Matematika 3
Kód předmětu: 101MA03 |
Anotace | (semestr B241) |
---|---|
Přednáška sestává ze dvou hlavních tematických okruhů: (1) obyčejné diferenciální rovnice, dvojný a trojný integrál, křivkové integrály; (2) základy statistiky a pravděpodobnosti. Témata: (1a) Lineární diferenciální rovnice n-tého řádu, počáteční úloha. Homogenní rovnice: fundamentální systém, obecné řešení. Konstrukce fundamentálního systému pro rovnici s konstantními koeficienty. Redukce řádu. Nehomogenní rovnice: variace konstant a metoda speciální pravé strany pro rovnici s konstantními koeficienty. Skalární součin funkcí na prostoru C([a, b]), ortogonalita funkcí. Formulace okrajové úlohy, příklady. Úloha u'''' + a u = f, u(0) = u(L) = 0, její vlastní čísla a vlastní funkce. Ortogonalita vlastních funkcí odpovídajících různým vlastním číslům, řešitelnost úlohy v závislosti na "a". Další typy okrajových úloh. (1b) Dvojný integrál: Fubiniova věta, věta o substituci, substituce do (zobecněných) polárních souřadnic. Aplikace dvojného integrálu, příklady. Trojný integrál: Fubiniova věta, věta o substituci, substituce v trojném integrálu do (zobecněných) sférických souřadnic a (zobecněných) cylindrických souřadnic. Aplikace trojného integrálu, příklady. Křivkový integrál prvního druhu a jeho aplikace. Křivkový integrál druhého druhu, Greenova věta. Potenciální pole, aplikace křivkového integrálu druhého druhu. Příklady na použití křivkových integrálů. (2) Popisná statistika jednoho souboru. Popisná statistika jednoho (boxplot, odlehlá pozorování) a dvou souborů. Popisná statistika dvourozměrného souboru, popisná lineární regrese. Pojem pravděpodobnosti, klasická definice pravděpodobnosti. Podmíněná pravděpodobnost, nezávislé jevy. Diskrétní náhodná proměnná, její charakteristiky. Binomické rozdělení. Spojité rozdělení. Charakteristiky spojité proměnné. Normální rozdělení. Aplikace normálního rozdělení. Statistická inference. | |
Obsah | |
1. Lineární diferenciální rovnice n-tého řádu, počáteční úloha. Homogenní rovnice: fundamentální systém, obecné řešení. Konstrukce fundamentálního systému pro rovnici s konst. koeficienty. Popisná statistika jednoho souboru.
2. Redukce řádu. Nehomogenní rovnice: variace konstant a metoda speciální pravé strany pro rovnici s konstantními koeficienty. Popisná statistika jednoho (boxplot, odlehlá pozorování) a dvou souborů. 3. Skalární součin funkcí na prostoru C([a, b]), ortogonalita funkcí. Formulace okrajové úlohy - příklady. Popisná statistika dvourozměrného souboru, popisná lineární regrese. 4. Vlastní čísla a vlastní funkce okrajových úloh. Ortogonalita vlastních funkcí odpovídajících různým vlastním číslům. Řešitelnost okrajových úloh. Pojem pravděpodobnosti, klasická definice pravděpodobnosti. 5. Dvojný integrál: Fubiniova věta, věta o substituci, substituce do (zobecněných) polárních souřadnic. Podmíněná pravděpodobnost, nezávislé jevy. 6. Aplikace dvojného integrálu, příklady. Diskrétní náhodná proměnná, její charakteristiky. 7. Trojný integrál: Fubiniova věta, věta o substituci, substituce v trojném integrálu do (zobecněných) sférických souřadnic a (zobecněných) cylindrických souřadnic. Binomické rozdělení. 8. Aplikace trojného integrálu, příklady. Spojité rozdělení. 9. Křivkový integrál prvního druhu a jeho aplikace. Charakteristiky spojité proměnné. 10. Křivkový integrál druhého druhu, Greenova věta. Normální rozdělení. 11. Potenciální pole, aplikace křivkového integrálu druhého druhu. Aplikace normálního rozdělení. 12. Příklady na použití křivkových integrálů. Statistická inference. 13. Shrnutí učiva, opakování a dotazy. | |
Literatura | |
Povinná literatura: [1] O. Zindulka: Matematika 3, Česká technika - nakladatelství ČVUT, FSv, Praha 2007, ISBN: 978-80-01-03678-5. [2] B. Budinský, J. Charvát: Matematika II. Skriptum ČVUT, Vydavatelství ČVUT, 2002, ISBN: 80-01-01092-9. [3] D. Jarušková: Pravděpodobnost a matematická statistika, Česká technika - nakladatelství ČVUT, FSv, Praha 2011, ISBN: 978-80-01-04829-0. [4] D. Jarušková, M. Hála: Pravděpodobnost a matematická statistika. Příklady, Česká technika - nakladatelství ČVUT, FSv, Praha 2011, ISBN: 978-80-01-04828-3. Doporučená literatura: [5] F. Bubeník: Mathematics for Engineers. Skriptum CVUT, 2014, ISBN 978-80-01-03792-8. [6] F. Bubeník, M. Pultar, I. Pultarová: Matematické vzorce a metody. Vydavatelství ČVUT, Praha 2010, ISBN 978-80-01-04524-4. [7] K. Rektorys: Prehled užité matematiky. Prometheus, Praha 2000, ISBN 80-85849-92-5. | |
Návaznosti | |
Podmínkou zápisu tohoto předmětu je zápis předmětu 101MA02 v tomto nebo některém předchozím semestru Tento předmět lze klasifikovat až po klasifikaci předmětu 101MA02 | |
Studijní plány | |
Předmět je zařazen do následujících studijních plánů: - studijní plán Stavební inženýrství, specializace Pozemní stavby (BC202000), skupina Stavební inženýrství, varianta J, 3. semestr (BJ20190300), dop. semestr 3 (tento studijní plán platí od akademického roku 2020/21 do 2023/24 ) - studijní plán Stavební inženýrství, specializace Pozemní stavby (BC2024), skupina Stavební inženýrství, varianta J, 3. semestr (BJ20190300), dop. semestr 3 (tento studijní plán platí od akademického roku 2024/2025 ) - studijní plán Management a ekonomika ve stavebnictví (BE20200P), skupina Management a ekonomika ve stavebnictví, 3. semestr (BE20210300), dop. semestr 3 (tento studijnÍ plán platí pouze pro přestup z programu Stavební inženýrství v roce 2022 ) - studijní plán Management a ekonomika ve stavebnictví (BE2022), skupina Management a ekonomika ve stavebnictví, 3. semestr (BE20210300), dop. semestr 3 (platí pro nástup v akademickém roce 2021 ) - studijní plán Stavební inženýrství, specializace Konstrukce a dopravní stavby (BK202000), skupina Stavební inženýrství, varianta J, 3. semestr (BJ20190300), dop. semestr 3 (tento studijní plán platí od akademického roku 2020/21 ) - studijní plán Stavební inženýrství, obor Příprava, realizace a provoz staveb (BL201900), skupina Stavební inženýrství, varianta I, 3. semestr (BI20190300), dop. semestr 3 (tento studijní plán platí pro nástup 2019/20 ) - studijní plán Stavební inženýrství, specializace Příprava, realizace a provoz staveb (BL202000), skupina Stavební inženýrství, varianta J, 3. semestr (BJ20190300), dop. semestr 3 (tento studijní plán platí od akademického roku 2020/21 do 2023/2024 ) - studijní plán Stavební inženýrství, specializace Příprava, realizace a provoz staveb (BL2024), skupina Stavební inženýrství, varianta J, 3. semestr (BJ20190300), dop. semestr 3 (tento studijní plán platí od akademického roku 2024/2025 ) - studijní plán Stavební inženýrství, specializace Materiálové inženýrství (BM202000), skupina Stavební inženýrství, varianta J, 3. semestr (BJ20190300), dop. semestr 3 (tento studijní plán platí od akademického roku 2020/21 do 2023/24 ) - studijní plán Stavební inženýrství, specializace Materiálové inženýrství (BM2024), skupina Stavební inženýrství, varianta J, 3. semestr (BJ20190300), dop. semestr 3 (tento studijní plán platí od akademického roku 2024/2025 ) - studijní plán Stavební inženýrství, specializace Požární bezpečnost staveb (BQ202000), skupina Stavební inženýrství, varianta J, 3. semestr (BJ20190300), dop. semestr 3 (tento studijní plán platí od akademického roku 2020/21 ) - studijní plán Stavební inženýrství, specializace Vodní hospodářství a vodní stavby (BV202000), skupina Stavební inženýrství, varianta J, 3. semestr (BJ20190300), dop. semestr 3 (tento studijní plán platí od akademického roku 2020/21 ) - studijní plán Stavební inženýrství, specializace Inženýrství životního prostředí (BZ202000), skupina Stavební inženýrství, varianta J, 3. semestr (BJ20190300), dop. semestr 3 (tento studijní plán platí od akademického roku 2020/21 ) |