluation of perturbation/total fields at different points,
etc.

3.4. Technology
µMECH is a free open source software. It can be run, modified, and redistributed under

the terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2 of the License, or any later version [21]. The project has been
implemented in C++, as it is easier to maintain accessibility of its generic structure while
it also enables robust low level optimization of time-consuming algorithms. Multi platform
CMake [22] was chosen to configure and build source code properly on client machines. A
complete source code and documentation generated by Doxygen [23] script can be found
at http://mumech.cz, together with a number of examples and input files by means of
which we perform the compilation of an executable file and testing. All interface functions
and examples are documented in a tutorial also available at the project website.

4. Numerical examples and performance

The capabilities of the µMECH library are briefly demonstrated through a 3D double in-
clusion task and a series of 2D multiple inclusion examples under plane strain conditions.
The 3D analysis is composed of a pair of inclusions, one ellipsoid and sphere. The geometry,
topology and material parameters together with the prescribed strain excitation are specified
in Tab. 2. In addition, the geometry triangulated by µMECH and visualized in Paraview is
shown in Fig. 6a while the distribution of axial stress σ11 is plotted in Fig. 6b. In order to dis-

(a) (b)

Figure 6: Example of 3D double inclusion problem, a) benchmark geometry, b) patterns of σ11.

cuss the quality of solutions by µMECH we have compared the 2D analyzes with reference
solutions by FEM. The tests were performed in the 2D setting for the better visualization
purposes, however we have executed the same calculations by means of the 3D implemen-
tation with degenerated semi-axis and arrived at exactly the same results. The first task is
the single elliptic inclusion problem. The second and third tasks are the triple inclusion tests
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Figure 7: Geometry of 2D benchmarks, a) parametric setting of tested benchmarks, b) particular geometry of
single, triple - narrow gaps, triple - wider gaps, and multiple inclusion test.

with centroids of circular inclusions aligned in x direction. The two tasks differ in the mutual
distances among the inclusions. The last test comprises 25 circular inclusions distributed in
a regular grid of 5 × 5 points in x − y plane and representing inclusion centroids. The ge-
ometry of all four tests is given by the parameters in Tab. 4 whose meaning is evident from
Fig. 7. The material parameters were set to Er = 10.0, νr = 0.3, E0 = 1.0, ν0 = 0.2 for
all the analyzes. Finally, the remote strain excitation imposed to the infinite matrix was such
that ε0

11 = 1.0 while the other components vanished. Note, in the case of FE comparative
analyzes, appropriate the remote strains were imposed by means of the boundary displace-
ments ufem

i applied on ∂Ω0. The particular magnitude of ufem
i is evident from Fig. 7a. The

No. inclusions a1 a2 dI1 dI2 dG1 dG2 dO1 dO2
1× 1 1.0 0.5 - - 3.0 1.5 15.0 10.0

3× 1 (narrow gaps) 1.0 1.0 2.5 - 5.0 2.5 25.0 15.0
3× 1 (wider gaps) 1.0 1.0 4.0 - 7.0 2.5 25.0 15.0

5× 5 1.0 1.0 3.0 3.0 1.5 1.5 30.0 30.0

Table 4: Geometrical and topological parameters of four 2D tasks performed.

qualitative comparison of the three types of solutions, (i) a solution without performing self-
compatibility algorithm (labeled as µMECH 1 in the sequel), (ii) a solution including the
adjustment by means of the self-compatibility algorithm and the non-constant approxima-
tion to internal fields as proposed in Paragraph 2.5, and (iii) the previous solution µMECH 2
enhanced by the approximation to external fields calculated by means of linear transfor-
mation eigenstrains (labeled as µMECH 3). The distribution of σ11 for the single inclusion
problem calculated by µMECH is shown in Fig. 8a. The comparison with the FEM solution
in terms of total strain components in x–axis direction is evident from Fig. 8b. The series of
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Figure 8: Single inclusion test, a) patterns of σ11 calculated by µMECH, b) total strain components along
x-axis.

figures with individual strain components compared with respect to FE solutions for remain-
ing tasks are displayed in Fig. 9 and Fig. 10. Note namely the obvious local convergence
of individual µMECH methods 1–3 to the reference solution. In the case of multiple inclu-
sions, the mechanical fields within individual inclusions are not uniformly distributed as a
result of their mutual interaction. There is an evident difference for strains taking place in
the matrix, namely for inclusions positioned close to each other, Fig. 9a and Fig. 10. How-
ever, the mutual interactions quickly disappear with increasing spacing as shown in Fig. 9b.
An interesting behavior can be observed in Fig. 10b,c from which it is obvious that µMECH
3 method looses in y–direction with respect to its 1–2 counterparts. The reason is the low
polynomial order, linear to be exact, of ετ (x) as indicated by analyzes with quadratic eigen-
strains. A detailed justification of this hypothesis, however, is let for future work as the
current implementation of the solution with quadratic eigenstrains is not furnished with an-
alytical derivatives of elliptic potentials and the numerical differentiation is unstable enough
to disable reliable testing. Looking carefully at Fig. 9c and Fig. 10b one can observe Gibbs-
like phenomenon at the inclusion interfaces related to the fact the solution to external fields
is constructed as the sum of individual contributions from all n inclusions entering the anal-
ysis, for details see Section 2. Clearly, this is nonphysical, though inevitable behavior that
must be accepted when using current version of the µMECH library.

The quality of the µMECH solutions was further quantified in an average sense by means
of the normalized error defined as

err =
‖e‖
‖etot‖ × 100% (43)

where ‖e‖ =
√∫

Ω�
eε : C : eε dΩ, ‖etot‖ =

√∫
Ω�
ε : C : ε dΩ, and eε = ε − εfem. The

resulting values for the triplet of methods are listed in Tab. 5. The results clearly show the
superiority of the µMECH 3 method over the remaining two. The last analyzes performed
cover the testing of homogenization approaches, namely that based on the direct integration
– DIM, and classical micromechanical schemes. Note, that in the case of DIM we took the
integration domain Ω� as indicated in Fig. 7a. Results for two different volume fractions cr,
proportional to the gaps among the inclusions as parametrized in Tab. 4, are listed in Tab. 6
and Tab. 7. The fit among all schemes is remarkable but the Self-Consistent scheme which is
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Figure 9: Triple inclusion tests, a,b) total strain components along x-axis for inclusions with narrow and wider
gaps, respectively, c,d) total strain components along y-axis for inclusions with narrow and wider gaps, respec-
tively.

known to overestimate the moduli for lower volume fractions of stiff inclusions. Moreover,
it appears that for both configurations, either narrow or wider gaps, 3× 3 inclusions adjacent
to that inside Ω� is far sufficient for very accurate results.

5. Conclusions

In the present paper we discussed a new and, to the best of our knowledge, the only
freely available library of solutions to micromechanical problems based on Eshelby’s semi-
nal work [1] and its subsequent extensive elaboration in classical textbooks as e.g. [5]. Con-
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Figure 10: Multiple inclusion test, a) total strain components along x-axis, b) total strain components along
y-axis.

trary to what is meant as a standard in classical micromechanics, the implemented strategies
aim at the evaluation of perturbation or total local fields inside and outside ellipsoidal inclu-
sions. The code also covers the solution to multiple inclusion problems by means of the so
called self-compatibility algorithm. This strategy benefits from the solution to the inclusion
problem with polynomial eigenstrains. As this is the crucial part of the code we will keep
improving it in the future, possibly with the help of new members of the emerging developers
community motivated also by means of the present paper. Besides, the library is furnished
with classical homogenization theories such as Mori-Tanaka, Self-Consistent method etc.
On the basis of the above comments, let us stress current features of the µMECH library and
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Evaluation No. inclusions
method 3× 1 (narrow gaps) 3× 1 (wider gaps) 5× 5

µMECH 1 17.1 3.9 4.5
µMECH 2 7.6 1.7 3.2
µMECH 3 6.9 1.4 2.6

Table 5: Normalized errors according to Eq. (43) and measured in %.

Computation Stiffness tensor moduli Isotropic moduli
scheme C1111 = C2222 C1112 = C2212 C1212 E ν

Self-Consistent 3.3461 1.0712 1.1374 2.82 0.24
Diff. Scheme 2.2149 0.6456 0.9093 1.92 0.22
Mori-Tanaka 2.6811 0.8005 0.9402 2.31 0.22
Dilute 1.9309 0.5357 0.6976 1.69 0.21
DIM 1× 1 2.6833 0.7860 0.9264 2.31 0.22
DIM 3× 3 2.8323 0.6265 0.8593 2.51 0.20
DIM 5× 5 2.8417 0.6233 0.8541 2.52 0.20
DIM 7× 7 2.8411 0.6261 0.8529 2.52 0.20
DIM 9× 9 2.8406 0.6274 0.8525 2.52 0.20
FEM 2.8883 0.6531 0.8615 2.55 0.20

Table 6: Homogenized stiffness moduli for monodisperse with narrow gaps of cr = 0.5. DIM results were
obtained by means of µMECH 3 method. Isotropic moduli in last two columns were derived from eigenvalue
analysis of C as reported in [24].

a few proposals for further development as follows.
Implemented features:

• solutions to internal and external fields in two and three dimensions,

• an approximate solution to the multiple inhomogeneity/inclusion problem by means
of the self-compatibility algorithm,

• the solution to the equivalent inclusion problem with polynomial stress free transfor-
mation eigenstrains,

• a powerful I/O interface based on the VTK standard,

• various homogenization schemes as Mori-Tanaka, Self-consistent method, dilute ap-
proximation, direct integration, and the differential scheme.

Future development will focus on:

• a Galerkin-like approximation to the multiple inclusion problem with Eshelby func-
tions at heart,

• a direct link between µMECH core implementation and a F# class for polynomial
eigenstrain based solutions,

• a parallelization of the solution to the multiple inclusion problem,
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Computation Stiffness tensor moduli Isotropic moduli
scheme C1111 = C2222 C1112 = C2212 C1212 E ν

Self-Consistent 1.8511 0.5235 0.6639 1.62 0.22
Diff. scheme 1.6587 0.4556 0.6630 1.46 0.21
Mori-Tanaka 1.7417 0.4808 0.6304 1.53 0.21
Dilute 1.5722 0.4228 0.5746 1.39 0.21
DIM 1× 1 1.7524 0.4774 0.6272 1.54 0.21
DIM 3× 3 1.7889 0.4400 0.6046 1.59 0.20
DIM 5× 5 1.7904 0.4391 0.6036 1.59 0.20
DIM 7× 7 1.7905 0.4392 0.6033 1.59 0.20
DIM 9× 9 1.7905 0.4392 0.6032 1.59 0.20
FEM 1.7854 0.4388 0.6017 1.58 0.20

Table 7: Homogenized stiffness moduli for monodisperse with narrow gaps of cr = 0.35. DIM results were
obtained by means of µMECH 3 method. Isotropic moduli in last two columns were derived from eigenvalue
analysis of C as reported in [24].

• a special care of the Gibbs-like phenomenon taking place at the inclusion interfaces.
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Chapter 4

SYNTHESIS OF RANDOM MICROSTRUCTURAL GEOMETRIES

Although Eshelby’s based closed form solutions, inbuilt in the in-house developed µMech
platform, allow for evaluating self-compatible strains and displacements and self-equilibrated
stress fluctuations in infinite media containing hundreds of thousands ellipsoidal inclusions
with a reasonable computational overhead, the goal was set to evaluate even higher numbers
of inclusions of arbitrary shape. Such a target thus ultimately calls for using numerical strate-
gies as Finite Element Method when it comes to generic inclusion shape and a strategy that
would handle the vast number of heterogeneity and their complex spatial arrangement. This
chapter thus deals with the introduction to the Wang tiling based microstructure modeling
method that generalizes the periodic unit cell concept, still preserves the random character
of heterogeneity spatial arrangement and is computational feasible at the same time. The
method, as it is presented here, builds on the results of Computer Graphics community that
is combined with approaches common in the field of Materials Engineering and microstruc-
tural modeling in particular. The results were promising that triggered the usage of similar
principles for reconstructing geometrically consistent microstructure-enrichment functions
presented in the final chapter.
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Abstract
This paper presents a stochastic Wang tiling based technique to compress or reconstruct
disordered microstructures on the basis of given spatial statistics. Unlike the existing ap-
proaches based on a single unit cell, it utilizes a finite set of tiles assembled by a stochastic
tiling algorithm, thereby allowing to accurately reproduce long-range orientation orders in
a computationally efficient manner. Although the basic features of the method are demon-
strated for a two-dimensional particulate suspension, the present framework is fully extensi-
ble to generic multi-dimensional media.

Keywords: Microstructure compression, reconstructing algorithms, Wang tiles, aperiodic
tilings

In 1961, Hao Wang introduced a tiling concept based on square dominoes with colored
edges permitting their mutual assembly in a geometrically compatible (hard) manner [1].
Since then, his tiles have been the subject of studies in discrete mathematics [2, 3, 4] and
found an extensive use in computer graphics [5], game industry [6], theory of quasicrys-
tals [7] or biology [8]. From the perspective of this paper, the appealing feature of Wang
tilings is that they can compress and reproduce naturally looking planar patterns or three-
dimensional surfaces by employing only a small number of distinct tiles [9, 3, 10]. Moti-
vated by this observation, we further explore the potential of Wang tiles to represent long-
range spatial correlations in disordered microstructures; a problem common to materials
science [11], geostatistics [12] or image analysis [13].

In this regard, two closely related applications can be distinguished, namely the mi-
crostructure reconstruction [14, 15, 16] based on given spatial statistics and microstructure
compression [17, 18, 19] aiming at efficient representation of materials structure in multi-
scale computations [20]. Our focus is on the latter, since these procedures usually have the
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microstructure reconstruction techniques at heart, hereby covering the common features of
both.

To the best of our knowledge, compression algorithms reported to date use a single
cell (PUC) that is periodically extended to tile the plane in a deterministic manner [18]. Such
structures then inevitably manifest strong long-range correlations with a period of the PUC
dimensions. We shall demonstrate that these artifacts can be effectively controlled when uti-
lizing small Wang tile sets [10, 3], carefully designed to capture morphological trademarks
of compressed media, combined with fast stochastic Cohen-Shade-Hiller-Deussen (CSHD)
tiling algorithm [5] for real-time texture generation. A potential of this approach will be
demonstrated for equilibrium two-dimensional particulate suspensions consisting of equi-
sized disks of radius ρ uniformly distributed in a homogeneous matrix, cf. [21].

To this goal, consider a two-dimensional microstructured domain D discretized by a reg-
ular square lattice. Each lattice cell contains specific morphological patterns that are compat-
ible on contiguous boundaries, Fig. 1(b). If there are no missing cells inD, the discretization
is called a valid tiling, and a single cell is referred to as the Wang tile [1], Fig. 1(a). The
tiles have different codes on their edges, lower-case Greek symbols in Fig. 1(a), and are
not allowed to rotate when tiling a plane. The number of distinct tiles within D is limited,
though arranged in such a fashion that none of them or any of their sub-sequence periodi-
cally repeats. The gathered distinct tiles are referred to as the tile set, Fig. 1(a). Sets that
enable uncountably many, always aperiodic, tilings are called aperiodic [3, 4]. In real world
applications, the assumption of strict aperiodicity of the tile sets is relaxed to aperiodicity of
tilings, ensured e.g. by the CSHD algorithm [5] introduced next.
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Figure 1: (a) A Wang tile set W8/2–2 with edge length ` and codes {α, β, γ, δ}. (b) Example of an aperiodic
valid tiling.

Intuitively, the ability of a tile set to control long-range order effects arises from tile and
edge code diversities, Fig. 1(a). Both factors are related, so that while the number of edge
codes nc

i in i–th spatial direction can be chosen arbitrarily, the number of tiles nt must satisfy

nt = nNW
√
ncs, (1)

where ncs = (nc
1n

c
2)

2 is the number of tiles in the complete set and nNW = 2, . . . ,
√
ncs

stands for the optional number of tiles with identical arrangement of north-western (NW)
edge codes. The complete set of ncs tiles is obtained by permuting the chosen codes ci. In
valid tilings, the south-eastern edge codes must match those assigned to NW edges, Fig. 1(b).
Thus, the tiles in the complete set are sorted according to existing NW edge code combina-
tions and the desired number of tiles in a user defined set is formed by selecting nNW of
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unique tiles from each group. Such a set is referred to as Wnt/nc
1–n

c
2 in what follows. Notice

that the W1/1–1 set corresponds to the PUC setting.
In the stochastic tiling algorithm, the index of a new tile to be placed is selected randomly

with the uniform probability from an appropriate NW group compatible with the eastern
code of the tile previously placed and the southern code of the tile above the one to be placed
(edges α and δ in bold adjacent to shaded cell in Fig. 1(b)). Aperiodicity of the resulting
tiling is guaranteed provided that the random generator never returns a periodic sequence of
numbers and that each NW group contains at least two distinct tiles [5].

Analogously to the existing works on reconstruction and compression of random me-
dia, the tile morphologies are designed by an optimization procedure expressed in terms of
suitable statistical descriptors. As our focus is to control long-range artifacts, we limit the
exposition to the two-point probability function S2(x) [11]. For statistically uniform er-
godic media, it provides the probability that two arbitrary points from D, separated by x,
are simultaneously found in the particle phase. The function satisfies S2(0) = φ, where φ
is the volume fraction of particles, and S2(x) ≈ φ2 for ‖x‖ > λ indicates the absence of
long-range orders at the characteristic length λ, Fig. 2(b).
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Figure 2: (a) Reference two-phase medium of size 174ρ × 174ρ formed by equilibrium distribution of 1, 300
equi-sized disks of volume fraction 26.8% and (b) its two-point probability function S2; ρ is the disk radius.

In the current setting, the Wang tiling compression consists of a set of nt tiles of the edge
length `, in which we distribute nd disks. The configuration of particles is determined by the
parameter vector [td, ξ1,d, ξ2,d]

nd

d=1, where td ∈ {1, . . . , nt} specifies the parent tile index of
the d-th disk and ξj,d ∈ [0, `] the local position of the disk at j-th direction. To determine the
two-point probability function S̃2 for a given configuration, we assemble a tiling that covers
the domain of the same size as the representative sample D, Fig. 2(a). Notice that such
tiling corresponds to a realization of a statistically homogeneous material, since the tiles are
selected from NW edge groups with the uniform probability. The proximity of the tile-based
morphology to the original sample is quantified by an objective function

E =
1

|D|

∫

D

(
S2(x)− S̃2(x)

)2
dx (2)

which can be efficiently evaluated using the Fast Fourier Transform techniques, e.g. [11].
The minimization of (2) is carried out by the Simulated Re-Annealing method with compu-
tational cost similar to existing PUC design strategies [22]. The algorithm ensures that the
tiles in the set satisfy the corner constraint [5], requiring that the tile corners are not occu-
pied by a disk, and determines the number of disks nd and the cell size ` such that the local
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Figure 3: Optimized microstructures and two point probability functions S̃2 for PUC (a,b) and set W18/3–3
(c,d). Red arrow in (c) denotes periodic region due to local character of tile placement in CSHD tiling algorithm.
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of disks nd involved. The curves in (b) are plotted for particular values of nd highlighted in (c).

volume fractions associated with edges (red disks in Fig. 5) and tile interiors (white disks in
Fig. 5) are as close to the target value φ as possible.

An example of optimal approximations of the target microstructure from Fig. 2 in terms

Compressing random microstructures via stochastic Wang tilings 69



of a PUC and the Wang tile set W18/3–3 is shown in Fig. 3. The representations are based
on nd = 49 particles and tile sizes ` = 24.5ρ and ` = 7.5ρ, respectively. Evidently, both
heterogeneity patterns carry long-range order effects with the period of `, manifested as the
local peaks

Ŝ2 = max
k\{0}

S̃2(k`) (3)

in the two-point probability functions, Fig. 3(b,d). Notice that Ŝ2 is always equal to φ for the
PUC approach, whereas the Wang tiles are capable of adjusting these artifacts by the proper
morphology design. This is also reflected in visual regularity of the generated suspensions,
compare Fig. 2(a) with Fig. 3(a,c). Also observe the locally periodic region in Fig. 3(c),
arising from the local character of CSHD algorithm and from the lowest number of tiles in
groups of admissible NW edge code combinations, nNW = 2. Such phenomenon is thus
less likely when increasing parameter nNW, however, at the expense of increasing set sizes,
especially for higher edge code diversities, recall Eq. (1).

(a) (b)

Figure 5: Building blocks of microstructure compression based on (a) PUC and (b) tile set W18/3–3 with 49
disks assigned to tile edges (red) and interiors (white).

The principal features of Wang tile-based compressions are further illustrated in Fig. 5.
Instead of relying on a single cell containing the complete morphological information, Fig. 5(a),
the tiling-based approach utilizes substantially simpler building blocks, Fig. 5(b), assembled
to comply with edge constraints (red disks in Fig. 5). This, however, restricts the space of
admissible disk configurations in Wang tiles compared to the single PUC design.

Now, we are in the position to quantify to which extent is the quality of reconstructed
suspensions determined by the tile set diversity and the morphology design itself. This aspect
is examined first in Fig. 4 by means of sections of the two-point probabilities S2(x1, 0) and
the objective function E, revealing that two effects govern the amplitude and period of the
local extremes Ŝ2. First, for a fixed tile set, increasing the number of disks increases the tile
edge dimension ` (and thus the period) and slightly decreases the amplitude, Fig. 4(a). On
the other hand, increasing the number of tiles decreases the period as well as the magnitude
of local extremes, Fig. 4(b). Also notice that the quality of the W18/3–3 set in terms of
the objective function (2) is systematically inferior to W8/2–2, Fig. 4(c). This is caused
by an inaccurate representation of disk volume fraction for the former set, which pollutes
the shape of Ŝ2 statistics, Fig. 4(b) 1. It further follows from Fig. 4(c) that increasing the
tile set diversity is much more efficient; for sets containing more than 32 tiles, the error
is almost independent of the number of disks. This saturation value reflects the inaccurate
representation of short-range values of S2, caused by the particular form of the objective
function (2). If needed, the local details can be incorporated in terms of higher-order statistics
or specifically tailored descriptors [14, 15, 23, 24].

1The best resulting disk volume fraction for W18/3–3 and 24 disks was by 1.3% higher than the prescribed
value. The remaining sets, however, never resulted in a worse scatter than 0.2%.

Compressing random microstructures via stochastic Wang tilings 70



It is now clear that the local extremes can be attributed to a limited number of tiles used
in a repetitive, although random fashion. Actually, two components repeat when tiling the
plane: tile edges and interiors. To study the local artifacts analytically, we consider user
defined sets with tiles selected so that their edges incorporate each code ci at least once.
Assuming that tiles and edges repeat independently, the local extremes can be estimated as

Ŝp
2 ≈

φt

nt

[
φ+ (nt − 1)φ2

]
+

φe

nc
1n

c
2

[
φ+ (nc

1n
c
2 − 1)φ2

]
(4)

where φt = (` − 4ρ)2/`2 and φe = 1 − φt denote the volume fractions of tile interiors (oc-
cupied by white disks in Fig. 5) and edges (occupied by red disks in Fig. 5), respectively 2.

In Fig. 6, we compare the actual values of Ŝ2 with theoretical predictions (4) for several
values of φe. Apart from the limit cases, φe ∈ {0, 1}, Ŝp

2 was also explored for φe = 0.2
(average value from all considered tile sets). We observe that an almost exact match is
obtained for the lower bound with φe = 0, red curve in Fig. 6(a), demonstrating that the
long-range artifacts are carried mainly by the tile interiors. This is rather surprising, since
all considered tile sets satisfy nt � nc

1 = nc
2, so that edges repeat more often than the tile

interiors. Moreover, the magnitude of spatial artifacts converges rapidly to the limit value
φ2. Altogether, this leads us to the conclusion that artifacts due to discrete nature of Wang
tilings can be almost eliminated by a proper morphology optimization. Also note that the
accuracy of the estimate (4) appears to be reasonable, both for the average value of φe = 0.2,
blue curve in Fig. 6(a), as well as for values corresponding to individual tile sets, Fig. 6(b).
It may thus serve as a basis for the a-priori selection of the tile set parameters nc

i and nt.
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Figure 6: (a) Dependence of local extremes Ŝ2 on the particular tile set. (b) Correlation of local peaks ob-
tained from two-point probabilities of optimized microstructures and their predictions given by Eq. (4); r in (b)
denotes the Pearson correlation coefficient.

2Observe that the estimate (4) contains contributions from tile interiors and edges. In addition, the tile
interior part arises from two complementary events. If the two adjacent tiles are identical, the probability of
simultaneously locating two disks distant by ` amounts to φtφ/nt. Otherwise, we consider the disks in both
tiles as independent which gives rise to the term φt(1 − 1/nt)φ2. The contribution of repeated tile edges
is established analogously, by estimating the probability of simultaneously matching NW edge codes in the
adjacent tiles as 1/nc

1 · 1/nc
2.
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Summary.
A new compression/reconstruction technique based on Wang tilings has been proposed and
applied to two-dimensional microstructures of disordered particulate media. The technique is
extensible to generic three-dimensional microstructures, adopting the frameworks of Wang
cubes [25, 26] and image synthesis [5]; it substantially generalizes the periodic unit cell
concept by making use of multiple tiles instead of a single cell, preserves long range spatial
features, and is computationally efficient. A formula for estimates of long-range order spatial
artifacts has also been proposed and verified for the studied material system.
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Chapter 5

SYNTHESIS OF MICROSTRUCTURE INFORMED ENRICHMENT
FIELDS

In this chapter, the earlier promises in constructing realizations of statistically equivalent
microstructural data is extended to constructing the sought microstructure-informed fluctu-
ation fields, again encoded in Wang tiles by means of an optimization algorithm. Contrary
to a single objective when reconstructing the geometrical data, the optimization’s objective
function for fluctuation fields combines compatibility requirements of encoded local fields
and the geometry aperiodicity constraints at the same time. The microstructural enrichment
functions are thus constructed from a small set of Wang tiles that are assembled by the same
inexpensive skyline stochastic tiling algorithm as in the case of its purely geometry-driven
counterpart. The local microstructural field patterns at the level of individual tile domains
are defined to satisfy prescribed governing equations - selfequilibrated stress fluctuations in
the case of this particular chapter. The microstructural compatibility is satisfied apriori as the
geometry given by the binary images serves as spatial distribution of material coefficients for
local stress field calculations.
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Abstract

This paper presents an approach to constructing microstructural enrichment functions to local
fields in non-periodic heterogeneous materials with applications in Partition of Unity and
Hybrid Finite Element schemes. It is based on a concept of aperiodic tilings by the Wang
tiles, designed to produce microstructures morphologically similar to original media and
enrichment functions that satisfy the underlying governing equations. An appealing feature
of this approach is that the enrichment functions are defined only on a small set of square
tiles and extended to larger domains by an inexpensive stochastic tiling algorithm in a non-
periodic manner. Feasibility of the proposed methodology is demonstrated on constructions
of stress enrichment functions for two-dimensional mono-disperse particulate media.

Keywords: Wang tiling, Microstructure optimisation, Enrichment functions, Partition of
Unity, Trefftz method, FFT-based solver

1. Introduction

A detailed analysis of microstructured materials with the full resolution of heterogeneities
by classical finite element methods has been found computationally prohibitive [34]. To
overcome this, one option consists of modelling a coarse-scale problem with the help of ho-
mogenisation techniques based on effective material properties [10, 35, 15]. However, this
may lead to a considerable loss of information on the fine scale behaviour, thereby resulting
in an inaccurate assessment of microstructural effects on the global response and/or its evo-
lution. An alternative, computationally appealing, strategy proceeds from generalised finite
element formulations that enhance the approximation properties of standard finite element
spaces by subscale-informed enrichment functions. Their design involves two related but
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contradictory aspects: (i) realistic representation of the underlying heterogeneity patterns
and (ii) construction of complex enrichment functions in a computationally efficient manner.
Here, we briefly review these issues for two finite element frameworks. The first one is based
on the partition of unity method, introduced by Melenk and Babuška [26] and generalised in
numerous aspects later on [2, 13]. The second one utilises the hybrid Trefftz stress formula-
tions developed by Teixeira de Freitas [41], see also [17] for an overview. For simplicity, we
restrict our attention to the small-strain linear elasticity in two dimensions. The following
nomenclature is used in the sequel. Scalar quantities are denoted by plain letters, e.g. a
or A, vectors and matrices are in bold as, e.g. a or A. In addition, we adopt the Mandel
vector-matrix representation of symmetric second- and fourth-order tensors, e.g. aij orAijkl,
so that [28, Section 2.3]
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a22√
2a12
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Figure 1: Examples of heterogeneity representations for a macroscopic body O and (a) separated scales
(` � h < L): three unit cells associated with integration points (in red), (b) periodic geometry with non-
separated scales (` < h < L): a single periodic unit cell, (c) aperiodic geometry with non-separated scales
(` < h < L): eight distinct Wang tiles; `, h, and L denote characteristic macroscopic, element (meso-scopic),
and heterogeneity lengths, respectively.

1.1. Partition of unity methods
Consider a microstructured two-dimensional domain O ⊂ R2 approximated by finite

elements, cf. Fig. 1. The partition of unity methods build on the displacement field approxi-
mation in the form

u(x) ≈
nn∑

n=1

Nn(x) [an + Ψ∗(x)bn] for x ∈ O, (1)

where nn is the number of nodes in the finite element mesh, Nn : O → R denotes the stan-
dard finite element basis functions and an ∈ R2 the regular degrees of freedom associated
with the n-th node, whereas Ψ∗ and bn designate the strategy-specific matrices of enrichment
functions and extended degrees of freedom, respectively. The ansatz (1) is then employed
in the standard Galerkin procedure to arrive at a system of linear(ized) equations involving
both regular and extended degrees of freedom. This approach was explored by Fish and
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Yuan [11, 12], who derived the enrichment functions from solutions to a periodic unit cell
problem, formulated for cells associated with integration points, see Fig. 1(a). In particular,

Ψ∗(x) =

[
u
∗(1)
1 u

∗(2)
1

1√
2
u
∗(3)
1

u
∗(1)
2 u

∗(2)
2

1√
2
u
∗(3)
2

]
(x), (2)

where u∗(j)i : O → R denotes the i-th component of the fluctuating displacement field, deter-
mined for a unit cell subject to the average strain with the j-th component set to one, while
the remaining two vanish (see Appendix A for further details). Such form of enrichment
functions is motivated by the displacement decomposition

u(x) = u0(x) + u∗(x) for x ∈ O, (3)

with u0 : O → R2 and u∗ : O → R2 referring to global and fluctuating displacement fields;
parameter bn ∈ R3 in Eq. (1) has thus the physical meaning of a generalised average strain
known from classical homogenisation theories [15]. Since such fields are constructed under
the assumption of separated lenghtscales, Fig. 1(a) with `/L→ 0, an attention is paid neither
to the geometrical compatibility among neighbouring cells, nor to the compatibility of the
corresponding enrichment fields. Consistent mathematical results for periodic media with a
finite ratio `/L, Fig. 1(b), were obtained by Matache et al. [25]. The enrichment functions
are constructed on the basis of the spectral version of the unit cell problem [29] resolved by
the p-version of the finite element method, see [1] for additional contributions to this field.
The partition of unity methods have also been applied to simulations of material systems
with explicitly represented non-periodic heterogeneities, such as thin fibres [37, 38]. Here,
the enrichment function is chosen to be piecewise constant in fibre and matrix domains, and
the extended degrees of freedom correspond to a relative slip at the fibre-matrix interface.
Such simple format comes at the expense of the fact that two extra degrees of freedom are
introduced per fibre, which renders realistic simulations costly.

1.2. Trefftz method
The hybrid Trettfz approach has recently been employed by Novák et al. [32] to simu-

late composites reinforced with non-periodic ellipsoidal heterogeneities with non-separated
lengthscales. The method builds on the additive stress decomposition

σ(x) = σ0(x) + σ∗(x) for x ∈ O, (4)

with σ0 : O → R3 corresponding to the macroscopic stress field and σ∗ : O → R3 being
stress fluctuations, approximated at the level of an element Ωe as

σ(x) ≈ Σe(x)ae + Σ∗(x)be for x ∈ Ωe. (5)

Here, in analogy to Eq. (1), Σe : Ωe → R3×m stands for the standard basis functions of the
Trefftz method associated with m regular degrees of freedom ae ∈ Rm and be ∈ R3 denotes
the extended degrees of freedom with the physical meaning of average element strains. The
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individual enrichment functions

Σ∗(x) =




σ
∗(1)
11 σ

∗(2)
11

√
2σ
∗(3)
11

σ
∗(1)
22 σ

∗(2)
22

√
2σ
∗(3)
22√

2σ
∗(1)
12

√
2σ
∗(2)
12 2σ

∗(3)
12


 (x) for x ∈ O, (6)

correspond to the fluctuating stress fields due to unitary strain impulses, see again Appendix
A for further details. Note that the regular and enrichment basis functions need to be selected
such that the stress remains self-equilibrated. The stress approximation is complemented
with an independent approximation of displacements at the element boundary Γe [18]

u(x) ≈NΓ
e (x)aΓ

e for x ∈ Γe, (7)

involving only regular edge shape functions NΓ
e and regular boundary degrees of freedom

aΓ
e . The remainder of the formulation follows from the weak form of the equilibrium and

compatibility equations, which can be converted to the element boundaries by virtue of the
divergence theorem, cf. [18, 41]. The appealing feature of the particular formulation [32]
is that the size of the resulting system of equations is the same as for the homogeneous
problem, due to the elimination of the extended degrees of freedom. This is achieved by
a careful construction of the enrichment functions through Eshelby solutions for individual
particles [8, 9], combined together to obtain compatible mechanical fields [32].

1.3. Tiling-based approach
This short overview illustrates the major difficulty in simulating non-periodic systems

with realistic geometries, namely that simple enrichment functions lead to the loss of in-
formation and/or to a significant increase in the number of degrees of freedom, whereas
manageable system sizes necessitate complex constructions of enrichment functions. The
aim of this work is thus to develop an algorithm that allows for extending the local (possibly
periodic) data from computationally tractable samples to entire macroscopic domains in a
non-periodic way, Fig. 1(c). The algorithm keeps the synthesised enrichment functions, Ψ∗

in Eq. (1) or Σ∗ in Eq. (5), continuous across congruent boundaries and consistent in terms
of statistical properties of original and reconstructed material morphologies. It is based on a
small number of the so-called Wang tiles [44, 16, 4] and a stochastic tiling procedure intro-
duced by Cohen et al. [3].

In 1961, Hao Wang introduced a tiling concept involving square tiles with different codes
on their edges, referred to as Wang tiles [44]. The tiles are connected together so that the
adjacent edges have the same code and permit a computationally efficient graphic reproduc-
tion of morphological patterns [3, 4, 6, 16]. Their desirable aesthetic properties are attributed
to the aperiodicity of tilings, whereas the low computational effort results from the use of a
small number of tiles to compress the entire morphological information [21].

Here, we exploit and extend these principles to provide a basis for an efficient genera-
tion of microstructure-based enrichment functions applicable in partition of unity or hybrid
Trefftz finite element algorithms. In order to meet additional criteria arising from such con-
structions, the Simulated annealing-based optimisation [19, 43] is used to arrive at optimal
tile sets. The performance of the method is illustrated on the construction of tile-based stress
enrichment functions in a mono-disperse two-phase composite medium with linear elastic
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phases. Although the proposed approach is illustrated solely in the two-dimensional set-
ting, it is fully extensible to three dimensions by exploring the results available for the Wang
cubes [5, 24]. We also note in passing that the techniques developed in this paper can be
used equally well as microstructure reconstruction or generation algorithms, generalising
the previous developments available e.g. in [36, 46, 20, 48, 22, 31, 40].

The paper structure is as follows. The concept of stochastic Wang tiling is described
in Section 2. A discussion on the optimisation procedure based on prescribed statistical
descriptors and compatibility of synthesised mechanical fields on contiguous tile edges is
given in Section 3. Section 4 comprises numerical examples demonstrating the performance
of the proposed approach. Final remarks on the current developments and future plans are
assembled in Section 5. Finally, in Appendix A, we present a brief overview of the stress
analysis algorithm utilised to determine the local stress fluctuations.

2. Aperiodic tilings by sets of Wang tiles

Consider again the domain O from Fig. 1(c) covered by a regular square grid. Each grid
cell contains specific microstructural patterns that are compatible on contiguous boundaries.
If there are no missing cells inside the synthesised domain, the discretization is called a
valid tiling1 and a single cell is referred to as the Wang tile [44], Fig. 2. The tiles have
different codes on their edges, enumerated here by lowercase Greek letters, and are not
allowed to rotate during the tiling procedure. The number of distinct tiles is fixed, though
arranged in such a fashion that no sub-sequence of tiles periodically repeats. The set of
all distinct tiles is referred to as the tile set, Fig. 2(a). Sets that enable uncountably many,
always aperiodic, tilings are called aperiodic sets [4]. The assumption of strictly aperiodic
sets can be relaxed, though still being capable to tile the plane aperiodically, e.g., when
utilising the Cohen-Shade-Hiller-Deussen (CSHD) tiling algorithm [3] briefly introduced in
the following section. Note that such tilings provide substantial generalisations to periodic
paving algorithms, which use identical tiles–periodic unit cells, recall Fig. 1(b).

2.1. Tile set setup
Favourable properties of a tile set to control repetitive effects proceed from the tile and

edge code diversity. The number of edge codes nc
i in the i-th spatial direction of the Cartesian

coordinates can be chosen arbitrarily, while the number of tiles nt must satisfy

nt = nNW
√
ncs, (8)

where ncs = (nc
1n

c
2)2 is the number of tiles in the complete set and nNW = 2, . . . ,

√
ncs

stands for the number of tiles associated with each admissible pair of north-western (NW)
edge codes, Fig. 2(a), see [33] for further details.

When designing a tile set, one chooses a particular number of edge codes nc
1 and nc

2. The
complete set of ncs tiles is created by mutually permuting the codes. In order to tile the plane,
the south-eastern edge codes must match those assigned to NW edges, Fig. 2(b). Thus, the
created tiles are collected according to NW combinations. Finally, a desired number of tiles

1Henceforth, the term “tiling” stands for “valid tiling” exclusively, thereby excluding invalid tilings from
the consideration.
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Figure 2: (a) Tile set W8/2-2 [3] consisting of 8 tiles with 2 vertical {α, γ} and 2 horizontal {β, δ} edge codes
with equal frequencies of occurrence qα = qβ = qγ = qδ = 1

4 , and nNW = 2, (b) an example of aperiodic
valid tiling with highlighted connectivity across south-eastern and north-western edges.

is chosen using Eq. (8), in such a way that nNW unique tiles is selected from each NW group.
The emerging, user-defined, set of tiles is referred to as Wnt/nc

1–nc
2. Moreover, we denote

the relative frequency of occurrence of the c-th code in the tile set by qc, see Fig. 2(a).

2.2. CSHD stochastic tiling algorithm
Since there are nNW tiles associated to each NW group, index of the new tile to be placed

is selected randomly from the set {1, . . . , nNW} with the uniform probability. Beforehand,
one must select an appropriate NW group compatible with the eastern code of a previously
placed tile and the southern code of the tile just above the one to be placed (edges α and γ
of shaded areas in Fig. 2(b)). Aperiodicity of the resulting tiling is guaranteed by assuming
that the random generator never returns a periodic sequence of numbers and that each NW
group contains at least two distinct tiles [3].

3. Designing optimal tile set morphology

To simplify the exposition, we limit our attention to two-phase composite media formed
by a matrix phase and equi-sized disks of radius ρ and a parametric microstructure repre-
sentation built on the Wang tile set W8/2–22, introduced in Section 3.1. The location of the
disks within the tiles has to be optimised to achieve (i) good approximation of the original
microstructure in terms of a given morphological descriptor, Section 3.2, and (ii) microstruc-
tures that guarantee the compatibility of enrichment functions on contiguous tile edges, Sec-
tion 3.3. Such criteria originate from different perspectives. The first goal aims at capturing
the dominant spatial features of original media, while the latter criterion ensures that the
tiling-generated fields comply with the governing differential equations. The details of the
algorithm used to solve the resulting optimisation problem are provided in Section 3.4.

2The set W8/2–2 has been chosen since it is the simplest one that allows for aperiodic patterns in the
stochastic sense [3]. Note that all the steps of the tile set design can be directly generalised to more complex
tile sets, cf. [33].
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3.1. Microstructure parametrisation
The adopted bitmap-based microstructure representation involves a Wang tile set consist-

ing of nt tiles of the edge length ` ∈ N (in pixels), in which we distribute nd disks of radius
ρ. The d-th disk is represented by a triplet {td, x1,d, x2,d}, where td ∈ {1, . . . , nt} denotes
the tile index and xd,j ∈ {1, . . . , `} specifies the position of the d-th disk within the tile at the
j-th direction. The associated parameter vector p is obtained as a collection of these data:

p = [td, x1,d, x2,d]
nd

d=1 . (9)

Since the position of each disk is specified by three parameters, the parameter space P is
(3× nd)-dimensional, i.e. P ⊂ N3×nd .

In an admissible configuration, the disks do not penetrate each other or overlap corners
of tiles being associated with. The first constraint reflects the given feature of the original
microstructure, Fig. 3(a), whereas the latter one arises as an artifact intrinsic to the edge-
based tiling algorithm, e.g., [3]. In addition, to maintain the morphological compatibility,
any disk intersecting the edge of a given code needs also be associated to tiles containing
the same edge. To emphasise this, we encode a particular microstructural configuration as
nd{nd

c}n
c

c=1, where nd
c denotes the number of disks intersecting the edge of code c, see Fig. 6

on page 11.

3.2. Statistical properties of the microstructure
The most common class of statistical descriptors embodies a set of n-point probability

functions, applicable to generic heterogeneous media [42]. In this paper, the focus is on
the two-point probability function, which captures primary phenomena as the phase volume
fraction, characteristic microstructural length(s), and long-range orientation orders, if any.

We now assume that the domain O is occupied by a two-phase heterogeneous material
discretized by a regular lattice of nO1 × nO2 pixels, indexed by k ∈ KO with

KO =

{
m ∈ Z2 : −n

O
i

2
< mi ≤

nOi
2
, i = 1, 2

}
. (10)

The distribution of individual phases (disks and matrix) withinO is quantified by the charac-
teristic function χ(k), which equals 1 when k is occupied by the disk phase and 0 otherwise,
cf. Fig. 3(a). Assuming a periodic3 ergodic medium, the two-point probability function
S2 : KO → [0, 1] is then defined as [42]

S2(k) =
1

nO1 n
O
2

∑

m∈KO

χ(m)χ (bk +mcKO) , (11)

where b•cKO denotes the KO-periodic extension. Noticing that (11) has the structure of
circular correlation, the two-point probability function can be efficiently evaluated using
Fast Fourier Transform techniques, see e.g. [14].

3Note that periodicity is considered here for the sake of computational efficiency. The tiling-generated data
is always aperiodic.
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According to its definition, S2(k) quantifies the probability that two arbitrary points sep-
arated by k will both be located at the disk phase when randomly selected from KO. Denot-
ing by φ the disk volume fraction, 0 ≤ φ ≤ 1, the two-point probability function satisfies
S2(0) = φ. Moreover, S2(k) ' φ2 for ‖k‖ � ρ indicates that the medium does not exhibit
repeating long-range order orientation effects, cf. Fig. 3(b).

(a) (b) −100
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Figure 3: (a) An example of two-phase medium formed by equilibrium distribution of 1, 300 equi-sized disks
of volume fraction 26.8% and (b) the two-point probability function S2; the sample is discretized with 1, 000×
1, 000 pixels and each disk has the radius of 8 pixels.

The following procedure is adopted to determine the two-point probability function for
the tile-based microstructure. First, the set W8/2–2 is used to assemble a 4 × 4 tiling
OS ⊂ R2, periodic on external boundaries, in which each tile appears with the same fre-
quency in order to suppress artificial fluctuations in volume fractions, Fig. 4(a). The domain
OS is discretized by an nOS

1 × nOS
2 regular grid with the same pixel size as in the original

microstructure, so that nOS
i < nOi . Given a parameter vector p quantifying positions of in-

dividual disks, the tile-based morphology is quantified by the two-point probability function
S̃2 : P×KOS → [0, 1], and its proximity to the target microstructure is evaluated as

fS(p) =
1

nOS
1 nOS

2

∑

k∈KOS

(
S2(k)− S̃2(p,k)

)2

, (12)

where KOS is defined analogously as for the target medium O.
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Figure 4: Valid tilings used in optimisation with respect to (a) two-point probability function and (b) stress
field; highlighted vertical edges in (b) correspond to edge set Γδ containing 50 equivalent edges of code δ and
length `. Tiles denoted by bold numbers (first two rows) are used to generate aperiodic enrichment functions.
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3.3. Stress-based enrichment fields and their compatibility
The additional, yet more complex, goal is to find the tile set morphology that ensures the

admissibility of enrichment functions synthesised by the tiling algorithm. Analogously to the
original Wang idea, this is achieved by requiring that edges of identical codes carry identical,
this time non-scalar, information. In particular, motivated by encouraging results obtained
recently in [32], we concentrate on the stress enrichment functions Σ∗, recall Eq. (6). It is
natural convert them to equivalent traction fluctuations, obtained as

T ∗ = νΣ∗, (13)

where T ∗ collects the components associated with individual load-cases and ν stores the
components of the normal vector:

T ∗ =

[
T ∗1

(1) T ∗1
(2) T ∗1

(3)

T ∗2
(1) T ∗2

(2) T ∗2
(3)

]
, ν =

[
ν1 0 1√

2
ν2

0 ν2
1√
2
ν1

]
.

Analogously to the morphology design, the definition of the traction-based objective
function is based on an auxiliary 9×9 tilingOT, Fig. 4(b), discretized into nOT

1 ×nOT
2 bitmap

with pixels indexed by k ∈ KOT . The tiling is periodic at external boundaries, and contains
all admissible combinations of tile pairs from the set W8/2–2 sharing all edge codes4, since
we assume that the edge traction values are dominated by the response of adjacent tiles.
Hence, for each edge code c ∈ {1, 2, . . . , nc} with nc = nc

1 + nc
2, we introduce a set Γc

formed by nΓc edges of identical code c and length ` with normal vector νΓc , Fig. 4(b)5. By
Γc,j : {1, . . . , `} → KOT , j ∈ {1, 2, . . . , nΓc}, we denote a function providing coordinates
of individual pixels at the j-th edge of code c.

Now we are in a position to quantify differences of tractions carried by an edge code c,
due to differing neighbours, via an objective function fT

c . For a given parameter vector p ∈ P
and material properties of individual phases, we calculate the stress enrichment function
Σ∗(p,k) by the algorithm outlined in Appendix A, and evaluate the objective function as

fT
c (p) =

1

`

∑̀

s=1

∥∥∥max {T ∗(p,Γc,j(s))}n
Γc

j=1 −min {T ∗(p,Γc,j(s))}n
Γc

j=1

∥∥∥
1
, (14)

where the traction enrichments are determined from Eq. (13) with ν = νΓc , max and min
operations are understood component-wise and ‖A‖1 =

∑
i,j |Aij|. Collecting the contribu-

tions from all codes, we obtain

fT(p) =
nc∑

c=1

fT
c (p). (15)

Once the tile set is designed with respect to the objective function (15), the tiling-based

4There are 16 distinct pair combinations of basic tiles sharing the code δ : {2− 1, 2− 2, 2− 7, 2− 8, 4−
1, 4− 2, 4− 7, 4− 8, 5− 1, 5− 2, 5− 7, 5− 8, 7− 1, 7− 2, 7− 7, 7− 8} see Fig. 2(a). All these combinations
are present in the tiling OT in Fig. 4(b), each of them multiple times.

5For the particular tile set considered here, we set νΓα = νΓγ = [0, 1] and νΓβ = νΓδ = [1, 0].
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stress enrichment functions Σ̃
∗

: KOT → R3×3 can be assembled by the CSHD algorithm
using the stress fluctuations Σ∗ carried by an arbitrary selection of tiles 1–8 from the tiling
OT. In the numerical experiments reported in Section 4, we use the set of eight tiles from
the top rows of OT highlighted by bold numbers in Fig. 4(b), but equivalent results were
obtained for different selections. Due to this procedure, the reconstructed edge tractions
corresponding to the synthesised enrichments Σ̃

∗
may experience jumps at tile edges. For

the j-th edge of the set Γc, these are defined as

[T̃
∗
c,j](s) = νΓc

(
Σ̃
∗
+(Γc,j)− Σ̃

∗
−(Γc,j)

)
for s ∈ {1, 2, . . . , `}, (16)

where Σ̃
∗
+ and Σ̃

∗
− denote the values of the stress enrichment functions taken from the nearest

edge neighbours from right and left, respectively, relative to the orientation of the edge set
Γc by the normal vector νΓc .

3.4. Optimisation procedure
In fact, the goals represented by objective functions (12) and (15) are conflicting. Min-

imising only with respect to the two-point probability function results in traction enrichments
discontinuous at internal edges, whereas the latter criterion drives the system to a periodic
distribution of disks. To achieve a compromise solution, we introduce a composite objective
function in the form

f(p) = wfS(p) + fT(p), (17)

where w denotes a weighting factor balancing geometrical features with mechanical compat-
ibility. The minimisation of the objective function (17) is performed by the well-established
Simulated Annealing method [19, 43], extended by a re-annealing phase to escape from local
extremes, e.g. [23].

ℓ

ρ ρℓ− 2ρ

Figure 5: Tile decomposition into interiors, edges and corner regions.

Given the number of disks nd and the target volume fraction φ, we initiate the algorithm
by determining the number of edge disks nd

c related to the c-th code and the tile edge length `.
Although this problem is difficult due to multiplicity of the edge-related disks, recall Fig. 6,
we resolved it by a heuristic procedure outlined next. To this purpose, an arbitrary tile is
decomposed into three regions assigned to interiors (light grey area in Fig. 5), edges (dark
grey area in Fig. 5), and to corners (white area in Fig. 5 that cannot be occupied by disks due
to the corner constraint). For a disk configuration nd{nd

c}n
c

c=1 related to a tile set Wnt/nc
1–

nc
2, there is (nd −∑nc

c=1 n
d
c ) interior disks and, due to the edge constraints, a single disk
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associated with code c appears 2ntqc times, cf. Fig. 6. Thus, the disk volume fraction in the
tile set or in a tiling is given by

φ̃ ≈ Ad

nt`2

(
nd +

nc∑

c=1

(2ntqc − 1)nd
c

)
, (18)

with Ad denoting the area of a single disk (in square pixels), and should be as close to the
target value φ as possible. In addition, we impose the condition

nd −∑nc

c=1 n
d
c

(`− 2ρ)2
≈ nt∑nc

c=1 qcn
d
c

2ρ(`− ρ)
, (19)

matching the local volume fractions of disks in interior and edge regions. Thus, given the
numbers of disks attached to codes {nd

c}n
c

c=1, Eqs. (18) and (19) implicitly define tile edge
lengths ˜̀and ˆ̀, which should be equal to each other for the correct tile set setup. In our case,
we sequentially check all values {nd

c}n
c

c=1 such that nd
c ≥ 0,

∑nc

c=1 n
d
c ≤ nd and select the

configuration with the minimum difference |˜̀− ˆ̀|.6
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Figure 6: An example of an admissible 14{1-1-2-1} configuration (with nd
α = nd

γ = nd
δ = 1 and nd

β = 2
code-related disks) and its modification by disk displacements; disk 9 leaves its parent tile 4 and randomly
enters tiles 1, 3, 6 or 8; disk 13 leaves its parent tile 7 and randomly enters tiles 1, 3, 5 or 7.

On the basis of these data, we randomly generate positions of individual disks and assign
them to randomly selected tile interiors and edges, until an admissible configuration p is
obtained. A single loop of the optimisation algorithm involves a sequential selection of a
disk d ∈ {1, . . . , nd}, and its movement given by

x̂j,d = xj,d + `
(
U − 1

2

)
, j = 1, 2, (20)

repeated until a new admissible configuration p̂ is encountered. The symbol U denotes
a random variable with a uniform distribution in the interval [0, 1]. If a disk, during its
displacement, leaves its parent tile by crossing the edge of code c, it is randomly assigned to
a tile sharing the same code, Fig. 6.

The acceptance of the new solution p̂ is driven by the Metropolis criterion [19]

exp

(
f(p)− f(p̂)

θ

)
≥ U, (21)

where θ denotes the algorithmic temperature, initially set to θmax and gradually reduced by

6Note that the values of ` and nd are kept constant during the optimisation process, whereas the values of
nd
c are allowed to change, since disks can move freely between tile interiors and edges.
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a constant multiplicator θmlt < 1 once the loop over all nd disks is completed. The entire
algorithm terminates after nmax objective function evaluations. Moreover, we keep it restart-
ing when the current temperature θ is less than the threshold value θmin. Such a re-annealing
step was found beneficial, as the resulting problem is multi-modal and discontinuous due to
the presence of edge-constrained disks.

4. Results

The potential of the tile-based representation is demonstrated for the two-phase compos-
ite medium appearing in Fig. 3, with default parameters shown in Tab. 1. Distinct sets W8/2–
2, differing in (i) the tile edge length `, (ii) the number of total and edge disks nd{nd

c}n
c

c=1,
(iii) the weighting factor w, and in (iv) phase properties contrast Ed/Em have been ex-
amined. In particular, our aim is to demonstrate that the proposed tile morphology design
procedure works well and that the tile sets based on the specific tilings OS and OT can be
used to represent generic particulate media.

Table 1: Default setting of parameters.

Microstructure
Volume fraction, φ 26.8%
Disk radius, ρ 8 pixels
Young modulus of diska, Ed 10
Young modulus of matrixa, Em 1
Poisson ratio of matrix and disks, νm = νd 0.125

Optimisation algorithm
Weighting factorb, w 105

Maximum temperature, θmax 10−3

Minimum temperature, θmin 10−6

Multiplicative factor, θmlt (θmax/θmin)1/200

Number of function evaluations, nmax 104nd

a In what follows, all stress-related values are expressed in
consistent units.

b Determined as w ≈ 〈fT〉/〈fS〉, with e.g. 〈fS〉 denoting the
average value of fS determined for 20 randomly generated
disk configurations.

In Fig. 8, we present the disk configurations and two-point probability functions S̃2 ob-
tained for the domain O being tiled by optimised tile sets. We observe that all reconstructed
functions S̃2 exhibit local peaks exceeding the value of φ2, which reveals the presence of
characteristic length scales of order ` in the synthesised medium. For the default value of
the weighting factor w = 105, Figs. 8(a,b), the local extremes are notably smaller than the
value of φ corresponding to a periodic construction, e.g. [48]. In addition, their number
and magnitude can be substantially reduced by increasing the edge length `, Fig. 8(b), and
practically eliminated when using more general tile sets [33]. For lower values of w, the
disk distribution becomes more regular, Fig. 8(c), and the resulting representation is visually
indistinguishable from the periodic setting, cf. [33].

Such conclusions are further supported by Fig. 9 showing cross-sections of the two-point
probability functions in the k1 direction for two different values of the weighting factor
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(a) 10{1-1-0-0}, φ̃ = 23.6% 10{1-0-1-1}, φ̃ = 28.0%

(b) 17{1-1-1-1}, φ̃ = 27.9%, 17{1-1-1-1}, φ̃ = 27.9%

(c) 27{2-1-1-1}, φ̃ = 26.7% 27{2-1-1-1}, φ̃ = 26.7%

(d) 32{2-1-2-1}, φ̃ = 26.6% 32{1-2-2-1}, φ̃ = 26.6%

w = 104 w = 105

Figure 7: Optimised sets W8/2–2 obtained for weighting factors w equal to 104 and 105 and for configurations
with (a) nd = 10, ` = 42 px, (b) nd = 17, ` = 52 px, (c) nd = 27, ` = 64 px and (d) nd = 38, ` = 74 px;
nd{nd

c}n
c

c=1 refers to configuration of nd disks in total with nd
c disks intersecting edge c, ` is the tile edge length

and φ̃ is the reconstructed volume fraction.

w. The results demonstrate that for higher values of w, the short-range phenomena are
captured to a high accuracy and the magnitude of local extremes are consistently reduced
with the increasing number of disks, albeit at a small rate. By decreasing the emphasis
on S2 objective, Fig. 9(b), the discrepancy between the original and reconstructed medium
substantially increases at short distances, leading even to an inconsistent value of the volume
fraction for 10 disks. The local peaks also become more pronounced as the stress-based
criterion drives the system towards periodic configurations.

Fig. 10(a) illustrates the ability of the optimisation algorithm to achieve self-equlibrated
stress enrichment functions by comparing the distribution of tractions T ∗1

(3) obtained for an
initial and the optimised configuration of disks. Clearly, traction enrichments at contigu-
ous edges differ significantly in the initial configuration, and are reduced to almost iden-
tical values by the proposed procedure. This also automatically keeps the edge jumps in
reconstructed traction enrichments [T̃ ∗1

(3)] under control, Fig. 10(b), since their magnitude
corresponds to the scatter found for representative eight tiles from OT utilised in the recon-
struction, recall Fig. 4(b).

To what extent influences such choice of representative tiles the synthesised enrichment
functions? To address this question, we consider a particular reconstruction of stress enrich-
ments functions Σ̃

∗
: OT → R3×3, assembled according to the the sequence of tiles found in

the tiling OT. It is useful for the visualisation purposes to introduce a local error measure

fΣ
ij (k) =

∣∣∣Σ∗ij(k)− Σ̃∗ij(k)
∣∣∣

max
m∈KOT

Σ∗ij(m)− min
m∈KOT

Σ∗ij(m)
, k ∈ KOT ; i, j ∈ {1, 2, 3}, (22)

quantifying a difference between the components of the stress enrichment functions Σ∗ de-
termined directly for the tiling OT by the algorithm described in Appendix A, and their
reconstruction Σ̃

∗
.

Outcomes of this comparison are shown in Fig. 11 in the form of (a) tiling-based mi-
crostructures, (b) distribution of the corresponding enrichment functions Σ∗13, (c) their recon-
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Figure 8: Reconstructed microstructures and two point probability functions S̃2 for tile sets with (a) w =
105, nd = 10 disks and ` = 42 px, (b) w = 105, nd = 38 disks and ` = 74 px, and (c) w = 104, nd = 38 disks
and ` = 74 px.

structed counterparts and (d) spatial distribution of the relative error. For the microstructure
generated from tiles with nd = 10 disks, we observe that the reconstructed field displays
distributed errors in tile interiors. Similarly to S2 criterion, these deviations are significantly
reduced and become highly localised when increasing the number of disks and the size of
tiles. This claim is further supported by Fig. 12, plotting the evolution of the global error

fΣ =
1

OT

3∑

i,j=1

∑

k∈KOT

|fΣ
ij (k)| (23)

as a function of the number of disks. For both values of w, we observe approximately linear
convergence with increasing nd. In addition, the error decreases for larger phase contrasts
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Figure 9: Comparison of two-point probability functions S2(k1, 0) for the weighting factors (a) w = 105 and
(b) w = 104.
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Figure 10: Distribution of (a) traction enrichments T ∗
1

(3) and (b) reconstructed traction enrichment jumps
[T̃ ∗

1
(3)] at edges Γδ of the tiling OT, obtained for nd = 38 disks and ` = 74 px. The grey/black patterns in (a)

correspond to initial and optimised and enrichment functions, respectively.

Ed/Em. This is caused by the fact that stresses tend to concentrate more at stiffer disks,
therefore reducing variations of tractions at tile edges, see also [32] for a similar discussion.

Altogether, this indicates that the tile set was designed correctly, since the optimisation
was executed for independent objective functions, recall Eq. (17). Finally we stress that the
significant compression has been achieved by the tiling-based representation: the original
microstructure contains ≈ 1, 300 disks, whereas the most detailed tile-based representation
builds on 38 disks only and is capable of producing much larger microstructures at a negli-
gible computational cost.

5. Conclusions

In this work, we have proposed an approach to the construction of aperiodic local fields in
heterogeneous media with potential applications in hybrid or generalised FE environments.
The method is based on the Wang tiling concept that allows us to represent complex patterns
using a limited set of representative tiles, complemented by the Simulated Annealing-based
algorithm to arrive at optimal tile set morphologies. On the basis of the results obtained from
analyses of the medium under consideration we conjecture that:
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Figure 11: Assessment of tiling-based enrichment functions, (a) microstructures obtained by tilings OT, dis-
tribution of (b) true stress enrichment functions Σ∗

13 ≡ σ
∗(3)
11 , (c) reconstructed stress enrichment functions

Σ̃∗
13 ≡ σ̃∗(3)

11 and of (d) the local reconstruction-based error fΣ
13.
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Figure 12: The global reconstruction error fΣ as a function of the number of disks nd for different phase
contrasts Ed/Em and weighting factors (a) w = 105 and (b) w = 104.

• the proposed method provides a robust tool for compression of disordered microstruc-
tures and can serve as an efficient microstructure generation algorithm,

• it allows for aperiodic extensions of local, possibly periodic, fields to substantially
larger domains while maintaining their compatibility,

• the tiling-based fields can be utilised as microstructure-based enrichment functions for
generalised Partition of Unity methods or hybrid finite element schemes.

We are fully aware that our conclusions are somewhat provisional, in the sense that these are
based on a single set of tiles and the specific class of microstructures. Partial extension to
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general setting is available in [33, 7] and remains in the focus of our current work.
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South Wales), Michal Šejnoha and Milan Jirásek (CTU in Prague) and anonymous refer-
ees for their criticism and helpful comments on earlier versions of the manuscript. We also
gratefully acknowledge financial support by the Czech Science Foundation through grants
No. P105/12/0331 (JN), P105/11/P370 (AK), and P105/11/0411 (JZ). Our work was par-
tially supported by the European Social Fund, grant No. CZ.1.07/2.3.00/30.0005 of Brno
University of Technology (Support for the creation of excellent interdisciplinary research
teams at Brno University of Technology, JN), by the Ministry of Education, Youth and
Sports of the Czech Republic through project MSM 6840770003 (AK), and by the Euro-
pean Regional Development Fund under the IT4Innovations Centre of Excellence, project
No. CZ.1.05/1.1.00/02.0070 (JZ).

Appendix A. Computation of mechanical fields

As explained earlier in Section 1, our objective is to determine local fields within a given
domain Y ⊂ R2 subjected to a given overall strain field

E =
[
E11 E22

√
2E12

]T
, (A.1)

under the periodic boundary conditions. These follow from the solution of the elastic unit
cell problem [28, 27]

ε(x) = ∂u(x), ∂Tσ(x) = 0, σ(x) = L(x)ε(x) for x ∈ Y , (A.2)

in which u : Y → R2 designates the displacement field, ε : Y → R3 and σ : Y → R3

denote the Y-periodic strain and stress fields, L : Y → R3×3 stands for the symmetric
positive-definite material stiffness matrix, and the operator matrix is defined as

∂ =

[
∂

∂x1
0 1√

2
∂

∂x2

0 ∂
∂x2

1√
2

∂
∂x1

]T
. (A.3)

In addition, the strain field is subject to a mean value-type constraint

1

|Y|

∫

Y
ε(x) dx = E. (A.4)

It is well-known [27, 28] that the solution to the unit cell is characterised by the Lippmann-
Schwinger equation

ε(x) +

∫

Y
Γ0(x− y)δL(y)ε(y) dy = E for x ∈ Y , (A.5)

where δL = L − L0, L0 ∈ R3×3 is the stiffness matrix of an auxiliary reference medium
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and the operator Γ0 : Y → R3×3 is related to the Green function of the problem (A.2) with
L(x) = L0. It admits a compact closed-form expression in the Fourier space, e.g. [27, Sec-
tion 5.3], and its action can be efficiently evaluated by the FFT algorithm. This observation
is at the heart of an iterative scheme due to Moulinec and Suquet [30], which can be applied
to arbitrary digitised media. In our case, we adopt an accelerated version of the original
algorithm based on observations due to Zeman et al. [47]. Since the sample is discretized by
a regular nY1 × nY2 bitmap, it is convenient to project the integral equation onto the space of
trigonometric polynomials, e.g. [39]. This yields the linear system in the form

(I +B)e = b, (A.6)

where e ∈ R3×nY
1 ×nY

2 stores the unknown strain values at individual pixels, b ∈ R3×nY
1 ×nY

2 is
the corresponding matrix of overall strains and matrixB is expressed as a product of several
matrices

B =



F−1 0 0
0 F−1 0
0 0 F−1






Γ1111 Γ1122

√
2Γ1112

Γ2211 Γ2222

√
2Γ1112√

2Γ2212

√
2Γ1212 2Γ2212





F 0 0
0 F 0
0 0 F




×




δL1111 δL1122

√
2δL1112

δL2211 δL2222

√
2δL1112√

2δL2212

√
2δL1222 2δL2212


 .

(A.7)

Here, F ∈ CnY
1 ×nY

2 and F−1 implement the forward and the inverse Fourier transform and,
e.g., δL1122 ∈ RnY

1 ×nY
2 stores the corresponding component of the stiffness tensor at individ-

ual pixels, see [47] for more details. The system (A.6) is solved using standard conjugate
gradient algorithm. Upon convergence, the distribution of the local stress field σ is deter-
mined from the solution e by Eq. (A.2)3. The local displacement fields u follow from an
inexpensive analysis in the Fourier space, e.g. [45].

Note that the construction of the enrichment functions is based on the perturbation fields
of displacements and stresses

u∗(x) = u(x)− 1
|Y|
∫
Y u(y) dy, (A.8)

σ∗(x) = σ(x)− 1
|Y|
∫
Y σ(y) dy, (A.9)

instead of the total values. The enrichment functions for displacements, Ψ∗ in Eq. (2),
and stresses, Σ∗ in Eq. (6), can now be constructed from the solutions to three load-cases,
obtained by successively setting each component of Eij in (A.1) to 1, while the ones become
0.
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Chapter 6

FOLLOW-UP DEVELOPMENTS

In the following chapter, the impact of Author’s work in the scientific community is high-
lighted in terms of a brief overview on follow-up works motivated by the results presented
in Chapters 2–5.



Follow-up Developments

Jan Novák
Experimental Centre, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic

The presented work yielded in a new research agenda, namely on Wang tiling presented
in Chapter 4 and Chapter 5, that has been justified by a number of follow-up works from
the field of Simulation science and, for the time being, one publication from a popular sub-
ject on additive manufacturing [1]. The obvious, but uneasy, extension of the compression
of random mono-dispersion [2] to complex “real world” material systems was presented
by Doškář [3] as early after its introduction to Materials Engineering community as in 2013.
A deeper extension of Doškář’s developments, involving also the use of Wang tiles in nu-
merical homogenization was published later in [4]. The scientifically most tangible findings
elaborated in the two theses were consequently summarized and discussed in [5]. The ho-
mogenization strategies supported by Wang tiles were also successfully applied to the anal-
ysis of macroscopic properties of high porosity materials, metallic foams in particular, that
are often cumbersome to be analyzed by majority of conventional homogenization strate-
gies. These particular results are covered in detail in [6]. As the formalism of Wang tiles
is, by definition, well-suited for generating microstructure realizations additively growing in
size, they naturally found use in statistical determination of Representative Volume Element
dimensions in conjunction with bounds to apparent properties of certain synthetic as well
as natural composites [7]. As the principle of generalized periodicity is encoded in Wang
tiles, further works mirroring the developments originally made for the Periodic Unit Cell
paradigm have been mirrored also into Wang tiles, see e.g. [8]. As mentioned in Chapter 1,
the very recent Computational Mechanics oriented outcome provoked by the findings ex-
plored in Chapter 2 and Chapter 5 of this collection, such that it targets the propagation
of microstructure-induced information into the coarse scale solutions by means of Reduced
Order Modeling method was studied and presented by Doškář et al. [9].

Further promising results were brought by Tyburec et al. [10]. Here the Wang tiling stays
behind the “modularity engine” of the topology optimization procedure for truss structures
that commenced during Tyburec’s Ph.D. work published in [11]. The extension of modular
optimization principles to compliant structures and mechanisms has been also recently ac-
cepted for publication [12]. Tyburec’s, rather theoretical works have been preceded also by
a decent application of Wang tiles in fabrication of modular 3D printed functional reinforce-
ment of wound composite hollow beams designed with semidefinite programming [13].

Last but not least, Author’s findings presented in Chapter 2 and Chapter 3 has been
further elaborated in terms of establishing direct solution to the algebraic system arising
from the proposed, originally iterative, self-compatibility technique to incorporate inclusion
interactions in non-dilute media, see Meng [14], Meng et al. [15, 16].

Email address: novakja@fsv.cvut.cz (Jan Novák)

Follow-up Developments 98



References
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[6] M. Doškář, J. Novák, A jigsaw puzzle framework for homogenization of high poros-
ity foams, Computers & Structures 166 (2016) 33–41, ISSN 00457949, doi:10.1016/j.
compstruc.2016.01.003.
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[9] M. Doškář, J. Zeman, P. Krysl, J. Novák, Microstructure-informed reduced modes
synthesized with Wang tiles and the Generalized Finite Element Method, Computa-
tional Mechanics 68 (2) (2021) 233–253, ISSN 0178-7675, 1432-0924, doi:10.1007/
s00466-021-02028-y.
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